
THE DOUBLE CENTRALIZER THEOREM (DCT)

The purpose of this worksheet is to work through the details of the proof of the
Double Centralizer Theorem (DCT); in addition, we will discuss some consequences
of the DCT to representation theory and play around with some concrete examples.

1. A brief review of the Artin-Wedderburn Theorem (AWT)

This section’s sole purpose is to serve as a review of the Artin-Wedderburn
Theorem (AWT) from the Artin-Wedderburn worksheet:

Theorem 1.1 (Artin-Wedderburn Theorem (general version)). Let R be a left
semisimple ring. Then for some m ě 0, positive integers n1, . . . , nm, and division
rings D1, . . . , Dm, there is a ring isomorphism

R – Matn1pD1q ˆ ¨ ¨ ¨ ˆ MatnmpDmq.

Moreover,

(1) m is the number of isomorphism classes of simple left R-modules.
(2) Say M1, . . . ,Mm are simple modules forming a complete set of representa-

tives of these isomorphism classes. Then, after reordering, Di – EndRpMiq
op

and
(3) nj is the number of times summands isomorphic to Mj occur in the decom-

position of R into a direct sum of simple left modules.

Moreover, the data pm;n1, . . . , nm;D1, . . . , Dmq is unique up to a permutation
of t1, . . . ,mu and isomorphisms of division rings.

Remark 1.2.
The AWT tells us that left (and right) semisimple algebras have a very nice structure
based on matrix rings over division rings. In particular, these semisimple algebras
are, in a sense, the next best thing after vector spaces over a field. This is remark-
able as rings, even commutative ones, tend to evade structure theorems without
moderately strong hypothesis (e.g. the Cohen Structure Theorem for commutative,
Noetherian, complete local rings).

2. The DCT and its proof

Definition 2.1. For a G-module W and simple G-module U , the isotypic compo-
nent of W of type U is the sum of all submodule ofW isomorphic to U . The isotypic
components form a direct sum which is all of W if and only if W is semisimple. In
that case it is call the isotypic decomposition.

Theorem 2.1. Let W be a finite dimensional vector space over a field K. Let
A Ă EndKpW q be a semisimple (left and right semisimple) K-subalgebra. Let

A1 “ tb P EndKpW q | ab “ ba for all a P Au

be the centralizer of A in EndKpW q. Then:

(1) A1 is semisimple and pA1q1 “ A.
1
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(2) W has a unique decomposition W “ W1 ‘ ¨ ¨ ¨ ‘ Wr into simple, non-
isomorphic A b A1-modules Wi. In addition, this is the isotypic decompo-
sition of W as an A-module and as an A1-module.

(3) Each simple factor Wi is of the form Ui bDi
U 1
i , where Ui is a simple A-

module, U 1
i a simple A1-module, and Di is the division algebra EndApUiq

op “

EndA1 pU 1
iq

op.

Proof. By AWT, consider the isotypic decomposition of A as a semisimple K-
subalgebra of EndKpW q:

A “

r
ź

i“1

Ai,

where Ai – Matni
pDiq with a division algebra Di Ą K. Since A Ď EndKpW q, then

W is a A-module.

Exercise 1.
Prove that if A is left (right) semisimple, then every left (right) module over A

is left (right) semisimple.

By Exercise 1, we have that W is a semisimple A-module. Therefore, we may
write

W – W1 ‘ ¨ ¨ ¨ ‘ Wr

where Wi – Usi
i with Ui a simple Ai-module (it is also a simple A-module).

Exercise 2.
(1) Let MatnpDq be a matrix ring over a division ring D. Show that any

nontrivial two sided ideal of MatnpDq is isomorphic to the space of column
vectors of elements in D of size n.

(2) Conclude that Ui – Dni
i , where we view Dni

i as a A-module via the compo-

sition A
pr

ÝÑ Ai – Matni
pDiq.

We now analyze A1 and its relationship to A.

Exercise 3.
(1) Show that A1 “ EndApW q and A1 “

ś

EndApWiq.
(2) Set A1

i “ EndApWiq. Show that A1
i – MsipD

1
iq, where D1

i “ EndAi
pUiq “

Dop
i .

(3) Show that dimKpAi bK A1
iq “ dimKpEndpWiqq.

Exercise 4. Proof of Part (1):
Conclude pA1q1 “ A by showing dimKpAq “ dimKppA1q1q using the same reason-

ing as in Exercise 3 on A1 and pA1q1.

Exercise 5. Proof of Part (2):
In the text, the authors call upon a canonical algbra homomorphism Ai b A1

i Ñ

EndpWiq.

(1) Describe the canonical algebra homomorphism

Matni
pDiq bK MatsipD

op
i q Ñ EndKpWiq.

(2) Show that Ai bK A1
i a simple K-algebra.
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(3) Conclude that the canonical algebra homomorphism from Exercise 5 part
(1) is an isomorphism.

(4) Use Schur’s Lemma to show that Wi is a simple A bK A1-module.

Exercise 6. Proof of Part (3):

(1) For any ring R, consider R as a right R-module.
(a) Show that Rop as a left R-module via r ¨ s “ rs for all r P R and

s P Rop.
(b) One might be tempted to describe Rop as a left R-module via the action

r ¨ s “ sr. If R is not commutative, convince yourself that this need
not give Rop a left R-module structure.

(c) Show that R bR Rop – R.
(d) For any natural numbers n and m, show that Rn bR pRopqm – Rnm.

(2) Recall that Ui – Dni
i . Consider Ui as a right Di-module and U 1

i “ pDop
i qsi

as a left Di-module.
(a) Show that Ui bDi U

1
i is an A b A1 module in a canonical way.

(b) Show that Ui bDi
U 1
i – Usi

i – Wi as A b A1-modules.
(c) Conclude part (3) of the DCT.

□

3. A Consequence of the DCT in Representation Theory

First, we describe the setting we will be considering in this section. Let K be any
field and V a finite dimensional K-vector space. Define the n-fold tensor product
of V by

V bn :“ V b ¨ ¨ ¨ b V
n´times

.

Given an element g P GLKpV q, define

g ¨ pv1 b ¨ ¨ ¨ b vnq :“ gpv1q b ¨ ¨ ¨ b gpvnq;

this gives rise to a linear action of GLpV q on V bm. On the other hand, the sym-
metric group Sn on n-letters, acts linearly on V bm, as well by defining

σpv1 b ¨ ¨ ¨ b vnq “ vσp1q b ¨ ¨ ¨ b vσn.

We denote by xGLpV qy and xSny the subalgebras generated by the image of
GLpV q and Sn in EndKpV bmq, respectively.

Exercise 7. Show that the two actions above commute with each other in EndKpV bmq.

Theorem 3.1. For any field K, we have EndSnpV bnq “ xGLpV qy. Moreover, if
charpKq does not divide n!, then EndGLpV qpV bq “ xSny.

Proof. The key is the following exercise

Exercise 8. Let W be a finite dimensional vector space and X Ă W a Zariski-
dense subset of W . Then the linear span of tensors x b ¨ ¨ ¨ b x

n´times
with x P X is the

subspace Σn Ă Wbn of all symmetric tensors (i.e all tensors v1 b ¨ ¨ ¨ b vn P V bm

such that σpv1 b ¨ ¨ ¨ b vnq “ v1 b ¨ ¨ ¨ b vn for all σ P Sn).

Exercise 9. Consider V as in the statement of Theorem 2.2.
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(1) The map

γ : EndpV qbn Ñ EndpV bnq

defined by setting

γpA1 b ¨ ¨ ¨ b Anqpv1 b ¨ ¨ ¨ b vmq “ Av1 b ¨ ¨ ¨ b Anvn

is an isomorphism of K-algebras.
(2) Show that the map γ from part (1) induces an isomorphism between the sym-

metric tensors in EndKpV qbn and the subalgebra EndSnpV bnq of EndKpV bnq.
(3) Use Exercise 8 with X :“ GLpV q Ď W :“ EndKpV q to conclude part 1 of

the theorem.
(4) Use the DCT to prove part 2 of the theorem.

□

Theorem 3.2. Assume that charpKq does not divide n!.

(1) The two subalgebras xSny and xGLpV qy of EndKpV bnq are semisimple and
are centralizers of each other.

(2) There is a canonical decomposition of V bn as an Sn ˆ GLpV q-module into
simple non-isomorphic Sn ˆ GLpV q-modules Vλ:

V bn “
à

λVλ.

(3) Each simple factor Vλ is of the form Mλ b Lλ, where Mλ is a simple Sm-
module and Lλ is a simple GLpV q-module. Moreover, the modules Mλ

(respectively, Lλq are all non-isomorphic.

Proof.

Exercise 10.
(1) Prove part (1).
(2) Prove part (2).
(3) Prove part (3) in the case when K is algebraically closed. The general case

will be proven later in the text.
□

Exercise 11. Assume the setup of Theorem 3.2. For those of us with some back-
ground in category theory, show that the assignment

Lλp´q : K ´ vect Ñ GLpVq ´ Rep

defined by LλpV q “ LλpV q as in Theorem 3.2, is a functor from the category of
finite dimensional K-vector spaces to the category of GLpV q-representations. This
functor Lλp´q is usually called the Schur functor or the Weyl functor

The following are exercises in the exercise sheet from 10/29/24:

Exercise 12. Show that the isotypic componnet in V bn of the trivial representation
of Sn is the symmetric power SnpV q.

Exercise 13.
If dimpV q ě n, show that every irreducible representation of Sm occurs in V bn.

The following are new exercises:
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Exercise 14. Let V “ C3.
Decompose V b3 as in Theorem 3.2. In particular, find each Mλ and Lλ.
Decompose V b4 as in Theorem 3.2. In particular, find each Mλ and Lλ.
Decompose V b2 as in Theorem 3.2. In particular, find each Mλ and Lλ. Does the
regular represenation of S3 appear as an Mλ?

Exercise 15. Let V “ F2
2.

(1) Is EndGLpV qpV b2q “ xS2y?

(2) Can we write V b2 as a direct summand of irreducible S2 representations
as in the AWT?
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