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Table of basic properties

In this table, R is an arbitrary Noetherian ring, and I, J ideals in R. The
overlines denote the integral closure in the ambient ring.

(1) I ⊆ I ⊆
√
I and

√
0 ⊆ I. (Page 2.)

(2) I = I. (Corollary 1.3.1.)

(3) Whenever I ⊆ J , then I ⊆ J . (Page 2.)

(4) For any I, J , I : J ⊆ I : J . (Page 7.)

(5) For any finitely generated non-zero I and any J in a domain,
IJ : I = J . (Corollary 6.8.7.)

(6) An intersection of integrally closed ideals is an integrally closed
ideal. (Corollary 1.3.1.)

(7) Persistence: if R
ϕ−→S is a ring homomorphism, then ϕ(I) ⊆

ϕ(I)S. (Page 2.)

(8) If W is a multiplicatively closed set in R, then IW−1R =
IW−1R. (Proposition 1.1.4.)

(9) An element r ∈ R is in the integral closure of I if and only if
for every minimal prime ideal P in R, the image of r in R/P
is in the integral closure of (I + P )/P . (Proposition 1.1.5.)

(10) Reduction criterion: J ⊆ I if and only if there exists l ∈
N>0 such that (I + J)lI = (I + J)l+1. (Corollary 1.2.5.)

(11) Valuative criterion: J ⊆ I if and only if for every (Noe-
therian) valuation domain V which is an R-algebra, JV ⊆ IV .
When R is an integral domain, the V need only vary over val-
uation domains in the field of fractions of R. Furthermore, the
V need only vary over valuation domains centered on maximal
ideals. (Theorem 6.8.3 and Proposition 6.8.4.)

(12) I · J ⊆ IJ . (Remark 1.3.2 (4), or Corollary 6.8.6.)

(13) Let R ⊆ S be an integral extension of rings. Then IS ∩R = I.
(Proposition 1.6.1.)

(14) If S is a faithfully flat R-algebra, then IS ∩R = I. (Proposi-
tion 1.6.2.)

(15) The integral closure of a Zn × Nm-graded ideal is Zn × Nm-
graded. (Corollary 5.2.3.)



x

(16) If R is a polynomial ring over a field and I is a monomial
ideal, then I is also a monomial ideal. The monomials in I are
exactly those for which the exponent vectors lie in the Newton
polyhedron of I. (Proposition 1.4.6, more general version in
Theorem 18.4.2.)

(17) Let R be the ring of convergent power series in d variables
X1, . . . , Xd over C, or a formal power series ring in X1, . . . , Xd

over field of characteristic zero. If f ∈ R with f(0) = 0, then

f ∈
(
X1

∂f

∂X1
, . . . , Xd

∂f

∂Xd

)
.

(Corollary 7.1.4 and Theorem 7.1.5.)

(18) Let (R,m) be a Noetherian local ring which is not regular and
I an ideal of finite projective dimension. Then m(I : m) = mI
and I : m is integral over I. (Proposition 1.6.5.)

(19) x ∈ I if and only if there exists c ∈ R not in any minimal
prime ideal such that for all sufficiently large n, cxn ∈ In.
(Corollary 6.8.12.)

(20) If R is a Noetherian local ring, then ht(I) ≤ ℓ(I) ≤ dimR.
(Corollary 8.3.9. The notation ℓ() stands for analytic spread.)

(21) If R is local with infinite residue field, then I has a minimal
reduction, and every minimal reduction of I is generated by
ℓ(I) elements. (Proposition 8.3.7.)

(22) If I or J is not nilpotent, then ℓ(IJ) < ℓ(I) + ℓ(J). (Proposi-
tion 8.4.4.)

(23) x ∈ In if and only if

lim
i→∞

ordI(x
i)

i
≥ n.

(Corollary 6.9.1 and Lemma 6.9.2.)

(24) If R→ S is a normal ring homomorphism of Noetherian rings,
then for any ideal I in R, IS = IS. (Corollary 19.5.2.)



Notation and basic definitions

Except where otherwise noted, all rings in this book are commutative with
identity and most are Noetherian. An ideal in a ring R generated by a1, . . . , an
is denoted by (a1, . . . , an) or (a1, . . . , an)R. If n = 1, it is also written as a1R.

A ring is local if it has only one maximal ideal. We write (R,m) to denote
a local ring with maximal ideal m, and (R,m, k) to denote (R,m) with residue
field k. An overring S of R is a ring that contains R as a subring. An
R-algebra S is essentially of finite type over R if S is a localization of a
finitely generated R-algebra. The total ring of fractions is the localization
of R inverting all non-zerodivisors. If f : R → S is a ring homomorphism, I
an ideal in R and J an ideal in S, then IS is the ideal in S generated by f(I);
and J ∩R is the ideal f−1(J).

An R-module M is faithful if ann(M) = 0. M is torsion-free if for any
non-zerodivisor r of R and any m ∈M , rm = 0 implies that m = 0. If I is an
ideal in R, M is said to be separated in the I-adic topology if ∩nInM = 0.

A \B set difference A minus B
N natural numbers starting from 0
mR the maximal ideal of a local ring R
Min(R) the set of minimal prime ideals of R
Max(R) the set of maximal prime ideals of R
Ass(M) set of associated prime ideals of M
Ro R \⋃P∈Min(R) P
Rred ring R modulo its nilradical
R̂ completion of (R,m) in the m-adic topology
R(X) faithfully flat extension of R, Section 8.4
Q(R) field of fractions of R
ωR canonical module of R
dim( ) Krull dimension; vector-space dimension
λ( ) length
T (R), Tk(R) Definition 13.4.3
(Ri), (Si) Serre’s conditions, Definition 4.5.1
JS/R Jacobian ideal, Definition 4.4.1
K∗ the set of units in K
K algebraic closure of field
R+ absolute integral closure, Section 4.7
I,R integral closure of ideal, ring
tr.degF (K) transcendence degree of K over F
[K : F ] F -vector space dimension of a field K
Tr trace
D(R), D̃(R) set of divisorial valuation (ring)s with respect

to R, Definition 9.3.1, Section 18.1 resp.



xii

Rv the valuation ring of valuation v, Section 6.2
mv the maximal ideal of Rv
κv the residue field of Rv
rk(v), rat.rk(v) rank and rational rank of v, Definition 6.6.1
Γv value group of valuation v, Definition 6.2.1,
ΓV value group of valuation ring V , page 122
R[It], R[It, t−1] Rees and extended Rees algebras, Chapter 5
grI(R) associated graded ring, Definition 5.1.5
FI(R),FI fiber cone of I, Definition 5.1.5
κ(P ) field of fractions of R/P , residue field of P
adj( ) adjoint, Chapter 18
ann( ) annihilator ideal
depth( ) depth of a module or ring, depth(R) = ∞√
I radical of I

V (I) the set of prime ideals in R containing I
ht( ) height of an ideal, ht(R) = ∞
ℓ( ) analytic spread, Definition 5.1.5
µ( ) minimal number of generators
ordI( ) order function, Definition 6.7.7,

ordR( ) = ordm( ) if (R,m) is a local ring
c(I) content of an ideal, 14.1.1
c(f) content of a polynomial, 1.7.1
RV ( ) set of Rees valuations or Rees valuation rings
I−1 HomR(I, R), Definition 2.4.5
I0, I−1, I−2, etc. R (powers of an ideal I in a ring R)
I |J ideal I divides ideal J , Definition 14.0.1
I : J∞ the union

⋃
n(I : Jn), where I and J are ideals

rJ (I) reduction number, Definition 8.2.3
rk(M) rank of a module

if R domain: rkM = dimQ(R)(M ⊗R Q(R))
eR(I;M), e(I;M), e(R) multiplicity, Chapter 11
eR(I1, . . . , Id;M),

eR(I
[d1]
1 , . . . , I

[dk]
k ;M) mixed multiplicity, Chapter 17

PI,M (n) Hilbert–Samuel polynomial
detf (M) determinant of a module, Proposition 16.3.2
It(ϕ) ideal of t× t minors of a matrix ϕ
ER(M) page 321
RF (M) a Rees algebra of a module, Definition 16.2.1
SF (M) Definition 16.2.1
SymR(M) symmetric algebra of M , Chapter 16
T ≻ R infinitely near, Definition 14.5.1
vI asymptotic Samuel function, Definition 6.9.3
∆(v) Lipman’s reciprocity, 14.6.2



Preface

Integral closure has played a role in number theory and algebraic geometry
since the nineteenth century, and a modern formulation of the concept for ide-
als perhaps began with the work of Krull and Zariski in the 1930s. This book
is on the integral closure of ideals, rings, and modules over commutative Noe-
therian rings with identity. Our goal in writing this book was to collect mate-
rial scattered through many papers, and to present it with a unified treatment.
To make the book self-contained, we begin with basic material, and develop
most of what is needed to read the book. We hope the presentation makes
the book friendly to a beginner. The reader should have basic knowledge of
commutative algebra, such as modules, Noetherian chain conditions, prime
ideals, polynomial rings, Krull dimension, height, primary decompositions,
regular sequences, homomorphisms, regular and Cohen–Macaulay rings, and
the process of completion. One exception is the need to have prior knowledge
of the integral closure of rings, as this is worked out carefully in Chapter 2.

Integral closures of ideals, rings and modules overlap many important top-
ics, including the core of ideals, Hilbert functions, homological algebra, mul-
tiplicities (mixed and otherwise), singularity theory, the theory of Rees alge-
bras, resolution of singularities, tight closure, and valuation theory. While all
of these topics are touched on in the book, we ask the reader to forgive us if
we didn’t fully explore their own favorite from among this list. After over 425
pages, we had to put some limits on what we could cover.

The book is written to be read in linear order. The first eleven chapters
are linearly dependent upon each other to some extent, but the last several
chapters are largely independent of each other, and the reader or instructor
can easily pick and choose which they prefer to cover. In a few places in later
chapters more commutative algebra techniques are used without background
explanation. Exercises are included at the end of each chapter. Some exercises
are easier than others; exercises labelled with a star are hard.

A seminar, beginning in 1984, with William Heinzer, Sam Huckaba, Jee
Hub Koh, Bernard Johnston, and Jugal Verma, and later Judith Sally, was
instrumental in encouraging the second author’s interest in this material. The
subject of the seminar, integral closure, became the basis of courses given by
the second author at Purdue University. An impetus in writing the book was
provided by a grant to the first author from the NSF POWRE program that
enabled us to work together during 2000/01 at the University of Kansas. The
first author taught there from the very first version of the book. We thank the
students in that course for helping us smooth the presentation: Giulio Cav-
iglia, Cătălin Ciupercă, Bahman Engheta, Glenn Rice, Janet Striuli, Emanoil
Theodorescu, and Yongwei Yao. Yongwei Yao provided several results and
exercises for the book.



xiv

Marie Vitulli taught from a second preliminary version at the University
of Oregon. We thank Marie Vitulli for her support and feedback, and to
Aaron Tresham for working out solutions to the exercises. Several people
read parts of earlier versions of the book and provided valuable feedback on
the content and on the presentation: Lionel Alberti, Jean Chan, Alberto
Corso, Dale Cutkosky, Clare D’Cruz, Trung Dinh, Neil Epstein, Sara Faridi,
Terence Gaffney, Daniel Grayson, William Heinzer, Melvin Hochster, Rein-
hold Hübl, Eero Hyry, Mark Johnson, Olga Kashcheyeva, Daniel Katz, Franz-
Viktor Kuhlmann, Monique Lejeune-Jalabert, Joseph Lipman, Thomas Mar-
ley, Stephen McAdam, Patrick Morandi, Liam O’Carroll, Bruce Olberding,
Greg Piepmeyer, Claudia Polini, Christel Rotthaus, Mark Spivakovsky, Bran-
den Stone, Steven Swanson, Amelia Taylor, Bernd Ulrich, Wolmer Vasconce-
los, Janet Vassilev, Jugal Verma, and Cornelia Yuen. We are indebted to all
for improving the book and for reducing the number of errors. Of course, the
remaining errors are all our own. Terence Gaffney and Joseph Lipman intro-
duced us to material that we had not previously considered, and we thank
them for their help.

William Heinzer, Liam O’Carroll, Claudia Polini, Christel Rotthaus, Amelia
Taylor, Bernd Ulrich, and Jugal Verma gave us crucial detailed comments that
helped us clarify the presentation. Daniel Katz went beyond any call of inter-
est or friendship; he read and corrected the whole book, and often suggested
clearer and better proofs. We thank them profusely.

We gratefully acknowledge the partial support of NSF while the book was
in progress; the second author was supported in part by NSF grant 024405,
while the first author acknowledges support on NSF grants 9970566, 0200420,
on the POWRE NSF grant 0073140, and on the ADVANCE Institutional
Transformation Program at New Mexico State University, fund NSF0123690,
during Spring 2005.

We thank Cambridge University Press, and in particular Roger Astley, for
encouragement and help over the years it took us to write this book.

The book was typeset with TEX, and the few pictures were made with
Timothy van Zandt’s pstricks. Occasionally, to explain some side remark
or a well-known point, we use the small-print paragraphs.

Our families put up with us over our years of effort on this book, even when
things were not working as we hoped. Nothing works without family support,
and our heartfelt gratitude go to Steve, Simon, Edie, Sam, and Ned.

Ultimately, our thanks go to the many researchers who developed integral
closure; we ourselves owe a special debt to Joseph Lipman and David Rees,
who inspired and taught us, and this book is dedicated to both of them.



1

What is integral closure of ideals?

The main goal of this chapter is to introduce the integral closure of ideals.
We give basic definitions, show some elementary manipulations, give a flavor
of the theory for monomial ideals, and show how integral closure arises in
various contexts.

Why and how did the integral closure of ideals arise in the first place? Much
of commutative algebra is dependent, in various guises, upon understanding
growth of ideals. A classic example of this phenomenon is the Hilbert–Samuel
polynomial for an m-primary ideal I in a local Noetherian ring (R,m). For
large n, the length of R/In, as a function of n, equals an integer-valued
polynomial. The coefficients of this polynomial are necessarily rational, and
are numerical invariants which are important for study of the pair (R, I). For
example, the degree of this polynomial equals d = dimR, and the normalized
leading coefficient of the polynomial, namely the leading coefficient times d!,
is an invariant carrying much information about I and even about R. It is
called the multiplicity of I on R (which is the multiplicity of R if I = m). A
key question is what elements r can be added to an m-primary ideal I so that
I and I + rR exhibit the same power-growth, or more specifically, have the
same multiplicity?

A first try might be to say that “powers of r grow as powers of I”, i.e., if
there is an n such that rn ∈ In. This has merit, but allows too few elements r.

A next attempt can be an asymptotic version. Let vn(r) be the least power

of r in In. If the limit of vn(r)n exists and is at least 1, we can intuitively think
that r “grows” at least as fast as I. This approach was taken by David Rees
in the 1950s, and successfully picks elements r.

Another approach is to use valuations to measure the relative “sizes” of I
and r. One can simply require that v(r) ≥ v(I) for every valuation v. This a
priori leads to a new and different idea of growth, but it turns out to be the
same as Rees’s asymptotic approach above.

There are other natural approaches. One approach that has become more
important through its relationship to tight closure is to ask that there be an
element c such that for all large n, crn ∈ In. Taking nth roots and letting n
go to infinity somehow captures the sense that r is almost in I.

All of these different approaches lead to the same concept, which is called
the integral closure of the ideal I. Moreover, integral closure occurs naturally
in many contexts. Even more remarkably, all of these notions can be subsumed
into a single equational definition (see Section 1.1).

The goal of this chapter is to introduce the integral closure of ideals, show
some elementary manipulations, and motivate the study of integral closure.

Kesavan Mohana Sundaram



2 1. What is integral closure of ideals?

We present many examples of integral closure constructions. In Section 1.4
we illustrate the theory on monomial ideals. In the last two sections we
describe how integral closure arises naturally in many contexts. We start with
the equational definition, and in Section 1.2 we characterize integral closure
with reductions. We expand more on the theory of reductions in Chapter 8.
The valuative approach to integral closure is taken up in Chapter 6, Rees’s
asymptotic approach is in Chapter 10, and the connection with the Hilbert–
Samuel polynomial and multiplicity is in Chapter 11.

1.1. Basic properties

Definition 1.1.1 Let I be an ideal in a ring R. An element r ∈ R is said to be
integral over I if there exist an integer n and elements ai ∈ Ii, i = 1, . . . , n,
such that

rn + a1r
n−1 + a2r

n−2 + · · ·+ an−1r + an = 0.

Such an equation is called an equation of integral dependence of r over I
(of degree n).

The set of all elements that are integral over I is called the integral clo-
sure of I, and is denoted I. If I = I, then I is called integrally closed. If
I ⊆ J are ideals, we say that J is integral over I if J ⊆ I.

If I is an ideal such that for all positive integers n, In is integrally closed,
then I is called a normal ideal.

A basic example is the following:

Example 1.1.2 For arbitrary elements x and y ∈ R, xy is in the integral
closure (x2, y2) of the ideal (x2, y2). Namely, with n = 2, a1 = 0 ∈ (x2, y2)
and a2 = −x2y2 ∈ (x2, y2)2, (xy)2+a1(xy)+a2 = 0 is an equation of integral
dependence of xy over (x2, y2).

Similarly, for any non-negative integer i ≤ d, xiyd−i is in (xd, yd).

Remark 1.1.3
(1) I ⊆ I, as for each r ∈ I, n = 1 and a1 = −r give an equation of integral

dependence of r over I.
(2) If I ⊆ J are ideals, then I ⊆ J , as every equation of integral dependence

of r over I is also an equation of integral dependence of r over J .
(3) I ⊆

√
I, as from the equation of integral dependence of r over I of degree

n as above, rn ∈ (a1, . . . , an) ⊆ I.
(4) Radical, hence prime, ideals are integrally closed.
(5) The nilradical

√
0 of the ring is contained in I for every ideal I because

for each nilpotent element r there exists an integer n such that rn = 0,
and this is an equation of integral dependence of r over I.

(6) Intersections of integrally closed ideals are integrally closed.

(7) The following property is called persistence: if R
ϕ−→S is a ring ho-

momorphism, then ϕ(I) ⊆ ϕ(I)S. This follows as by applying ϕ to an
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equation of integral dependence of an element r over I to obtain an equa-
tion of integral dependence of ϕ(r) over ϕ(I)S.

(8) Another important property is contraction: if R
ϕ−→S is a ring homo-

morphism and I an integrally closed ideal of S, then ϕ−1(I) is integrally
closed in R. Namely, if r is integral over ϕ−1(I), then applying ϕ to an
equation of integral dependence of r over ϕ−1(I) gives an equation of
integral dependence of ϕ(r) over I, so that ϕ(r) ∈ I, whence r ∈ ϕ−1(I).

(9) In particular, if R is a subring of S, and I an integrally closed ideal of S,
then I ∩R is an integrally closed ideal in R.

Integral closure behaves well under localization:

Proposition 1.1.4 Let R be a ring and I an ideal in R. For any multi-
plicatively closed subset W of R, W−1I =W−1I.

Furthermore, the following are equivalent:
(1) I = I.
(2) For all multiplicatively closed subsets W of R, W−1I =W−1I.
(3) For all prime ideals P of R, IP = IP .
(4) For all maximal ideals M of R, IM = IM .

Proof: By persistence of integral closure, W−1I ⊆ W−1I = IW−1R. Let
r ∈ W−1I. Write rn + a1r

n−1 + · · · + an = 0 for some positive integer n
and some ai ∈ W−1Ii. There exists w ∈ W such that wr ∈ R and for all
i = 1, . . . , n, wai ∈ Ii. Multiplying the integral equation by wn yields

(wr)n + a1w(wr)
n−1 + · · ·+ an−1w

n−1(wr) + anw
n = 0.

All the summands are in R, but the equality holds in W−1R. Multiplying
through by the nth power of some w′ ∈W gives equality in R:

(ww′r)n + a1ww
′(ww′r)n−1 + · · ·+ an−1(ww

′)n−1(ww′r) + an(ww
′)n = 0.

This is an integral equation of ww′r ∈ R over I. Thus r ∈ W−1I, which
proves the first part.

By the first part, (1) implies (2), and clearly (2) implies (3) and (3) implies
(4). Now assume that (4) holds. Let r ∈ I. Then for all maximal ideals
M in R, r ∈ IM , hence r ∈ I. This proves (1) and finishes the proof of the
proposition.

The following proposition reduces questions about of integral closure to
questions about integral closure in integral domains:

Proposition 1.1.5 Let R be a ring, not necessarily Noetherian. Let I be an
ideal in R.
(1) The image of the integral closure of I in Rred is the integral closure of

the image of I in Rred: IRred = IRred. Thus I equals the natural lift to
R of the integral closure of I in the reduced ring Rred.

(2) An element r ∈ R is in the integral closure of I if and only if for every
minimal prime ideal P in R, the image of r in R/P is in the integral
closure of (I + P )/P .
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Proof: By persistence of integral closure, IRred is contained in IRred. For
the other inclusion, let r ∈ R such that r +

√
0 ∈ IRred. Write f = rn +

a1r
n−1 + · · ·+ an−1r + an ∈

√
0 for some ai ∈ Ii. Some power of f is zero.

But fk = 0 gives an equation of integral dependence of r over I of degree kn,
which finishes the proof of (1).

We prove (2). By persistence of integral closure, the image of I in R/P is
contained in the integral closure of (I +P )/P for every P . Conversely, let W
be the set {rn+a1rn−1+ · · ·+an |n ∈ N>0, ai ∈ Ii}. Note that W is a subset
of R that is closed under multiplication. If W contains 0, r is integral over I;
otherwise there is a prime ideal Q in R disjoint from W . As minimal prime
ideals exist in every ring R, there is a minimal prime ideal P contained in Q.
By assumption on Q, W ∩ P ⊆ W ∩Q = ∅, but by the assumption on all the
minimal prime ideals, W ∩P is not empty, contradicting the assumption that
0 is not in W .

When the set of minimal prime ideals of R is finite, an equation of integral
dependence of r over I can be constructed from the equations of integral
dependence of r over I modulo each of the minimal prime ideals P1, . . . , Pm
as follows: there exist aji ∈ Ii, i = 1, . . . , nj, such that fj = rnj + aj1r

nj−1 +
· · · + aj,nj−1r + aj,nj

∈ Pj . Then f = f1f2 · · · fm ∈
√
0, so that for some

positive integer k, fk = 0, and this gives an equation of integral dependence
of r over I.

Remark 1.1.6 Even if there are finitely many minimal prime ideals and the
ideal I is contained in none of them, it may happen that the integral closure
of I is determined by going modulo only a proper subset of the minimal prime
ideals. For example, let R = k[X, Y, Z]/(XY ), with X, Y, Z variables over k.
For I = (Y, Z)R, the integral closure of I modulo the minimal prime ideal
(X) lifts to (X, Y, Z)R and the integral closure of I modulo the minimal prime
(Y ) lifts to (Y, Z)R, making the first calculation redundant.

We next rephrase integral closure with ideal equalities:

Proposition 1.1.7 Let R be a ring, not necessarily Noetherian. For any
element r ∈ R and ideal I ⊆ R, r ∈ I if and only if there exists an integer n
such that (I + (r))n = I(I + (r))n−1.

Proof: First suppose that r ∈ I. Then an equation of integral dependence of
r over I of degree n shows that rn ∈ I(I+(r))n−1 and hence that (I+(r))n =
I(I + (r))n−1. Conversely, if (I + (r))n = I(I + (r))n−1 then rn = b1r

n−1 +
b2r

n−2 + · · ·+ bn−1r+ bn for some bi ∈ Ii, which can be easily rewritten into
an equation of integral dependence of r over I.

One can also use modules to express integral dependence:

Corollary 1.1.8 (Determinantal trick, cf. Lemma 2.1.8) Let I be an ideal
in R and r ∈ R. Then the following are equivalent:
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(1) r is integral over I.
(2) There exists a finitely generated R-module M such that rM ⊆ IM and

such that whenever aM = 0 for some a ∈ R, then r ∈
√
0 : a.

Moreover, if I is finitely generated and contains a non-zerodivisor, r is integral
over I if and only if there exists a finitely generated faithful R-module M such
that IM = (I + (r))M .

Proof: Let rn+a1r
n−1+ · · ·+an = 0 be an equation of integral dependence of

r over I. There exists a finitely generated ideal J ⊆ I such that ai ∈ J i for all
i = 1, . . . , n. Thus r is integral over J , and by Proposition 1.1.7, there exists
an integer n such that J(J +(r))n−1 = (J +(r))n. Then M = (J +(r))n−1 is
finitely generated, and rM = r(J + (r))n−1 ⊆ (J + (r))n = J(J + (r))n−1 =
JM ⊆ IM . Also, if aM = 0, then arn−1 = 0.

When I is finitely generated, we may take J = I, so that IM = (I+(r))M .
If I contains a non-zerodivisor, M is faithful.

Conversely, assume (2). Let M = Rb1 + · · · + Rbm be an R-module such
that rM ⊆ IM . For each i = 1, . . . , m, write rbi =

∑m
j=1 aijbj for some

aij ∈ I. Let A be the matrix (δijr − aij), where δij is the Kronecker delta
function. Let b be the vector (b1, . . . , bm)

T . By construction Ab = 0, so that
det(A)b = adj(A)Ab = 0. Hence for all i, det(A)bi = 0, so that det(A)M =
0. By assumption det(A)rk = 0 for some integer k, and an expansion of
det(A)rk = 0 yields an equation of integral dependence of r over I. The last
statement now also follows.

The first case of Proposition 1.1.7, for special rings, without using the term
“integral”, is in Prüfer’s 1932 paper [226], on pages 14–16. In the same paper,
Prüfer used the determinantal trick as in the proof above.

1.2. Integral closure via reductions

We introduce reductions in this section. Reductions are an extremely useful
tool for integral closure in general, and we expand on them in Chapter 8.

Definition 1.2.1 Let J ⊆ I be ideals. J is said to be a reduction of I if
there exists a non-negative integer n such that In+1 = JIn.

Proposition 1.1.7 proved the following:

Corollary 1.2.2 An element r ∈ R is integral over J if and only if J is a
reduction of J + (r).

Remark 1.2.3 Note that if JIn = In+1, then for all positive integers m,
Im+n = JIm+n−1 = · · · = JmIn. In particular, if J ⊆ I is a reduction, there
exists an integer n such that for all m ≥ 1, Im+n ⊆ Jm.

The reduction property is transitive:

Proposition 1.2.4 Let K ⊆ J ⊆ I be ideals in R.
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(1) If K is a reduction of J and J is a reduction of I, then K is a reduction
of I.

(2) If K is a reduction of I, then J is a reduction of I.
(3) If I is finitely generated, J = K + (r1, . . . , rk), and K is a reduction of

I, then K is a reduction of J .

Proof: First we assume that K ⊆ J and J ⊆ I are reductions. Then there
exist integers n and m such that KJn = Jn+1 and JIm = Im+1. By Re-
mark 1.2.3 it follows that Im+n+1 = Jn+1Im = KJnIm ⊆ KIm+n ⊆ Im+n+1,
so that equality holds throughout and K is a reduction of I. This proves (1).

Assume that K ⊆ I is a reduction. Then there exists an integer n such
that In+1 = KIn ⊆ JIn ⊆ In+1, so equality holds throughout and J is a
reduction of I. This proves (2).

Assume that I is finitely generated, J = K + (r1, . . . , rk), and K is a
reduction of I. Then there exists an integer n such that KIn = In+1. By
(2), for all i = 0, . . . , k, K + (r1, . . . , ri−1) is a reduction of I. (When i = 0,
(r1, . . . , ri−1) is interpreted as the zero ideal.) As ri ∈ I, by the choice of n
it follows that riI

n ⊆ KIn ⊆ (K + (r1, . . . , ri−1))I
n. If aIn = 0 for some

a ∈ R, then as ri ∈ I, also arni = 0. By assumption In is finitely generated.
Thus by Corollary 1.1.8, ri is integral over K + (r1, . . . , ri−1), so that by
Proposition 1.1.7, K + (r1, . . . , ri−1) is a reduction of K + (r1, . . . , ri). Hence
by (1) and induction on k, K ⊆ K + (r1, . . . , rk) = J is a reduction.

In case ideals are not finitely generated, the conclusion of Proposition 1.2.4
need not hold (see Exercise 1.8).

Corollary 1.2.5 Let K ⊆ I be ideals. Assume that I is finitely generated.
Then K is a reduction of I if and only if I ⊆ K.

Proof: If K is a reduction of I, then by Proposition 1.2.4 (3) for every r ∈ I,
K is a reduction of K+(r), so that by Proposition 1.1.7, r ∈ K. Thus I ⊆ K.

To prove the converse, suppose that I = (r1, . . . , rn) ⊆ K. Then for
j = 1, . . . , n, rj is integral over K and hence over K + (r1, . . . , rj−1). Then
by Proposition 1.1.7, each immediate inclusion in the chain K ⊆ K + (r1) ⊆
K + (r1, r2) ⊆ · · · ⊆ K + (r1, . . . , rn) = I is a reduction, so that by Proposi-
tion 1.2.4 (1), K ⊆ I is a reduction.

1.3. Integral closure of an ideal is an ideal

Reductions allow an easy proof of the fact that I is an ideal.

Corollary 1.3.1 The integral closure of an ideal in a ring is an integrally
closed ideal (in the same ring).

Proof: Let K be an ideal in a ring R. Certainly K is closed under multiplica-
tion by elements ofR. It remains to prove thatK is closed under addition. Let
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r, s ∈ K. Write an integral equation for r over K: rn+ k1r
n−1 + · · ·+ kn = 0

for some ki ∈ Ki. There exists a finitely generated ideal K ′ contained in K
such that ki ∈ (K ′)i. Thus r ∈ K ′, and similarly, by possibly enlarging K ′,
s ∈ K ′. Let J = K ′ +(r), I = K ′+(r, s) = J +(s). By Proposition 1.1.7, K ′

is a reduction of J , and J is a reduction of I. Thus by Proposition 1.2.4, K ′ is
a reduction of I. As K ′, J and I are finitely generated, by Proposition 1.2.4
then K ′ ⊆ K ′ + (r + s) ⊆ I are reductions. Thus by Proposition 1.1.7, r + s
is integral over K ′ and hence over K, so that K is an ideal.

To prove that the integral closure of an ideal is integrally closed, let I be

an ideal of R, and r ∈ I. Then there exists a finitely generated subideal
J in I such that r ∈ J . Write J = (j1, . . . , jk). Similarly there exists a
finitely generated ideal K ⊆ I such that each ji is integral over K. By
Proposition 1.2.4, K is a reduction of K + J and K + J is a reduction of
K+J +(r), hence K is a reduction of K+(r). Thus r is integral over K and
hence over I. This proves the corollary.

An alternate proof of this corollary is by Proposition 5.2.1 which shows that
the integral closure of an ideal is a graded component of the integral closure
of a special Rees ring in an overring. Integral closures of rings are discussed
in the next chapter and Rees rings in Chapter 5.

The fact that the integral closure is an ideal is very useful in computations
and constructions. We use this property in the rest of this section.

Remark 1.3.2
(1) The following are equivalent for an ideal I and an element r in a ring R

(cf. Proposition 1.1.4):
(i) r ∈ I.
(ii) For all multiplicatively closed subsets W of R, r1 ∈W−1I.

(iii) For all prime ideals P of R, r1 ∈ IP .

(iv) For all maximal ideals M of R, r
1
∈ IM .

(2) If I and J are ideals in R, then I : J ⊆ I : J . Namely, it is enough to
prove that I : J is integrally closed. Let r be integral over I : J . Then
r satisfies an equation of integral dependence over I : J . Say that the
degree of this equation is n. For any a ∈ J , multiply the equation by an

to get an equation of integral dependence of ra over I. It follows that
ra ∈ I. Hence rJ ⊆ I, which means that I : J is integrally closed.

(3) If I ⊆ J and J ⊆ K are integral extensions, so is I ⊆ K (K ⊆ J ⊆ I = I).
(4) If I ⊆ I ′ and J ⊆ J ′ are integral extensions of ideals, so are I+J ⊆ I ′+J ′

and IJ ⊆ I ′J ′. Namely, elements of I ′ and of J ′ are clearly integral
over I + J , hence the ideal I ′ + J ′ is integral over I + J . Also, for any
a ∈ I, b′ ∈ J ′, ab′ is integral over IJ (write out the equation of integral
dependence for b′ over J and multiply by an appropriate power of a), so
that the ideal IJ ′ is integral over IJ . Similarly, I ′J ′ is integral over IJ ′,
so that I ′J ′ ⊆ IJ ′ ⊆ IJ .
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Example 1.3.3 Let R = k[X, Y ] be a polynomial ring in X and Y over a
field k. The ideal I = (X2 + Y 3, XY 3, Y 4) is integrally closed.

Proof: Observe that I is homogeneous under the weighted grading deg(X) =
3, deg(Y ) = 2. The ideal of R consisting of all elements of degree 8 or higher
is generated by X3, X2Y , XY 3 and Y 4, and is contained in I. Let r ∈ I \ I
have components of degree strictly smaller than 8. Since I is an ideal, by
possibly subtracting elements of I ⊆ I from r, without loss of generality
degX(r) ≤ 1 and degY (r) ≤ 3. An integral equation of r over I is of the
form rn + a1r

n−1 + · · ·+ an = 0 with ai in I
i. The lowest degree component

monomial in rn has to cancel some component monomial in air
n−i, or in

other words, there exists an integer i such that the lowest degree component
r0 appearing in r has degree equal to the degree of a component appearing
in ai divided by i. But ai is in I

i, so its degree is at least 6i, so that deg(r0)
is either 6 or 7, and so the lowest degree component in ai has to have degree
at most 7i. Necessarily the lowest degree component in ai is a multiple of
the only generator in I of degree strictly smaller than 8, namely of X2 + Y 3.
Since this holds for all such i, then r0 ∈

√
(X2 + Y 3) = (X2 + Y 3), which

contradicts the assumption that degX(r) < 2. Thus I = I.

The sum of integrally closed ideals need not be integrally closed:

Example 1.3.4 Let k be a field, X and Y variables over k, and R = k[X, Y ].
Let m = (X, Y )R. By Example 1.3.3, I = (X2+Y 3)+m

4 is integrally closed.
By similar degree arguments or by Exercise 1.18, J = (Y 3) + m

4 is also
integrally closed. However, the sum of these two integrally closed ideals is not
integrally closed. Namely, XY 2 is integral over I + J = (X2, Y 3) + m

4 as it
satisfies the monic polynomial f(T ) = T 3−X3Y 6 with X3Y 6 ∈ (I+J)3, but
XY 2 is not in I + J .

In rare cases the sum of two integrally closed ideals is still integrally closed:

Proposition 1.3.5 Let I be an integrally closed ideal in a ring R. Let Z be
a variable over R. Let S = R[Z]. Then IS + ZS is integrally closed.

Proof: Let r ∈ IS + ZS. We have to prove that r ∈ IS + ZS. Without loss
of generality no Z appears in r. Then in an equation of integral dependence
of r over IS+ZS we collect all terms of Z-degree zero to obtain an equation
of integral dependence of r over I, so that as I is integrally closed, r ∈ IS.

The following is a trick to translate a counterexample for I + J = I + J
(as above) to a counterexample for IJ = I · J : given ideals I, J in R and
r ∈ I + J \(I + J), let Z be a variable over R. Set S = R[Z], I ′ = IS + ZS
and J ′ = JS+ZS. Then I ′ and J ′ are integrally closed by Proposition 1.3.5.
However I ′J ′ = IJS + (I + J)ZS + Z2S is not integrally closed as rZ is
integral over (I + J)ZS and hence over I ′J ′, yet if rZ were in I ′J ′, it would
have to be in (IJS+(I + J)ZS)∩ZS = (I +J)ZS, which is a contradiction.
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1.4. Monomial ideals

Integral closure of monomial ideals is especially simple and illustrative of the
theory in general.

Definition 1.4.1 Let k be a field, X1, . . . , Xd variables over k. A monomial
in the polynomial ring k[X1, . . . , Xd] (or alternatively in the convergent power
series ring C{X1, . . . , Xd} or in the formal power series ring k[[X1, . . . , Xd]])
is an element of the form Xn1

1 Xn2
2 · · ·Xnd

d for some non-negative integers
n1, . . . , nd. An ideal is said to be monomial if it is generated by monomials.

The polynomial ring k[X1, . . . , Xd] has a natural Nd grading as follows:
deg(Xi) = (0, . . . , 0, 1, 0, . . . , 0) ∈ Nd with 1 in the ith spot and 0 elsewhere.
Under this grading, monomial ideals are homogeneous, and in fact monomial
ideals are the only homogeneous ideals.

Let I be a monomial ideal and r = Xn1
1 Xn2

2 · · ·Xnd

d a monomial in the
integral closure of I. Let rn + a1r

n−1 + · · ·+ an−1r + an = 0 be an equation
of integral dependence of r over I. As I is a monomial ideal, homogeneous
under the natural Nd-grading on k[X1, . . . , Xd], each graded piece of each
ai is also an element of Ii. In particular, the graded piece of the equation
above of degree n(n1, . . . , nd) is an equation of integral dependence of r over
I. So if bi is the homogeneous component of ai of degree i(n1, . . . , nd), then
rn + b1r

n−1 + · · ·+ bn−1r+ bn = 0 is also an equation of integral dependence
of r over I. Let i be such that bir

n−i is non-zero. Note that both rn and
bir

n−i are elements of degree n(n1, . . . , nd). Since the graded component
of k[X1, . . . , Xd] of degree n(n1, . . . , nd) is a one-dimensional k-vector space,
there exists a unit u in k such that rn + ubir

n−i = 0. By dividing through
by rn−i we get an equation of integral dependence of r over I of the form
ri − ci = 0 for some ci ∈ Ii that is a product of i monomials in I.

Thus the problem of finding an equation of integral dependence of a mono-
mial r over a monomial ideal I reduces to finding an integer i and monomials
m1, . . . , mi in I such that

ri −m1 · · ·mi = 0.

With this we can prove that the integral closure of a monomial ideal is a
monomial ideal (an alternative proof is in Corollary 5.2.3):

Proposition 1.4.2 The integral closure of a monomial ideal I in a polyno-
mial ring k[X1, . . . , Xd] is a monomial ideal.

Proof: For contradiction suppose that f ∈ I is not a monomial and that no
homogeneous component of f is in I. Write f =

∑
l∈Λ fl, where Λ is a finite

subset of Nd and fl is the component of f of degree l. Let L ∈ Λ with fL 6= 0.
First assume that k is algebraically closed. Any ring automorphism ϕ of

k[X1, . . . , Xd] maps an integral equation of f over I into an integral equation
of ϕ(f) over ϕ(I). In particular, for any units u1, . . . , ud in k, if ϕu is the
ring automorphism taking Xi to uiXi, then ϕu(I) = I and ϕu(f) is integral
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over I. Furthermore, each ϕu has the property that f is non-zero in degree
l ∈ Nd if and only if ϕu(f) is non-zero in degree l. As k is algebraically
closed and f is not a scalar multiple of a monomial, there exist u1, . . . , ud ∈ k
such that ϕu(f) is not a polynomial multiple of f . As both f and ϕu(f) are
integral over I, so is g = uL1

1 · · ·uLd

d f − ϕu(f). As ϕu(f) is not a multiple
of f , then g is not zero. Note that the component of g in degree L is 0 and
that whenever g is non-zero in degree l, then f is also non-zero in degree l,
so that l ∈ Λ. Thus g has strictly fewer non-zero homogeneous components
than f , so by induction on the number of components, each component of g
lies in the integral closure of I. But each component of g is a scalar multiple
of a component of f , which proves that some homogeneous components of f
are in the integral closure of I, contradicting the choice of f .

Now let k be an arbitrary field and k its algebraic closure. By the previous
case we know that each monomial appearing in f with a non-zero coefficient is
integral over Ik[X1, . . . , Xd]. Thus by the derivation prior to this proposition,
each monomial r appearing in f satisfies an integral equation of the form
ri − ai = 0 for some ai that is a product of i monomials of Ik[X1, . . . , Xd].
Hence ai is also a product of i monomials of I, so that r is integral over I.

Definition 1.4.3 Let R be the polynomial ring k[X1, . . . , Xd]. For any mono-
mial m = Xn1

1 Xn2
2 · · ·Xnd

d , its exponent vector is (n1, . . . , nd) ∈ Nd. For
any monomial ideal I, the set of all exponent vectors of all the monomials in
I is called the exponent set of I.

Example 1.4.4 Let (X4, XY 2, Y 3) be a monomial ideal in C[X, Y ]. Its
exponent set consists of all integer lattice points touching or in the shaded
gray area below:

0 1 2 3 4

0

1

2

3

If G is a monomial generating set of I, the exponent set of I consists of
all those points of Nd that are componentwise greater than or equal to the
exponent vector of one of the exponent vectors of an element of G. In other
words, a monomial m is in a monomial ideal I if and only if m is a multiple
of one of the monomial generators of I.
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In general, let k[X1, . . . , Xd] be a polynomial ring and let I be a monomial
ideal. Let its generators be mj = X

nj1

1 X
nj2

2 · · ·Xnjd

d , j = 1, . . . , s. Let a
monomial r = Xn1

1 Xn2
2 · · ·Xnd

d be integral over I. We have proved that
there exist a positive integer i and a product ai of i monomials of I such
that ri − ai = 0. An arbitrary product ai of i monomials in I is of the
form bmk1

1 m
k2
2 · · ·mks

s , where b is another monomial, and the kj are non-

negative integers which sum up to i. Then ri = bmk1
1 m

k2
2 · · ·mks

s , and for each

coordinate l = 1, . . . , d, i · nl ≥
∑
j kjnjl, or in other words, nl ≥

∑
j
kj
i njl.

Thus the problem of finding monomials r = Xn1
1 Xn2

2 · · ·Xnd

d that are inte-
gral over I reduces to finding rational non-negative numbers c1, . . . , cd which
add up to 1, such that componentwise

(n1, n2, . . . , nd) ≥
∑

j

cj(nj1, nj2, . . . , njd).

Conversely, suppose we are given rational non-negative numbers c1, . . . , cd
such that

∑
cj = 1 and such that the inequality in the last display holds

componentwise. Write cj = kj/i for some kj , i ∈ N, i 6= 0. Then ri =

bmk1
1 · · ·mkd

d for some monomial b ∈ k[X1, . . . , Xd], so that r ∈ I. This proves
that the problem of finding monomials r = Xn1

1 Xn2
2 · · ·Xnd

d that are integral
over I is equivalent finding rational non-negative rational numbers c1, . . . , cd
such that

(n1, n2, . . . , nd) ≥
∑

j

cj(nj1, nj2, . . . , njd),
∑

j

cj = 1. (1.4.5)

Geometrically the construction of (n1, n2, . . . , nd) satisfying the inequality
above is the same as finding the integer lattice points in the convex hull of
the exponent set of the ideal I. This proves the following:

Proposition 1.4.6 The exponent set of the integral closure of a monomial
ideal I equals all the integer lattice points in the convex hull of the exponent
set of I.

Thus for example the integral closure of (X4, XY 2, Y 3) can be read off from
the convex hull of the exponent set below, proving that (X4, XY 2, Y 3) equals
(X4, X3Y,XY 2, Y 3):

0 1 2 3 4

0

1

2

3
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This convex as in the statement of Proposition 1.4.6 has a classical name:

Definition 1.4.7 For any monomial ideal I in k[X1, . . . , Xd], the convex hull
in Rd or in Qd of the exponent set of I is called the Newton polyhedron of I.

Example 1.4.8 Let I = (X3, X2Y, Y 4, Y 2Z, Z3) ⊆ C[X, Y, Z]. The lower
boundary of its exponent set is given below. We leave it to the reader to
compute the integral closure of I.

x

y

z

An analysis of the proof above of Proposition 1.4.6 shows even more:

Proposition 1.4.9 Let I be a monomial ideal in k[X1, . . . , Xd]. Let N be an
upper bound on the degrees of the minimal monomial generators of I. Then
the generators of the integral closure of I have degree at most N + d− 1.

Proof: Let m = Xn1
1 · · ·Xnd

d be a generator of I. Then there exist non-
negative rational numbers c1, . . . , cd that satisfy equation (1.4.5). Suppose
that for some i ∈ {1, . . . , d}, ni ≥ 1 +

∑
j cjnji. Then the exponent vector of

m/Xi also satisfies equation (1.4.5), so that m/Xi is in I. Hence m is not a
generator of I. This proves that for all i, ni < 1 +

∑
j cjnji. Thus the degree

of any generator is at most
∑d
i=1 ni <

∑d
i=1(1 +

∑
j cjnji) = d+N .

This makes the computation of the integral closure of monomial ideals fea-
sible; see more in Section 15.4.

We conclude that the integral closure of monomial ideals is special: the
equations of integral dependence are simple and the integral dependence re-
lations have a combinatorial/geometric aspect. Nevertheless, the theory of
integral closure is sufficiently interesting even for monomial ideals. For exam-
ple, the power of an integrally closed monomial ideal need not be integrally
closed (see Exercises 1.14 and 1.13).
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However, if the first few powers of a monomial ideal are integrally closed,
then all the powers are integrally closed:

Theorem 1.4.10 (Reid, Roberts and Vitulli [245]) Let I be a monomial ideal
in the polynomial ring k[X1, . . . , Xd] such that I, I2, . . . , Id−1 are integrally
closed. Then all the powers of I are integrally closed, i.e., I is normal.

Proof: Let n ≥ d. It suffices to prove that In is integrally closed under the
assumption that I, I2, . . . , In−1 are integrally closed. For this it suffices to
prove that every monomial Xc1

1 · · ·Xcd
d in the integral closure of In lies in In.

Let {Xv
1 , . . . , Xv

t} be a monomial generating set of I. By the form of the in-
tegral equation of a monomial over a monomial ideal there exist non-negative
rational numbers ai such that

∑
ai = n and the vector (c1, . . . , cd) is compo-

nentwise greater than or equal to
∑
aivi. By Carathéodory’s Theorem A.2.1,

by possibly reindexing the generators of I, there exist non-negative rational
numbers b1, . . . , bd such that

∑d
i=1 bi ≥ n and (c1, . . . , cd) ≥

∑d
i=1 bivi (com-

ponentwise). As n ≥ d, there exists j ∈ {1, . . . , d} such that bj ≥ 1. Then
(c1, . . . , cd)−vj ≥

∑
i(bi−δij)vi says that the monomial corresponding to the

exponent vector (c1, . . . , cd) − vj is integral over In−1. Since by assumption
In−1 is integrally closed, the monomial corresponding to (c1, . . . , cd) − vj is
in In−1. Thus Xc1

1 · · ·Xcd
d ∈ In−1Xv

j ⊆ In.

In particular, in a polynomial ring in two variables over a field, the power of
an integrally closed monomial ideal is integrally closed. (This holds more gen-
erally for arbitrary integrally closed ideals in two-dimensional regular rings,
by Zariski’s theory. See Chapter 14.) A strengthening of the theorem above
is in Singla [273] (one needs to test the integral closedness of only the first
l − 1 powers of I, where l is the analytic spread of I.)

1.5. Integral closure of rings

The integral closure of the ideal R equals R, as by Remark 1.1.3 (1), R is
contained in its own integral closure and by the definition, the integral closure
of any ideal is contained in R.

Compare this with the definition of the integral closure of rings:

Definition 1.5.1 (A more general definition is in 2.1.1.) If R is a reduced
ring with total ring of fractions K, an element r ∈ K is integral over the
ring R if

rn + a1r
n−1 + a2r

n−2 + · · ·+ an−1r + an = 0

for some ai ∈ R. The set of all elements of K that are integral over R is
called the integral closure of R. If R equals its integral closure, then R is
called integrally closed.

Beware of the terminology: the integral closure of the ideal R in the ring R
is always R, and the integral closure of the ring R may be larger than R.
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In Chapters 2 and 4 we will see more on the integral closure of rings and
on the connections between the integral closure of ideals and integral closure
of rings. Here is a first example, showing that in integrally closed rings every
principal ideal is integrally closed (as an ideal).

Proposition 1.5.2 Let R be a ring, not necessarily Noetherian, and in-
tegrally closed in its total ring of fractions. Then for any ideal I and any
non-zerodivisor f in R, fI = f · I. In particular, every principal ideal gener-
ated by a non-zerodivisor in R is integrally closed.

As a partial converse, suppose that R is an arbitrary Noetherian ring such
that no prime ideal is both minimal and maximal and assume that every prin-
cipal ideal of height one is integrally closed. Then R is reduced and integrally
closed in its total ring of fractions.

Proof: Assume that r is integral over fI. Then each equation of integral
dependence of r over fI is of the form rn + b1fr

n−1 + · · · + bnf
n = 0

for some bi ∈ Ii. Dividing through by fn yields the following equation of
integral dependence of the element r

f
over the ring R: ( r

f
)n + b1(

r
f
)n−1 +

· · · + bn−1(
r
f ) + bn = 0. As r

f lies in the total ring of fractions of R and R
is integrally closed, rf is an element of R, so that r ∈ fR. Furthermore, from

the equation, r/f ∈ I, so r ∈ f · I, proving that fI ⊆ f · I.
Let r ∈ f · I and write r = sf for some s ∈ I. Multiplying an equation of

integral dependence of s over I of degree n through by fn yields an equation
of integral dependence of sf = r over fI, so that f · I ⊆ fI.

We prove the converse statement. Every integrally closed ideal contains
the nilradical N . For every P ∈ MinR by assumption there exists a prime
ideal QP properly containing P . Choose an element cP ∈ QP that is not any
minimal prime ideal. This is possible by Prime Avoidance. The product c of
all cP is not in any minimal prime ideal. Then N ⊆ ∩i(ci) = ∩i(ci). By the
Krull Intersection Theorem, N(1 − rc) = 0 for some r ∈ R. If b = 1 − rc is
contained in a minimal prime ideal P , it is also contained in QP , hence as
c ∈ QP , necessarily 1 ∈ QP , which gives a contradiction. Thus b = 1−rc is not
contained in any minimal prime ideal P . The same argument as for c shows
that N(1− sb) = 0 for some s. Hence N = N(1− s(1− rc)) = N(1− sb) = 0.
Thus R is reduced. Let a

b
be in the total ring of fractions of R (a, b ∈ R, b

a non-zerodivisor) and assume that a/b is integral over R. Then a is integral
over bR, so by assumption a ∈ bR, and it follows that a

b
∈ R.

As a consequence of Proposition 1.5.2, a Noetherian local ring of positive
dimension that is integrally closed in its total ring of fractions and is not equal
to its total ring of fractions is reduced.
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1.6. How integral closure arises

There are many contexts in which integral closure and integral dependence of
ideals arise naturally. This section and the following one illustrate this. One
of the illustrations is Ratliff’s theorem, whose proof we only give in Chapter 5
(Theorem 5.4.1). We prove all the other results in this section.

Proposition 1.6.1 Let R ⊆ S be an integral extension of rings. Let I be
an ideal in R. Then IS ∩R = I .

Proof: By persistence I is contained in IS ∩R. Let r ∈ IS ∩R. This means
that r satisfies an equation of integral dependence over IS and thus there exist
a finitely generated R-algebra T ⊆ S and a finitely generated ideal J ⊆ I in
R such that r satisfies an equation of integral dependence over JT . It suffices
to prove that JT ∩ R ⊆ J . Thus by replacing S by T and I by J we may
assume that I is a finitely generated ideal and S a module-finite extension of
R.

Then r ∈ IS ∩ R means that there exists an integer n such that I(I +
(r))nS = (I+(r))n+1S. LetM be the finitely generated R-module (I+(r))nS.
Then rM ⊆ IM , and if aM = 0 for some a ∈ R, then (ar)n = 0. Thus by
Proposition 1.1.8, r ∈ I.

This proposition says that integral closure extends and contracts from in-
tegral extensions. The same holds for faithfully flat extensions:

Proposition 1.6.2 Let R be a ring and S a faithfully flat R-algebra. For
any ideal I of R, IS ∩R = I.

In particular, if R is Noetherian local with maximal ideal m and R̂ is its

m-adic completion, then for any ideal I in R, IR̂ ∩R = I.

Proof: By the persistence property of integral closure, I ⊆ IS ∩ R. Now
let r ∈ IS ∩ R. By Proposition 1.1.7 there exists an integer n such that
rn+1 ∈ I(I + (r))nS. Thus rn+1 ∈ I(I + (r))nS ∩ R = I(I + (r))n, so that
again by Proposition 1.1.7, r ∈ I.

Discussion 1.6.3 Notice that by combining Propositions 1.6.2, 1.6.1, 1.1.4,
and 1.1.5, it follows that the integral closure of an ideal I is completely deter-
mined by the integral closure of the images of I in the following rings: in rings
which arise by localizing R at prime ideals containing I, those obtained by
completing, those obtained by going modulo minimal prime ideals, and those
obtained by passing to integral extensions of the rings. In other words, I is
determined by the integral closure of the image of I in (some) complete local
integrally closed domains. This is not only an important theoretical reduc-
tion, but it also tells us what difficulties we can expect in dealing with integral
closures. The transfer of properties of R to properties of the completion of R,
to going modulo minimal prime ideals and passing to integral closures will all
be important, and are manifested in various critical definitions and assump-
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tions which appear in this book, including those of analytically unramified
and formally equidimensional rings.

Proposition 1.6.4 Let R be an N-graded ring, generated over R0 by R1.
Assume that R0 is reduced. Let F1, . . . , Fm be homogeneous elements of de-
gree 1 in R. If

√
(F1, . . . , Fm) = R1R, then (F1, . . . , Fm) = R1R.

Proof: By assumption there exists n such that Rn1 ⊆ (F1, . . . , Fm). By ho-
mogeneity, Rn1R ⊆ Rn−1

1 (F1, . . . , Fm). This proves that (F1, . . . , Fm) is a

reduction of R1R, and then by Corollary 1.2.5 that R1R ⊆ (F1, . . . , Fm). But
R1R is a radical ideal, so R1R ⊆ (F1, . . . , Fm) ⊆

√
(F1, . . . , Fm) ⊆ R1R,

which finishes the proof.

Socle elements modulo an ideal are sometimes integral over the ideal:

Proposition 1.6.5 (Burch [34]) Let (R,m) be a Noetherian local ring that
is not regular, i.e., µ(m) > dimR, and let I be an ideal of finite projective
dimension. Then m(I : m) = mI and I : m is integral over I.

Proof: Without loss of generality I 6= R. Let F be a minimal free resolution
of R/m:

· · · → Fi+3
δi+3−→Fi+2

δi+2−→Fi+1
δi+1−→Fi → · · · → F0 → 0.

Let ( )′ denote images after tensoring with R/I over R. Let d be the dimen-
sion of R, and consider the following part:

F ′
d+3

δ′d+3−→ F ′
d+2

δ′d+2−→ F ′
d+1

δ′d+1−→ F ′
d.

As R is not regular, these modules are non-zero, but the homologies are
TorRd+2(R/m, R/I) = TorRd+1(R/m, R/I) = 0 as R/I has finite projective di-
mension. Let r ∈ I : m. Then as rF ′

d+1 maps to zero under δ′d+1, there exists
v ∈ Fd+2 such that δ′d+2(v

′) = (r′, . . . , r′). Then there exists a ∈ IFd+1 such
that δd+2(v) = (r, . . . , r) + a. Similarly, as δ′d+2(mv

′) = 0, for every x ∈ m

there exists w ∈ Fd+3 such that δ′d+3(w
′) = xv′. Then xv− δd+3(w) ∈ IFd+2,

so that

x ((r, . . . , r) + a) = xδd+2(v) = δd+2(xv)

= δd+2(xv − δd+3(w)) ∈ δd+2(IFd+2) ⊆ IFd+1.

Thus x(r, . . . , r) ∈ xaR + Iδd+2(Fd+2) ⊆ xIFd+1 + Iδd+2(Fd+2). From this
we read off that that xr ∈ mI, whence m(I : m) ⊆ mI, as was to be proved.

The last statement follows from Corollary 1.1.8: M = m and if aM = 0 for
some a ∈ R, then ar = 0 for all r ∈ I : m ⊆ m.

It is not always true that socle elements are integral over an ideal. For
example, let R = k[[X ]] be the power series ring in one variable X over a
field k. Then with I = X2R, I : m = (X) is not integral over I. Thus the
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non-regular assumption is necessary in the previous proposition. Also, the
finite projective dimension assumption is needed: let R be the non-regular
ring k[[X2, X3]], I = (X3, X4), and m = (X2, X3). Then m = I : m but X2 is
not integral over I (by degree count). For a closely related idea, see Goto [95].
See Choi [38] for an interesting application of integral closure to the growth
of Betti numbers.

Here is a final example of how integral closure of ideals arises naturally (see
Theorem 5.4.1 for a proof).

Theorem 1.6.6 (Ratliff [230]) Let R be a locally formally equidimensional
Noetherian ring and let (x1, . . . , xn) be a parameter ideal, i.e., the height of
(x1, . . . , xn) is at least n. For all m ≥ 1,

(x1, . . . , xn−1)
m : xn ⊆ (x1, . . . , xn−1)m : xn = (x1, . . . , xn−1)m.

In particular, for all m ≥ 1, the integral closure of (x1, . . . , xn)
m has no

embedded associated prime ideals. This result is proved in Theorems 5.4.1
and 5.4.5 below.

1.7. Dedekind–Mertens formula

Another example of how integral closure arises is taken from a classical for-
mula of Dedekind and Mertens. The treatment here is as in Heinzer and
Huneke [112]. One of the corollaries of this formula is that the product of an
n-generated ideal with an m generated ideal is always integral over an ideal
generated by at most n +m − 1 elements. As we will see in Chapter 8, it is
desirable and useful to find ideals with the same integral closure and fewer
generators.

Definition 1.7.1 Let R be a commutative ring and let t be a variable over
R. The content c(f) of a polynomial f ∈ R[t] is the ideal of R generated by
the coefficients of f .

The classical Dedekind–Mertens Lemma states that if f = a0 + a1t+ · · ·+
amt

m and g = b0 + b1t+ · · ·+ bnt
n are polynomials in R[t], then

c(f)nc(f)c(g) = c(f)nc(fg).

See Theorem 1.7.3 below for a stronger statement and a proof.
Since c(f)c(g) ⊇ c(fg), the right-hand side of the above equation is always

included in the left-hand side. Provided that c(f) contains a non-zerodivisor,
this equation together with Corollary 1.1.8 shows that c(f)c(g) is integral over
c(fg). However, since the equation holds in the generic situation in which
the coefficients of f and g are allowed to be variables and in this case c(f)
obviously contains a non-zerodivisor, it follows that c(f)c(g) is always integral
over c(fg), providing a type of “generic” equations for integral closure. For
example, in the simple case in which f = a0+a1t and g = b0+b1t, the product
of the contents is generated by the product pairs aibj , while the content of
the product is generated by a0b0, a0b1+a1b0, a1b1, and an equation of integral
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dependence of a1b0 over the latter ideal is given by X2 − (a0b1 + a1b0)X +
(a0b0)(a1b1) = 0.

The fact that c(f)c(g) is always integral over c(fg) can be seen as a gen-
eralization of Gauss’s Lemma. Gauss’s Lemma is stated in many different
forms, but one statement of it says that the product of primitive polynomials
is primitive, where a polynomial F is primitive if c(F ) = 1. If both f and g
are primitive, then c(f)c(g) is the unit ideal, and the fact that it is integral
over c(fg) immediately implies that c(fg) is also the unit ideal, giving Gauss’s
Lemma in this special case.

Note that in the display above, the exponent n is exactly the degree of g
and is independent of f . The exponent can even be smaller:

Definition 1.7.2 The Dedekind–Mertens number of a polynomial g ∈
R[t] is the smallest positive integer k such that

c(f)k−1c(f)c(g) = c(f)k−1c(fg)

for every polynomial f ∈ R[t].

The Dedekind–Mertens number of a polynomial g(t) very much depends
upon the coefficient ring R. It is not invariant under base change.

The classical Dedekind–Mertens Lemma says that the Dedekind–Mertens
number of g is at most deg(g) + 1, the maximal number of coefficients of g.
The next theorem sharpens this inequality:

Theorem 1.7.3 (Arnold and Gilmer [14]; Heinzer and Huneke [112, Theo-
rem 2.1]) Let R be a commutative ring, let g ∈ R[t] be a polynomial, and let
c(g) denote the content ideal of g. If for each maximal ideal m of R, c(g)Rm

is generated in Rm by k elements, then the Dedekind–Mertens number of g is
at most k.

Proof: Since c(f)nc(f)c(g) = c(f)nc(fg) holds in R if and only if for each
maximal ideal m of R, c(f)nc(f)c(g)Rm = c(f)nc(fg)Rm, the Dedekind–
Mertens number of g is the maximum of the Dedekind–Mertens numbers of
the images of g in Rm[t] as m varies over the maximal ideals of R. Thus we
may assume that the ring R is local (but not necessarily Noetherian), and it
suffices to prove the following:

Theorem 1.7.4 Let (R,m) be a local ring and let g ∈ R[t] be a polynomial.
If the content ideal c(g) of g is minimally generated by k elements, then the
Dedekind–Mertens number of g is at most k, i.e., for every polynomial f ∈ R[t]
we have

c(f)k−1c(f)c(g) ⊆ c(f)k−1c(fg).

We prove Theorem 1.7.4 by induction on k. The case k = 1 follows by
factoring out the principal content of g and using the lemma of Gauss (see
Exercise 1.7) that says that a polynomial g with unit content is Gaussian,
i.e., c(fg) = c(f) for all f . To continue the induction, we use the following
lemma which implies that we may assume that every non-zero coefficient of g
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is a minimal generator of c(g).

Lemma 1.7.5 Let (R,m) be a local ring and let g ∈ R[t] be a polynomial.
Suppose b ∈ R is such that b ∈ mc(g). Let i be a non-negative integer and set
h = g+bti. Let J be a finitely generated ideal of R and f ∈ R[t] a polynomial.
If Jc(f)c(h) = Jc(fh), then also Jc(f)c(g) = Jc(fg). Therefore g and h
have the same Dedekind–Mertens number. More generally, if g∗ and h∗ are
polynomials in R[t] and if c(g∗−h∗) ⊆ mc(g∗), then g∗ and h∗ have the same
Dedekind–Mertens number.

Proof: It is clear that Jc(f)c(g) ⊇ Jc(fg). For the reverse inclusion, since
b ∈ mc(g) and h = g + bti, we have c(g) = c(h). Thus

Jc(f)c(g) = Jc(f)c(h) = Jc(fh)

= Jc(f(g + bti)) ⊆ J(c(fg) + bc(f)) ⊆ Jc(fg) +mJc(f)c(g).

Nakayama’s Lemma implies Jc(f)c(g) = Jc(fg). Letting J = c(f)k, we see
that the Dedekind–Mertens number of g is at most the Dedekind–Mertens
number of h. Since g = h + (−b)ti, we also have the opposite inequality.
If c(g∗ − h∗) ⊆ mc(g∗), then h∗ is obtained from g∗ by a finite sequence of
operations hj = gj + bjt

ij , where bj ∈ mc(gj) = mc(g∗). Therefore g∗ and h∗

have the same Dedekind–Mertens number.

We now continue our proof of Theorem 1.7.4. Assume that c(g) is minimally
generated by k ≥ 2 elements and that for every polynomial h ∈ R[t] whose
content is minimally generated by fewer than k elements, we have for every
polynomial f ∈ R[t] that

c(f)k−2c(f)c(h) ⊆ c(f)k−2c(fh).

Let g = bmt
m+ · · ·+ b1t+ b0. By Lemma 1.7.5 we may assume that bm is a

minimal generator of c(g). Write g = bmh(t)+g1(t), where c(h) = R and c(g1)
is generated by fewer than k elements. Also write f(t) = ant

n + f1(t), where
deg(f1) < deg(f) = n. By induction on deg(f), we may assume c(f1)

kc(g) =
c(f1)

k−1c(f1g).
We claim that c(fg1) ⊆ c(fg) + bmc(f1). To prove this claim, note that

c(fg1) = c(f(g − bmh)) ⊆ c(fg) + c(bmfh) = c(fg) + bmc(fh). As c(h) = R,
the last ideal equals c(fg) + bmc(f) = c(fg) + bmc(ant

n + f1(t)) ⊆ c(fg) +
anbmR + bmc(f1). Since anbm ∈ c(fg), the last ideal equals c(fg) + bmc(f1).
In summary, c(fg1) ⊆ c(fg) + bmc(f1).

Claim: c(f1g) ⊆ c(fg) + anc(g1). We have c(f1g) = c((f − ant
n)g) ⊆ c(fg) +

anc(t
ng) ⊆ c(fg) + anc(g) ⊆ c(fg) + anc(bmh(t) + g1(t)) ⊆ c(fg) + anbmR+

anc(g1) = c(fg) + anc(g1), the last equality since anbm ∈ c(fg).
It suffices to show each term in c(f)k−1c(f)c(g) = c(f)kc(g) of the form

θ = av00 · · ·avnn bj, where
∑
vi = k, is in c(f)k−1c(fg). Since g = bmh(t)+g1(t),

we can write bj = bmej + b1j , where ej is the coefficient of tj in h(t) and b1j
is the coefficient of tj in g1(t).
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Consider the following cases:
Case 1: Suppose that vn 6= 0 and j = m. Then θ = av00 · · ·avn−1

n anbm ∈
c(f)k−1c(fg).

Case 2: Suppose that vn 6= 0 and j < m. Then θ = av00 · · ·avnn bj =
av00 · · ·avnn (bmej + b1j) = av00 · · ·avn−1

n anbmej + av00 · · ·avn−1
n anb1j, which lies

in c(f)k−1c(fg) + c(f)k−1anc(g1).
Case 3: Suppose that vn = 0. Then θ ∈ c(f1)

kc(g) = c(f1)
k−1c(f1g) by

induction on the degree of f .
Combining these three cases, we have

c(f)kc(g) ⊆ c(f)k−1c(fg) + c(f)k−1anc(g1) + c(f1)
k−1c(f1g)

⊆ c(f)k−1c(fg) + c(f)k−1anc(g1) + c(f1)
k−1(c(fg) + anc(g1))

⊆ c(f)k−1c(fg) + c(f)k−1anc(g1)

(since c(f1) ⊆ c(f)). As c(g1) is generated by fewer than k elements, we have
c(f)k−1c(g1) = c(f)k−2c(fg1) by induction on k. Therefore

c(f)kc(g) ⊆ c(f)k−1c(fg) + anc(f)
k−2c(fg1)

⊆ c(f)k−1c(fg) + anc(f)
k−2(c(fg) + bmc(f1))

⊆ c(f)k−1c(fg).

Corollary 1.7.6 Let R be a commutative ring and let I ′ and J ′ be ideals of
R. Suppose that I ′ is integral over an ideal I = (a0, . . . , an−1) generated by n
elements and that J ′ is integral over an ideal J = (b0, . . . , bm−1) generated by
m elements. Then I ′J ′ is integral over an ideal generated by at most n+m−1
elements.

Proof: Let t be a variable, and set f(t) = a0 + a1t + · · · + an−1t
n−1, and

g(t) = b0 + b1t + · · · + bm−1t
m−1. Since I ′J ′ is integral over IJ , it suffices

to prove that IJ is integral over an ideal generated by at most n + m − 1
elements. By Theorem 1.7.3, IJ = c(f)c(g) is integral over c(fg). Since fg
has degree at most n+m− 2, the corollary follows.

1.8. Exercises

1.1 Let I and J be ideals in a Noetherian ring R. Prove that IJ = IJ .
1.2 (Cancellation theorem) Let I, J and K be ideals in a Noetherian ring

R, I not consisting of zero divisors. Assume that IJ = IK. Prove
that J = K . More generally prove that if the height of I is positive
and IJ = IK then J = K .

1.3 Let R be a Noetherian ring, P a prime ideal and q a P -primary ideal.
Prove that q is integrally closed if and only if qRP is.

1.4 Let R be a ring, I an integrally closed ideal and J an arbitrary ideal.
Prove that I : J is integrally closed.

1.5 Let R be an integral domain and I an ideal in R. An element r ∈ R is
said to be almost integral over I if there exists a non-zero element
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c ∈ R such that for all n ≥ 1, crn ∈ In. (Cf. Exercise 2.25 in Chapter 2
for the analogous notion for rings in place of ideals.)
(i) Prove that every element of I is almost integral over I.
(ii) Prove that the set of all elements in R that are almost inte-

gral over I forms an ideal. This ideal is called the complete
integral closure of I.

1.6 Let R be a polynomial ring in d variables over a field. Let I be a
monomial ideal in R. Prove that for all n ≥ d, In = IIn−1.

1.7 (Gauss’s Lemma) Let R be a Noetherian ring, X a variable over R,
and f, g ∈ R[X ] such that the content c(g) of g is locally generated
by one element. Prove that c(fg) = c(f)c(g).

1.8 Let k be a field, X and Y variables over k, and R a direct product
or a direct sum of countably infinitely many copies of k[X, Y ]. Let K
be the ideal whose component in the ith piece of R is (X i, Y i), J the
ideal whose ith component is (X i, Y i, XY i−1), and I the ideal whose
ith component is (X, Y )i. Certainly K ⊆ J ⊆ I. Prove that K is a
reduction of I but that K is not a reduction of J .

1.9 (Corso, Huneke, Katz and Vasconcelos [45, Corollary 3.3]) Let (R,m)
be a Noetherian local ring, I an integrally closed m-primary ideal and
M a finitely generated R-module. Prove that if TorRk (R/I,M) = 0,
then the projective dimension of M is strictly smaller than k. (Hint:
generalize the proof of Proposition 1.6.5.)

1.10 ([45, Corollary 2.5]) Let (R,m) be a Noetherian local ring and I an
m-primary integrally closed ideal. Let H1(I) be the first Koszul ho-
mology on a system of generators of I. Prove that annH1(I) = I.

Hint for the exercises below: as in Example 1.3.3, use (various) gradings on
the rings to compute the integral closure of ideals.
1.11 Let k be a field, X, Y variables over k, R = k[X, Y ], I = (X2, Y 2)R,

J = (X, Y )R. Prove that (I : J) 6= I : J .
1.12 Let I = (X2 + Y 3, XY 3, Y 4) ⊆ k[X, Y ] from Example 1.3.4. Prove

that I is not an intersection of integrally closed irreducible ideals.
1.13 (Faridi) Let R be the polynomial ring k[X, Y, Z], and let X, Y, Z have

weights 12, 15, and 20, respectively. Consider the ideal I = R≥60

(note that 60 here is the least common multiple of the three weights).
Prove that I is integrally closed but that I2 is not.

1.14 (Jockusch and Swanson, unpublished) Let k[X, Y, Z] be the polyno-
mial ring over a field k. Let I = (X2, Y 3, Z7).
(i) Prove that (I)2 is not integrally closed.
(ii) Prove that I3 6= (X2, Y 3, Z7)(I)2.

1.15 Show that for I = (X12, Y 5Z7) in the polynomial ring k[X, Y, Z],
(X, Y, Z)I 6= (X, Y, Z)I.

1.16 Let k[X1, . . . , Xd] be the polynomial ring in X1, . . . , Xd over a field k,
and let F1, . . . , Fm be forms of degree n. Assume that (X1, . . . , Xd) =√
(F1, . . . , Fm). Prove that (F1, . . . , Fm) = (X1, . . . , Xd)

n.
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1.17 (Huckaba and Huneke [130]) Let R be an N-graded Noetherian ring
such that R0 is a field. Let m be the homogeneous maximal ideal of R,
and I an ideal in R generated by homogeneous elements of the same
degree d. Suppose that I is integrally closed (resp. normal). Prove
that I +m

d+1 is integrally closed (resp. normal).
1.18 Let (R,m) be a regular local ring, i.e., µ(m) = dimR. Prove that for

any n ∈ N, the ideal fR + m
n is integrally closed if f ∈ m

n−1 or if
f ∈ m \m2.

1.19 Let R be a polynomial ring over a regular local ring. Let m be the
homogeneous maximal ideal of R. Prove that fR + m

n is integrally
closed for any homogeneous f ∈ m \m2 and for any f ∈ m

n−1.
1.20 Give counterexamples to each of the following:

(i) I + J = I + J .
(ii) IJ = I · J .
(iii) If I = J , then I = J .
(iv) For any ideal J ⊆ I, I/J = I/J in the ring R/J .

1.21 (Jarrah [152]) Let I = (XnY n, XnZn, Y nZn) ⊆ k[X, Y, Z]. (Here k
is a field, X, Y, Z variables over k.) Prove that I has no embedded
prime ideals but that I has embedded prime ideals.

1.22 (Huneke) Let k be a field of characteristic 2, X, Y, Z variables over
k, R = k[X, Y, Z], and I = (X6 − Y 2Z2, Y 4 − X2Z2, Z4 − X4Y 2).
(One can verify that I is the Frobenius power of the kernel of the
natural map k[X, Y, Z] → k[t3, t4, t5].) Prove that I has no embedded
prime ideals but that I has embedded prime ideals. (This exercise is
computationally challenging.)
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Integral closure of rings

Integral closure of ideals is intricately connected to, and to a large extent
depends on, the notion of the integral closure of rings. For example, the
integral closure of ideals can be characterized via integrally closed rings, such
as valuation rings. (See Proposition 6.8.2.) In this chapter we present the
basic background on the integral closure of rings that is needed in the rest of
this book.

The notion of the integral closure of a ring R in an overring S is analogous
to the notion of the algebraic closure of a field in an overfield. In fact, the
algebraic closure of a field is a special case of the integral closure of rings.
Under the operations of integral or algebraic closures, the ring is enlarged to
a larger one in which many more equations have solutions. This property is
perhaps the most fundamental one of integral closure.

2.1. Basic facts

The basic ingredient in the theory of integral closures, as well as in the theory
of algebraic closures, are monic polynomials and their zeros:

Definition 2.1.1 Let R be a ring and S an R-algebra containing R. An
element x ∈ S is said to be integral over R if there exists an integer n and
elements r1, . . . , rn in R such that

xn + r1x
n−1 + · · ·+ rn−1x+ rn = 0.

This equation is called an equation of integral dependence of x over R

(of degree n).

Equations of integral dependence are not unique, not even if their degrees
are minimal possible. For example, let S be the ring Z[t]/(t2 − t3), where
t is a variable over Z. Let R be the subring of S generated over Z by t2.
Then t ∈ S is integral over R and it satisfies two distinct quadratic equations
x2 − t2 = 0 = x2 − xt2 in x. As t is not in R, there can not be equations
of integral dependence of degree 1, which shows that equations of integral
dependence of minimal degree need not be unique.

However, there are many cases in which equations of minimal degree are
unique (see comment after Theorem 2.1.17). Over integral domains, any equa-
tion xn + rn−1x

n−1 + · · ·+ rn = 0 of integral dependence of a non-zero ele-
ment x, if it is of minimal degree, then rn is non-zero, for otherwise x(xn−1+
r1x

n−2 + · · ·+ rn−1) = 0, so that necessarily xn−1 + r1x
n−2 + · · ·+ rn−1 = 0,

which is then an equation of integral dependence of x of strictly smaller degree,
contradicting the assumption.
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The integral property is preserved under some standard ring operations:

Proposition 2.1.2 Let R ⊆ S be an extension of rings, and let x be an
element of S that is integral over R. Then
(1) For any R-algebra T , x ⊗ 1 ∈ S ⊗R T is integral over the image of

T = R ⊗R T in S ⊗R T .
(2) For any ideal I in S, x+ I ∈ S/I is integral over R/(I ∩R).
(3) For any multiplicatively closed subset W of R, x1 ∈W−1S is integral over

W−1R.

Proof: This is straightforward by the observation that an equation of integral
dependence of x over R gives an equation of integral dependence under tensor
products, quotients, and localization.

In contrast to the proposition above, the notion of integral non-dependence
is not preserved under tensoring, passing to quotients, or localization. For
example, 1

2 is not integral over Z, but is integral over Z after inverting 2.
However, the following is easy to prove:

Proposition 2.1.3 Let R ⊆ S be an extension of rings, x ∈ S. Then the
following are equivalent:
(1) x is integral over R.
(2) For all multiplicatively closed subsets W of R, x is integral over W−1R.
(3) For all prime ideals P of R, x is integral over RP .
(4) For all maximal ideals M of R, x is integral over RM .

Definition 2.1.4 Let R ⊆ S be an inclusion of rings. The set of all elements
of S that are integral over R is called the integral closure of R in S. If
every element of S is integral over R, we say that S is integral over R.

When S is the total ring of fractions of a reduced ring R, the integral closure
of R in S is also called the integral closure of R. A reduced ring R is said
to be integrally closed if the integral closure of R equals R.

We start with a basic and omnipresent example of integrally closed rings:

Proposition 2.1.5 A unique factorization domain R is integrally closed.

Proof: Let a, b ∈ R, with a/b in the field of fractions integral over R. By
possibly dividing a and b we may assume that a and b have no non-unit
factors in common. Let xn+ r1x

n−1 + · · ·+ rn = 0 be an equation of integral
dependence of a/b over R. Then an + r1ba

n−1 + · · · + rnb
n = 0, so that

an ∈ (b). But by unique factorization, b must be a unit, so that a/b ∈ R.

In particular, the ring of integers Z, polynomial rings over fields (in arbitrary
number of variables), power series rings, regular rings, etc., are all integrally
closed.

Here is an example of a ring that is not integrally closed. Let k be a field,
t a variable, and set R = k[t2, t3]. This is the subring of the polynomial ring
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k[t] consisting of polynomials without the linear term. As t = t3

t2
is in the field

of fractions but not in R, and as t satisfies the integral equation x2 − t2 = 0,
R is not integrally closed. It is not difficult to see that the integral closure of
k[t2, t3] is k[t].

The following is proved easily.

Proposition 2.1.6 Let R ⊆ S ⊆ T be an extension of rings. The following
are equivalent:
(1) S is the integral closure of R in T .
(2) S is the integral closure of R in T after localizing at every multiplicatively

closed subset of R.
(3) S is the integral closure of R in T after localizing at the complement of

every prime ideal in R.
(4) S is the integral closure of R in T after localizing at the complement of

every maximal ideal in R.

Integral dependence of integral domains and fields is a special case:

Lemma 2.1.7 If R ⊆ S is an integral extension, then Q ∈ SpecS is maximal
in S if and only if Q ∩R is maximal in R. If R ⊆ S is an integral extension
of integral domains, then R is a field if and only if S is a field.

Proof: The first part follows from the second as R/(Q ∩ R) ⊆ S/Q is an
integral extension of domains.

Assume that R is a field. Let x be a non-zero element of S. Then for some
ri ∈ R, xn + r1x

n−1 + · · ·+ rn−1x+ rn = 0. As R is an integral domain, we
may assume that rn is non-zero. By dividing this equation by rnx one gets
r−1
n xn−1 + r1r

−1
n xn−2 + · · ·+ rn−1r

−1
n + x−1 = 0, so that x−1 ∈ S.

Conversely, assume that S is a field. If x is a non-zero element of R, then
x−1 is in S and is thus integral over R. Hence for some ri ∈ R, x−n +
r1x

−n+1 + · · ·+ rn = 0. Multiplying through by xn−1 yields that x−1 ∈ R.

A weak version of the following lemma was used in Corollary 1.1.8:

Lemma 2.1.8 (Determinantal trick) Let R be a ring, M a finitely generated
R-module, ϕ :M →M an R-module homomorphism, and I an ideal of R such
that ϕ(M) ⊆ IM . Then for some ri in I

i,

ϕn + r1ϕ
n−1 + · · ·+ rnϕ

0 = 0.

In particular, if x is in an extension algebra containing R such that xM ⊆M ,
then if M is faithful over R[x] it follows that x is integral over R.

Proof: The second part follows from the first part: set I to be R, set ϕ to be
multiplication by x, and observe that the conclusion that xn + r1x

n−1 + · · ·
+rn annihilates a faithful module implies that xn + r1x

n−1 + · · · + rn = 0,
whence x is integral over R. Thus it suffices to prove the first part.

Let {m1, . . . , mn} be a generating set of M . Write ϕ(mi) =
∑n
j=1 aijmj

for some aij ∈ I. Let A be the matrix whose entry (i, j) equals δijϕ −
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aijId. Then A multiplies the column vector (m1, . . . , mn) ∈Mn to zero, i.e.,
A[m1, . . . , mn]

T = 0. Left-multiplication of both sides of this equation by the
classical adjoint of A shows that detA annihilates M . But detA is a function
of the form ϕn + r1ϕ

n−1 + · · ·+ rnϕ
0, with each ri ∈ Ii.

The next lemma is a generalization (to rings) of the fact from field theory
that a finitely generated algebraic extension of a field is a finite-dimensional
vector space over that field:

Lemma 2.1.9 Let R ⊆ S be an inclusion of rings, and let x1, . . . , xn ∈ S.
The following are equivalent:
(1) For all 1 ≤ i ≤ n, xi is integral over R.
(2) R[x1, . . . , xn] is a finitely generated R-submodule of S.
(3) There is a non-zero finitely generated R-module M ⊆ S such that xiM ⊆

M for each 1 ≤ i ≤ n and such that M is a faithful R[x1, . . . , xn]-module.

Proof: Assume (1). We use induction on n to prove (2). By induction we
may assume that R[x1, . . . , xn−1] is a finitely generated R-submodule of S.
We can then replace R by R[x1, . . . , xn−1]; it suffices to prove this implication
when n = 1. Let x = x1. There exists a positive integer m such that
x satisfies an equation of integral dependence of degree m over R. Thus
R[x] = R+Rx+Rx2 + · · ·+Rxm−1, which proves (2).

Assertion (3) follows from (2) by setting M = R[x1, . . . , xn].
The determinantal trick (Lemma 2.1.8) proves that (3) implies (1): for each

i, xiM ⊆M , M is faithful over R[xi].

Proposition 2.1.10 Let R ⊆ S be an inclusion of rings, S generated over
R by the elements sλ, as λ varies over a variable set Λ. Then S is integral
over R if and only if each sλ is integral over R.

Proof: It suffices to prove that if each sλ is integral over R, then S is integral
over R. Let s be an arbitrary element of S. Then there exists a finite subset
Λ0 of Λ such that s ∈ S0 = R[sλ |λ ∈ Λ0]. As all rings contain an identity, S0

is a faithful R-module. By Lemma 2.1.9, S0 is a finitely generated R-module.
But sS0 ⊆ S0 implies by Lemma 2.1.9 that s is integral over R.

(A version of this for the integral dependence of ideals is in Corollary 5.2.2.)
This further implies that the integral closure of a ring in another is also a

ring, so that the integral closure is an operation on the category of rings:

Corollary 2.1.11 The integral closure of R in an overring S is a ring.

Proof: Assume that x and y in S are integral over R. By Lemma 2.1.9, R[x, y]
is a finitely generated faithful R-module. Note that xy and x − y multiply
R[x, y] to R[x, y], so that xy and x− y are both integral over R.

Furthermore, the integral closure operation is an operation on the category
of fields, i.e., if R ⊆ S are fields, then the integral closure of R in S is also a
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field. Namely, if x is a non-zero element of the integral closure of R in S, then
R ⊆ R[x] is an integral extension of integral domains, so by Lemma 2.1.7,
R[x] is a field. Thus R( 1x ) = R(x) = R[x]. By Lemma 2.1.9, R[x] is module-
finite over R. Thus 1

x
is is contained in a module-finite extension, so by

Lemma 2.1.9, 1
x is integral (algebraic) over R. This proves that the algebraic

closure of a field in an overfield is a field.
Here is another analogy with fields: just as algebraic dependence is a tran-

sitive operation, so is integral dependence:

Corollary 2.1.12 Let R ⊆ S ⊆ T be inclusions of rings. Then S is integral
over R and T is integral over S if and only if T is integral over R.

Proof: If S is integral over R and T is integral over S, then for any element
t of T , let tn + s1t

n−1 + · · ·+ sn = 0 be an equation of integral dependence
of t over S, with each si ∈ S. Then t is integral over R[s1, . . . , sn]. By
Lemma 2.1.9, R[s1, . . . , sn, t] is module-finite over R[s1, . . . , sn]. By assump-
tion, each si is integral over R, so that R[s1, . . . , sn] is module-finite over
R. Thus R[s1, . . . , sn, t] is module-finite over R, so that by condition (3) of
Lemma 2.1.9, t is integral over R. Thus T is integral over R.

The converse is clear.

Finding the integral closure reduces to integral domains:

Corollary 2.1.13 Let R be a reduced ring. Let P1, . . . , Ps be all the minimal
prime ideals of R. The integral closure of R in its total ring of fractions is
R/P1 × · · · × R/Ps, where R/Pi is the integral closure of R/Pi in its field of
fractions κ(Pi).

Proof: The total ring of fractionsK of R is the zero-dimensional ring obtained
from R by inverting all elements of R that are not in any minimal prime ideal.
Thus K is the direct product of the κ(Pi). Observe that

R ⊆ R/P1 × · · · ×R/Ps

is a module-finite faithful extension contained in K, which is integral over R
by Lemma 2.1.9. As R/P1×· · ·×R/Ps is integral over (R/P1)×· · ·× (R/Ps)
(see Exercise 2.1), it follows that R/P1 × · · · ×R/Ps is integral over R. Thus
R/P1 ×· · ·×R/Ps is contained in the integral closure of R. But R/P1 ×· · ·×
R/Ps is integrally closed, for if (k1, . . . , ks) ∈ K = κ(P1) × · · · × κ(Ps), then
an equation of integral dependence of (k1, . . . , ks) over (R/P1)× · · ·× (R/Ps)
is the product of equations of integral dependence of each ki over R/Pi. Thus
for all i = 1, . . . , s, ki ∈ R/Pi. It follows that R/P1 × · · · ×R/Ps is integrally
closed. Thus R/P1 × · · · ×R/Ps is the integral closure of R.

Thus a finite direct product of integrally closed domains is locally a domain.

Definition 2.1.14 A ring R is said to be normal if for every prime ideal
P of R, RP is an integrally closed integral domain.
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Every normal ring is locally an integral domain, thus globally it is reduced.
By Corollary 2.1.13, a Noetherian reduced ring is integrally closed if and only
if it is normal.

The following lemma helps identify when an intersection of normal rings is
normal.

Lemma 2.1.15 Let R be a reduced ring whose total ring of fractions K is
a finite direct product of fields. Then
(1) R is normal if and only if R is integrally closed in K.
(2) Let L be a ring containing K. For each i in some index set Λ let Ri ⊆ L be

an integrally closed ring whose total ring of fractions contains K. Suppose
that R =

⋂
Ri. Then R is normal.

Proof: Let P be a prime ideal of R. The total ring of fractions of RP is
KR\P , which is a direct product of fields. If R is integrally closed in K then
RP is also integrally closed in KR\P . By Corollary 2.1.13, by the structure of
prime ideals in a direct product of rings, RP is a domain. The idempotents
one obtains by decomposing KR\P as a product of fields are integral over
RP , hence are in RP , and hence KR\P is a field, which implies that RP is an
integrally closed domain, and so R is normal. Conversely, assume that R is
normal. Then RP is an integrally closed domain. If t ∈ K is integral over R,
then t

1 is integral over RP , and so t
1 ∈ RP for all prime ideals P , implying

that t ∈ R.
To prove the second statement, it is enough to prove that R is integrally

closed in K, using the first part of the lemma. Let x ∈ K be integral over
R. For each i, x is in the total ring of fractions of Ri and still integral over
Ri as the equation of integral dependence over R is an equation of integral
dependence over Ri. By assumption, x ∈ Ri for each i, hence x ∈ R. This
proves that R is integrally closed.

Reduction to integral domains is helpful even without the assumption that
there be only finitely many minimal prime ideals:

Proposition 2.1.16 Let R be a ring, not necessarily Noetherian, and S an
overring of R. Let x ∈ S. Then x is integral over R if and only if the image
of x in S/PS is integral over R/P , as P varies over all the minimal prime
ideals of R.

Proof: Clearly if x is integral over R, then as the image of an integral equation
of x over R passes to an integral equation of the same degree in all quotients,
it follows that the image of x in S/PS is integral over R/P for every minimal
prime ideal P of R.

For the converse, let U be the subset of S consisting of all elements of the
form {xn+ r1x

n−1 + · · ·+ rn |n ∈ N>0, ri ∈ R}. Then U is a subset of S that
is closed under multiplication and that by assumption intersects with PS for
each P ∈ Min(R). If U does not contain 0, then S can be localized at U . If
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Q is a prime ideal in U−1S, let q denote the contraction of Q in R. Since U
intersects qS and qS is contained in Q, it follows that Q intersects U , which
is a contradiction. Thus U−1S has no prime ideals, which contradicts the
assumption that 0 is not in U . So necessarily 0 ∈ U , which gives an equation
of integral dependence of x over R.

It follows that to find the integral closure of R in S it suffices to find the
integral closure of R in S modulo the nilradical of R. In other words, the
nilpotent elements behave trivially under the integral closure operation.

By Proposition 2.1.16 it is often no loss of generality if in the study of the
integral closure and dependence we only consider integral domains. There are
a few more tools available for integral closure of integral domains.

None of the theory developed so far gives a good clue towards deciding
when an element in an extension is integral over the base ring, or towards
finding equations of integral dependence. In Chapter 15 we discuss some of the
computational difficulties: while there is a general algorithm for computing
the integral closure of an integral domain, in practice it is often unmanageable.
Some help in this direction is provided by the following:

Theorem 2.1.17 Let R be an integral domain, K its field of fractions, and
L a field extension of K. Then for every element s ∈ L, s is integral over R
if and only if it is algebraic over K and its minimal (monic) polynomial over
K has all its coefficients in the integral closure of R.

Proof: If s is algebraic over K and its minimal monic polynomial over K
has all its coefficients in the integral closure of R, then s is integral over the
integral closure of R, so s is integral over R by Corollary 2.1.12.

If s is integral over R, it is clearly integral also over K, and satisfies a
monic polynomial f(x) all of whose coefficients are in R. This polynomial is a
multiple in K[x] of the minimal polynomial of s over K. Let L′ be a splitting
field of f(x) over K. Let τ be a K-automorphism of L′. Then by applying
τ to the given integral equation of s over R, τ(s) ∈ L′ is also integral over
R (and K). From field theory one knows that the minimal polynomial for s
over K is

∏
τ (x− τ(s))n, where n is either some power of the characteristic of

K or is 1 if the characteristic of K is 0. In the expansion of this polynomial,
all the coefficients are in K, are symmetric polynomials in the τ(s), and are
thus integral over R.

Thus in particular, if R is integrally closed in its field of fractions, each
element in an algebraic closure of this field that is integral over R satisfies a
unique equation of integral dependence of minimal degree over R, namely its
minimal polynomial. It is easy to prove the following weaker version:

Proposition 2.1.18 Let R be an integral domain, K its field of fractions,
and L a field extension of K. For any element s ∈ L, s is integral over K if
and only if for some non-zero r ∈ R, rs is integral over R.
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The next lemma will be useful later.

Lemma 2.1.19 Let R be an integral domain, K its field of fractions, and X
a variable. Let f(X) be a monic polynomial in R[X ], and g(X), h(X) monic
polynomials in K[X ] such that f(X) = g(X)h(X). Then the coefficients of g
and h lie in the integral closure of R.

Proof: Let L be an algebraic closure of K. Any root of g is also a root of f ,
so as f is monic with coefficients in R, this root is integral over R. Since the
coefficients of g(X) are sums of products of the roots, each coefficient is both
integral over R and in K.

2.2. Lying-Over, Incomparability,
Going-Up, Going-Down

The four most basic theorems concerning the behavior of prime ideals under
integral ring extensions have names: Lying-Over, Incomparability, Going-
Up, and Going-Down. These were first proved by Krull for integral domains
in [177], and in greater generality by Cohen and Seidenberg in [43].

Definition 2.2.1 Let f : R → S be a ring homomorphism. We say that f satisfies

Going-Down if whenever P1 ⊆ P2 are prime ideals in R and Q2 is a prime ideal in

S such that f−1(Q2) = P2, there exists a prime ideal Q1 in S contained in Q2 such

that f−1(Q1) = P1.

We say that f : R → S satisfies Going-Up if whenever P1 ⊆ P2 are prime ideals

in R and Q1 is a prime ideal in S such that f−1(Q1) = P1, there exists a prime

ideal Q2 in S containing Q1 such that f−1(Q2) = P2.

Also, f satisfies Lying-Over if for any P ∈ SpecR there exists Q ∈ SpecS such

that f−1(Q) = P .

Theorem 2.2.2 (Lying-Over) Let R ⊆ S be an integral extension of rings.
Then for any prime ideal P of R there exists a prime ideal Q of S such that
Q ∩R = P .

Proof: We may replace R by RP and S by SR\P : this is still an integral
extension of rings, and if the conclusion holds after localization, it holds in
the original set-up as well. Thus without loss of generality R is a local ring
with maximal ideal P . Let Q be a maximal ideal in S. By Lemma 2.1.7,
Q ∩R is a maximal ideal of R, so that Q ∩R = P .

This implies that PS ∩R = P for every prime ideal P of R. Furthermore,
it implies that the natural map SpecS → SpecR is surjective.

Theorem 2.2.3 (Incomparability) Let R ⊆ S be an integral extension of
rings and P ⊆ Q prime ideals of S. If P ∩R = Q ∩R, then P = Q.

Proof: Without loss of generality we may localize both R and S at the mul-
tiplicatively closed set R \ (Q∩R). By Lemma 2.1.7, P is a maximal ideal of
S since Q ∩R = P ∩R is a maximal ideal in R. Thus P = Q.
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A consequence of the Incomparability Theorem is that the Krull dimen-
sion satisfies the inequality dimS ≤ dimR whenever R ⊆ S is an integral
extension.

Theorem 2.2.4 (Going-Up) Let R ⊆ S be an integral extension of rings.
Then for any chain of prime ideals P1 ⊆ P2 ⊆ . . . ⊆ Pn of R and for any
prime Q1 in S such that P1 = Q1 ∩ R, there exists a chain of prime ideals
Q1 ⊆ Q2 ⊆ . . . ⊆ Qn of S such that Qi ∩R = Pi for all 1 ≤ i ≤ n.

Proof: By a straightforward induction, it suffices to prove the case n = 2.
Without loss of generality we may localize both R and S at the multiplicatively
closed set R \ P2. Also, we may replace R by R/P1 and S by S/Q1: this is
still an integral extension of rings, with the images of the Pi and of Qi prime
ideals. The advantage is that now every ideal in S contains Q1 = 0, so it
suffices to find a prime ideal in S that contracts to P2 in R. But this follows
by the Lying-Over theorem.

This implies that whenever R ⊆ S is integral, dimS ≥ dimR. Thus the
last two theorems give:

Theorem 2.2.5 Let R ⊆ S be an integral extension of rings. Then dimR =
dimS.

Whereas integral extensions preserve dimension, the height of a prime ideal
in an integral extension need not be the same as the height of its contraction.
For example, if R is a ring and P is a prime ideal in R of positive height, then
R ⊆ R ⊕ R/P via r 7→ (r, r + P ) is a module-finite extension of rings, thus
an integral extension by Lemma 2.1.9, but the prime ideal P in R of positive
height is the contraction of the prime ideal R ⊕ 0 ⊆ R ⊕R/P of height 0.

In Corollary 2.2.8 we give some general conditions on R and S so that
height is preserved for arbitrary ideals. However, even for a finitely generated
integral extension R ⊆ S of Noetherian integral domains it is possible that
for some prime ideal Q of S, htQ 6= ht(Q ∩R). Here is an example:

Example 2.2.6 (Nagata [215, E2.1]) The goal of this example is to show
that the height of the contraction may differ from the height of the prime ideal
in an integral extension, giving more nuance to Theorem 2.2.5. Let (A,m) be
a Noetherian local domain and S a Noetherian domain containing A. Assume
that S has only finitely many maximal ideals, and that for each maximal ideal
Q in S, Q ∩ A = m and S/Q is a finite algebraic extension of A/m. Let J be
the Jacobson radical of S, i.e., J is the intersection of all the maximal ideals
of S. Then S/J is a module-finite extension of A/m. Set R = A + J . It is
easy to verify that R is a commutative domain with identity, and since m ⊆ J ,
every element of R can be written as an element of J or as a unit of A plus an
element of J . Note that J is a maximal ideal of R and A/m = R/J ⊆ S/J is a
module-finite extension. But as J is an ideal in both R and S and since it is the
maximal ideal of R, Nakayama’s Lemma gives that R ⊆ S is a module-finite
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extension. Every element of R\J is a unit in S, thus a unit in R, so that R has
a unique maximal ideal. We claim thatR is Noetherian. Let I be an ideal in R.
The (A/m) = (R/J)-module I/JI is contained in the (A/m)-module IS/JI,
which is finitely generated. Thus I/JI is finitely generated as an R-module.
Let a1, . . . , ak be elements of I whose images generate the R-module I/JI.
By possibly adding elements, we may also assume that a1, . . . , ak generate IS.
Now let a ∈ I. Then a ∈ (a1, . . . , ak) + JI ⊆ (a1, . . . , ak) + JIS, so we can
write a =

∑
i riai +

∑
i jiai for some ri ∈ R and ji ∈ JS ⊆ R. This proves

that I = (a1, . . . , ak) Since I was arbitrary, R is Noetherian.
Clearly each of the maximal ideals in S contracts to the maximal ideal in R.

If we start with S whose maximal ideals have distinct heights, then this yields
an example of an integral extension R ⊆ S of Noetherian integral domains
such that for some prime ideal Q of S, htQ 6= ht(Q ∩R).

Here is an example of such a ring S, namely, of a ring S that is an overring
of a Noetherian local ring (A,m), such that S has only finitely many maximal
ideals, these maximal ideals have different heights, and the residue fields at
these maximal ideals are finite algebraic extensions of A/m. The example
below is again due to Nagata. Let A = k be a field, X, Y1, . . . , Ym variables
over k, r a positive integer and let z1 =

∑∞
j=0 a1jX

j, . . . , zr =
∑∞
j=0 arjX

j

be algebraically independent elements over k(X) for some aij ∈ k. Set
zik = X

∑∞
j=k aijX

j−k. Let S′ = k[X, zik | i, k]. Then S′ is not Noetherian.
As Xzi,k+1 = zik − aikX , it follows that XS′ is a prime ideal and that S′

XS′

is a subring of k[[X ]]. Any non-zero prime ideal in S′
XS′ either contains X , in

which case it is the maximal ideal, or it contains a power series in X that is
not a multiple of X , and then the ideal is the whole ring. Thus S′

XS′ is a prin-
cipal ideal domain, so Noetherian. Now let S′′ = k[X, zik, Y1, . . . , Ym | i, k].
Let m = (X, Y1, . . . , Ym)S

′′ and n = (X − 1, zi0, Y1, . . . , Ym | i)S′′. By the pre-
vious work, S′′

m is a Noetherian local ring of dimension m+ 1. As S′[1/X ] =
k[X, 1/X, z1, . . . , zr], it follows that S

′′
n is a Noetherian local ring of dimension

m+ r+1. Let S be the ring obtained from S′′ by localizing at the multiplica-
tively closed set S′′ \m ∪ n. Then S is Noetherian with exactly two maximal
ideals, one of height m + 1 and the other of height m + r + 1. Also, the two
residue fields equal k, so that this S indeed works in the previous example.

Another result regarding expected heights is in Proposition 4.8.6.

Theorem 2.2.7 (Going-Down) Let R ⊆ S be an integral extension of rings.
Assume that R is an integrally closed domain. Further assume that S is
torsion-free over R, i.e., every non-zero element of R is regular on S. For
any chain of prime ideals P1 ⊆ P2 ⊆ . . . ⊆ Pn of R and Qn prime in S such
that Pn = Qn ∩ R, there exists a chain of prime ideals Q1 ⊆ . . . ⊆ Qn of S
such that Qi ∩R = Pi for all 1 ≤ i ≤ n.

Proof: By induction on n it suffices to prove the case n = 2. By localizing both
R and S at the multiplicatively closed set R \P2, without loss of generality R
is a local integrally closed domain with maximal ideal P2. It suffices to prove
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that P1 contracts from a prime ideal contained in Q2, or that P1 contracts
from a prime ideal in the ring extension SQ2

. By Exercise 2.4 it suffices to
prove that P1SQ2

∩R = P1.
Let r ∈ P1SQ2

∩ R. Then r = x
s
for some x ∈ P1S and s ∈ S \Q2. There

exists a finitely generated R-subalgebra T of S such that x ∈ P1T . Necessarily
R ⊆ T is integral, so the finite generation implies that T is module-finite over
R. Note that xT ⊆ P1TT = P1T . Thus by Lemma 2.1.8, x satisfies an
equation xn+a1x

n−1+ · · ·+an = 0 with ai ∈ P1 (actually in P i1, but we may
ignore the powers).

Set f(X) = Xn+a1X
n−1+· · ·+an. If f(X) factors into monic polynomials

overK[X ], then by Lemma 2.1.19 it factors into monic polynomials over R[X ].
Clearly R[X ]/P1R[X ] is a domain and the image of f(X) in this ring is Xn.
This forces each of the factors of f(X) to have all the non-leading coefficients
in P1. This proves that the minimal integral equation for x over K has all
the non-leading coefficients in P1. By changing notation we may assume that
this minimal equation is xn + a1x

n−1 + · · ·+ an = 0, with each ai ∈ P1.

It follows that
(
x
r

)n
+ a1

r

(
x
r

)n−1
+ · · · + an

rn
= 0. Since x

r
= s and r ∈ R,

this equation is an integral equation for s over K. By Theorem 2.1.17, the
minimality of n implies that this is a minimal equation for s = x

r
over K.

Thus by Theorem 2.1.17 all the coefficients are in R. Then for i = 1, . . . , n,
ai
ri

is in R, and so ai ∈ riR ∩ P1 for i = 1, . . . , n. If r 6∈ P1, then riR ∩
P1 = riP1, so ai ∈ riP1 and the minimal equation for s over K (and over
R) is sn + b1s

n−1 + b2s
n−2 + · · · + bn = 0 for some bi ∈ P1. In this case

s ∈
√
P1S ⊆ Q2S, which is a contradiction. So necessarily r ∈ P1.

Corollary 2.2.8 Let R ⊆ S be an integral extension of rings. Assume that
R is an integrally closed domain. Further assume that S is torsion-free over
R, i.e., every non-zero element of R is regular on S. Then for every ideal I
of R, ht I = ht(IS).

Proof: By Theorem 2.2.2, R ⊆ S satisfies the Lying-Over condition, and by
Theorem 2.2.7, R ⊆ S satisfies the Going-Down condition. Proposition B.2.4
then finishes the proof in the Noetherian case.

The rest covers the general case. By Lemma B.1.3, every prime ideal in R
that is minimal over I contracts from a prime ideal in S that is minimal over
IS and every prime ideal in S that is minimal over IS contracts to a prime
ideal in R that is minimal over I. Hence it suffices to prove the corollary in
the case where I is a prime ideal.

Let Q ∈ SpecS be minimal over IS and of height equal to ht(IS). Then
Q ∩ R = I. As RI ⊆ SI is integral, by Theorem 2.2.5, ht I = dim(RI) =
dim(SI) ≥ dim(SQ) = htQ, whence ht I ≥ ht(IS).

Let P0 ( P1 ( · · ·( Ph = I be a chain of prime ideals in R with h = ht I.
By Going-Down there exist Q0, . . . , Qh ∈ SpecS such that Qh = Q, Q0 ⊆
Q1 ⊆ · · · ⊆ Qh, and Qj ∩ R = Pj for j = 0, . . . , n. By the Incomparability
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Theorem 2.2.3, Q0 (Q1 ( · · ·(Qh is a saturated chain, whence ht I = h ≤
htQ = ht(IS). Thus ht I = ht(IS).

2.3. Integral closure and grading

Recall that a monoid is a non-empty set with an associative binary operation
and a unit. A typical example is Nd × Ze for some non-negative integers d, e.
If a ring is graded by a totally ordered abelian monoid, then so are all of its
minimal prime ideals (see for example Section A.3 in the Appendix).

Definition 2.3.1 Let G be an abelian monoid. A ring R is said to be G-
graded if the following conditions are satisfied:
(1) For each g ∈ G there exists an additive subgroup Rg of R.
(2) R = ⊕g∈GRg.
(3) For each g, g′ ∈ G, RgRg′ ⊆ Rg+g′.
When R is G-graded, an R-module M is called G-graded if
(1) M = ⊕g∈GMg, where Mg is an R0-submodule of M ,
(2) for each g, g′ ∈ G, RgMg′ ⊆Mg+g′.
An element of R (respectively M) is said to be homogeneous of degree g
if it is an element of some Rg (respectively Mg).

Theorem 2.3.2 Let G = Nd × Ze, and let R ⊆ S be G-graded and not
necessarily Noetherian rings. Then the integral closure of R in S is G-graded.

Proof: We first prove the case d + e = 1. Let s =
∑j1
j=j0

sj , sj ∈ Sj , be
integral over R. We have to show that each sj is integral over R.

Let r be an arbitrary unit of R0. Then the map ϕr : S → S that multiplies
elements of Si by r

i is a graded automorphism of S that restricts to a graded
automorphism of R and is identity on S0. Thus ϕr(s) =

∑j1
j=j0

rjsj is an
element of S that is integral over R.

Assume that R0 has n = j1− j0+1 distinct units ri all of whose differences
are also units in R. Define bi = ϕri(s). Each bi is integral over R. Let A be
the n× n matrix whose (i, j) entry is rj+j0−1

i . Then

A




sj0
sj0+1

...
sj1


 =




bj0
bj0+1

...
bj1


 .

As A is a Vandermonde matrix, since all ri − rj for i 6= j are units in R, A is
invertible, so that 



sj0
sj0+1

...
sj1


 = A−1




bj0
bj0+1

...
bj1


 .
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Thus each sj is an R-linear combination of the bi, whence each sj is integral
over R, as was to be proved.

Finally, we reduce to the case when R0 has n = j1 − j0 + 1 distinct units
ri all of whose differences are also units in R. Let tj0 , . . . , tj1 be variables
over S. Set S′ = S[tj, t

−1
j , (tj − ti)

−1 | i, j = j0, . . . , j1] and let R′ be the

subring R[tj, t
−1
j , (tj − ti)

−1 | i, j = j0, . . . , j1]. We extend the G-grading on
R and S to R′ and S′ by setting the degree of each ti to be 0. Then R′ ⊆ S′

are G-graded rings, R′ contains at least n distinct units ri = ti in degree 0 all
of whose differences are also units in R′. By the previous case, each sj ∈ S is
integral over R′. Consider an equation of integral dependence of sj over R′,
say of degree m. Clear the denominators in this equation to get an equation
E over R[ti | i = j0, . . . , j1]. The coefficient of smj in E is a polynomial in
R[ti | i = j0, . . . , j1], with at least one coefficient of this polynomial being a
unit of R. Picking out the appropriate multi ti-degree of E yields an integral
equation of sj over R. Thus sj is integral over R. This finishes the proof of
the case d+ e = 1.

Now we proceed by induction on d+ e. Let T be the integral closure of R
in S. If e = 0 set G′ = Nd−1 and if e > 0 set G′ = Nd × Ze−1. We impose a
G′-grading on R ⊆ S by forgetting about the last component. By induction,
T =

∑
ν∈G′ Tν , where Tν is the homogeneous part of T consisting of elements

of degree ν. Now let s ∈ Tν . As s ∈ S and S is G-graded, we may write
s =

∑j1
j=j0

sj , where each sj ∈ S(ν,j). Thus by the case d+ e = 1, each sj is
integral over R.

It is not true that a result of this type holds for an arbitrary monoid G, as
the following example shows:

Example 2.3.3 Let R = k[X ] ⊆ S = k[X, Y, Z]/(X3 + Y 2 + Z2), where
X, Y and Z are variables over a field k of characteristic 2. Then R and S
are (Z/2Z)-graded domains as follows: each element in S can be represented
uniquely as a polynomial in Y of degree at most 1. With such representation,
S = S0⊕S1, R = R0⊕R1 = R0, each Si is closed under addition, S0×Si ⊆ Si,
S1 × S1 ⊆ S0. However, the non-homogeneous element Y +Z is integral over
R, yet neither of its homogeneous components is integral over R. Thus in this
case the integral closure of a G-graded ring in a larger G-graded ring is not
G-graded.

However, there is another grading on this particular R ⊆ S under which
the integral closure of R in S is graded. (See Exercise 2.21.)

Thus the relative integral closure of graded rings is graded for “good” grad-
ings. We next examine conditions that guarantee that the (non-relative) in-
tegral closure be graded as well. The problem with considering the integral
closure of a graded ring is that the integral closure is taken in the total ring of
fractions, which is not necessarily a graded ring. Consequently, Theorem 2.3.2
cannot be applied directly. In fact, the integral closure of a graded ring need
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not be graded. To see what can happen, consider the following examples of
gradings.

Example 2.3.4 It need not be the case that the integral closure of a reduced
(Nd×Ze)-graded ring is graded. Let R = Q[X, Y ]/(XY ), with X, Y variables
over Q. We can impose any of the following gradings on R:
(1) N-grading degX = 0, deg Y = 1,
(2) Z-grading degX = 1, deg Y = −1,
(3) N2-grading degX = (1, 0), deg Y = (0, 1).
Under any of these gradings, R embeds in the graded integrally closed re-
duced ring Q[X ]×Q[Y ], which is isomorphic to a subring of the total ring of
fractions K of R. However, the isomorphism is not graded: we show next that
the idempotents of the integral closure are not in the subring of K obtained
from R by inverting homogeneous non-zerodivisors. Namely, X/(X + Y ) is
an element of K and it satisfies the integral equation T 2 − T = 0. Thus
X/(X + Y ) is integral over R and is an idempotent. However, X/(X + Y )
cannot be written as a fraction of homogeneous components under the given
gradings. In fact, there are no homogeneous non-zerodivisors except for units.

For R as in the example above but with the N-grading degX = m, deg Y =
n, with m,n ∈ N>0, X/(X + Y ) can be written as the (clearly) homogeneous
element Xn/(Xn + Y m).

The next proposition gives necessary and sufficient conditions for the inte-
gral closure to be graded.

Proposition 2.3.5 Let G = Nd×Ze, let R be a G-graded reduced Noetherian
ring, K its total ring of fractions, and Min(R) = {P1, . . . , Ps}. Let S be the
localization of R at the set of all homogeneous non-zerodivisors of R. The
following are equivalent:
(1) The ring S is integrally closed.
(2) The integral closure R of R is a G-graded subring of S (inheriting the

grading).
(3) The idempotents of R are homogeneous elements of S of degree 0.
(4) For i = 1, . . . , s, Pi + ∩j 6=iPj contains a homogeneous non-zerodivisor.

(In case s = 1, this condition is vacuously satisfied.)

Proof: Assume condition (1). Since R ⊆ S ⊆ K, the integral closure of
R is contained in the integral closure of S, which is just S. Hence R is
the integral closure of R in S. By Theorem 2.3.2 it follows that R is Zd+e-
graded. However, R must in fact be G-graded since the equations of integral
dependence show that new negative terms cannot appear. This proves (2).

Assume (2). Since the idempotents of R are in K and satisfy the monic
equation X2 −X = 0, they are integral over R and hence are sums of homo-
geneous elements in K. Write an idempotent e as e =

∑n
i=1 ei, where each

ei is homogeneous. Impose a lexicographic order on Zd+e. Without loss of
generality deg(e1) > · · · > deg(en). If deg(e1) > 0, the homogeneous part of
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e2 − e of degree 2 deg(e1) is exactly e
2
1, and since e2− e = 0 and R is reduced,

we get a contradiction. Similarly if deg(en) < 0 we get a contradiction. This
forces n = 1 and e to be homogeneous of degree 0, whence proving (3).

Assume (3). To prove (4), by symmetry it suffices to prove (4) for i = 1.
Consider the idempotent e = (1, 0, . . . , 0) ∈ R = R/P1 × · · · × R/Ps (using
Corollary 2.1.13). By assumption e is homogeneous. There exist homogeneous
elements a, b ∈ R, with b a non-zerodivisor in R such that e = a/b. This
means that the image of a in the direct product is (b, 0, . . . , 0), which says that
b−a ∈ P1 and that a ∈ P2∩· · ·∩Ps. Hence b = (b−a)+a ∈ P1+P2∩· · ·∩Ps
is a homogeneous non-zerodivisor. This proves (4).

Finally, assume (4). Let hi be a homogeneous non-zerodivisor in Pi +
∩j 6=iPj . Set h = h1 · · ·hs. Then h ∈ R is a homogeneous non-zerodivisor, and
for each i, h = pi+ ri for some ri ∈ Pi and some pi ∈ ∩j 6=iPj . Since all the Pi
are homogeneous by Corollary A.3.2, we may take ri and pi to be homogeneous
of the same degree as h. Set ei =

pi
h
. As piri ∈ ∩jPj = 0, it follows that

ei = ei
(pi+ri)

h
= e2i , so that ei is a homogeneous idempotent of degree 0. If

i 6= j, then pipj is in the intersection of all the minimal prime ideals, hence
zero, so that eiej = 0. Since

∑
i pi is not in any minimal prime ideal, it follows

that
∑
i ei is an idempotent that is a unit in K, and thus

∑
i ei = 1. Since S

contains the orthogonal idempotents ei and is a homogeneous localization of
R, the isomorphisms S/PiS ∼= Sei and S ∼= (S/P1S)×· · ·× (S/PsS) preserve
the grading, and S has no non-minimal homogeneous prime ideals. We will
prove that each S/PiS is integrally closed, whence S is integrally closed by
Corollary 2.1.13.

Set T = S/PiS. This is a Zd+e-graded domain in which there are no non-
zero homogeneous prime ideals. In particular, T0 is a field, and every non-zero
homogeneous element is a unit in T . LetM be the Z-module generated by the
degrees of the homogeneous non-zero elements of T . Then M ⊆ Zd+e. Every
non-zero element of M is the degree of some non-zero homogeneous element
of T (for this we use that T is a domain). In particular, since M is a finitely
generated free Z-module, there exist non-zero homogeneous elements t1, . . . , tc
in T such that if νi = deg(ti), then {ν1, . . . , νc} is a Z-basis of M . Since the
νi are linearly independent over Q, the ti are algebraically independent over
the field T0.

Clearly T0[t1, . . . , tc, t
−1
1 , . . . , t−1

c ] ⊆ T . Let x ∈ T be a homogeneous ele-
ment. Write deg(x) =

∑
imiνi for some mi ∈ Z. Then x and tm1

1 · · · tmc
c ∈ T

are homogeneous elements of the same degree, whence their quotient is a non-
zero element of T0. Hence x ∈ T0[t1, . . . , tc, t

−1
1 , . . . , t−1

c ]. This proves that
T = T0[t1, . . . , tc, t

−1
1 , . . . , t−1

c ], with t1, . . . , tc variables over the field T0. In
particular, T is (a localization) of a unique factorization domain, hence T is
integrally closed. This proves (1).

This finishes the proof of the proposition.
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Corollary 2.3.6 Let R be a reduced N-graded ring, possibly non-Noetherian,
such that the non-zero elements of R0 are non-zerodivisors in R. Then the
integral closure of R is N-graded.

Proof: Let α ∈ R. By writing α as a quotient of two elements of R and by
collecting all the homogeneous parts of the two elements and of the coefficients
of an equation of integral dependence, we see that there exist finitely many
homogeneous elements x1, . . . , xn in R such that if R′ is the subalgebra of R
generated over the primitive subring A of R0 by the xi, then α is in the total
ring of fractions of R′ and is integral over R′. It suffices to prove that the
integral closure of R′ is G-graded. Observe that the non-zero elements of R′

0

are non-zero divisors in R and hence also in R′. By switching notation, with-
out loss of generality we may assume that R = A[x1, . . . , xn]. In particular,
we may assume that R is Noetherian.

Localize R at R0 \ {0}: the localization is still N-graded, and by Theo-
rem 2.3.2 it suffices to prove that the localized R has an N-graded integral
closure. Thus without loss of generality we may assume that all non-zero
elements of R0 are units, so that R0 is a field.

As R is Noetherian, it has only finitely many minimal prime ideals and
they are all homogeneous. By assumption on R0 being a field, these prime
ideals are generated in positive degrees. Let MinR = {P1, . . . , Ps}. For
each i ∈ {1, . . . , s}, Pi + ∩j 6=iPj is a homogeneous ideal generated in positive
degrees, and not contained in P1 ∪ · · · ∪ Ps. Thus by homogeneous Prime
Avoidance, Pi + ∩j 6=iPj contains a homogeneous non-zerodivisor. Then by
Proposition 2.3.5, the integral closure of R is N-graded.

There are many other examples of graded rings whose integral closures are
graded. We present the case of monomial algebras.

Corollary 2.3.7 Let k be a field, X1, . . . , Xd variables over k, and R a
subalgebra of k[X1, . . . , Xd] generated by monomials in the given variables.
Then the integral closure of R is generated by monomials.

Let E = {m ∈ Nd | Xm is a monomial generator of R}. Then Xm ∈ R if
and only if m ∈ Q≥0E ∩ ZE.

Proof: Since R ⊆ k[X1, . . . , Xd], the first part is an immediate corollary of
Corollary 2.3.6, applied with G = Nd. If m ∈ Nd, then Xm is in the field of
fractions of R if and only if m ∈ ZE, and by the form of the integral equations
for monomials, Xm is integral over R if and only if m ∈ Q≥0E.

The main point of the proof above is that the G-graded ring (with G = Nd)
is contained in a natural G-graded integrally closed ring.

We finish this section by proving that the integral dependence among N-
graded algebras is related to the integral dependence of ideals.
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Proposition 2.3.8 Let R ⊆ S be an inclusion of N-graded rings. Assume
that R = R0[R1] and S = S0[S1]. Then R ⊆ S is an integral extension if and
only if the ring inclusion R0 ⊆ S0 is an integral extension and for each n ∈ N,
the S-ideal SnS is integral over the ideal RnS.

If R0 = S0, then S is integral over R if and only if S1S is integral over
R1S.

Proof: If S is integral over R, then any element s ∈ Sn is integral over R.
There exists a homogeneous equation of integral dependence of s over R, which
shows that s is integral over RnS. Conversely, assume that for all n ∈ N, SnS
is integral over RnS. Let s ∈ Sn. Then s satisfies an equation of integral
dependence over the ideal RnS, with all the coefficients in Rn[S0]. Thus the
ring S is integral over R[S0]. But S0 is integral over R0, so S is integral over
R. This proves the first part. The proof of the second part follows easily.

2.4. Rings of homomorphisms of ideals

We show in this section that whether an integral domain is integrally closed
can be detected by computing infinitely many rings of homomorphisms of
finitely generated fractional ideals. This is, of course, uncheckable in general,
nevertheless, this new characterization does have checkable corollaries, see
Section 15.3. This section is only used in later chapters; a reader may want
to skip it on first reading.

Rings of homomorphisms of ideals appear in all general algorithms for com-
puting the integral closure, as explained in Chapter 15. They are “com-
putable” over “computable” rings. Other examples of manipulations of rings
of homomorphisms of ideals are for example in Katz [165].

Lemma 2.4.1 Let R be a reduced ring with total ring of fractions K. If K
is a direct product of finitely many fields and I and J are R-submodules of K,
then every R-homomorphism I → J is multiplication by an element of K.

Proof: Write K = K1 × · · · × Kr, where each Ki is a field. Let W be
the set of all non-zerodivisors in R. Then W is a multiplicatively closed
subset of R, and W−1I is a W−1R-module, i.e., a K-module, contained in K.
After possibly reindexing, W−1I = K1 × · · · × Ks for some s ≤ r. Let
ei be the idempotent of K such that Kei = Ki. Then 1 =

∑r
i=1 ei. Let

w ∈ W such that for i = 1, . . . , r, wei ∈ R and such that for i = 1, . . . , s,
wei ∈ I. Observe that (es+1, . . . , er)I = 0. We claim that ϕ is multiplication
by ϕ(

∑s
i=1wei)/w. Let x ∈ I. Then wϕ(x) = ϕ(wx) = ϕ(

∑r
i=1 wxei) =

ϕ(
∑s
i=1 wxei) = xϕ(

∑s
i=1wei), which proves the claim and the lemma.

We explicitly write the multiplication element as in the lemma in the case
where I contains a non-zerodivisor or a unit on R. In this case, with notation
as in the proof,W−1I = K and w =

∑r
i=1 wei ∈ I. Thus any ϕ ∈ HomR(I, J)
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is multiplication by ϕ(w)/w. In fact, whenever y ∈ I is a non-zerodivisor, ϕ
is multiplication by ϕ(y)/y because for any x ∈ I, yϕ(x) = ϕ(yx) = xϕ(y).

Lemma 2.4.2 Let R be a reduced ring with total ring of fractionsK. Assume
that K is a direct product of finitely many fields, and that I and J are R-
submodules of K. Then the natural map

(J :K I) −→ HomR(I, J)

is a surjective R-module homomorphism with kernel (0 :K I).

Proof: It suffices to prove that the kernel is as specified. If k ∈ K and
if multiplication by k is the zero function in HomR(I, J), then kI = 0, so
k ∈ (0 :K I).

If R and K are as above, then by Lemma 2.4.2, for any R-module I ⊆
K, HomR(I, I) is naturally identified as an R-submodule of K/(0 :K I).
Furthermore, HomR(I, I) is a commutative subring of K/(0 :K I) containing
the identity. If ϕ is multiplication by x and ψ is multiplication by y, then
xy = yx implies that ϕ◦ψ = ψ ◦ϕ. If in addition I contains a non-zerodivisor
or a unit, then HomR(I, I) is a subring of K, and if I is finitely generated,
then HomR(I, I) is even contained in the integral closure of R in K: for if
xI ⊆ I, then by the determinantal trick (Lemma 2.1.8), x ∈ R.

The following makes this representation as a submodule of K transparent:

Lemma 2.4.3 Let R be a reduced ring with only finitely many minimal
prime ideals. Let I and J be R-submodules of the total ring of fractions K
of R and suppose that I contains an element x that is a non-zerodivisor on
R. Also suppose that I and J are contained in 1

yR for some non-zerodivisor

y on R. Then HomR(I, J) can be identified (as in Lemma 2.4.1) with the
R-submodule 1

xy (xyJ :R I) of K.

Proof: Certainly multiplication by any element of 1
xy (xyJ :R I) takes I to J .

Now suppose that k ∈ K and kI ⊆ J . Then in particular kx is in J , so that
kxy is in R. thus kxy ∈ (xyJ :R I), whence k ∈ 1

xy (xyJ :R I).

This characterization makes it clearer how HomR(I, J) is a submodule and
how HomR(I, I) is a subring of the total ring of fractions of R.

We now restrict out attention to the case where R is a domain.

Definition 2.4.4 Let R be an integral domain. A fractional ideal I of R is
a submodule of the field of fractions K of R for which there exists a non-zero
element k in K such that kI ⊆ R.

We show that fractional ideals play a big role in the computation of integral
closures. In particular, we prove that R = ∪I HomR(I, I), where I varies over
fractional ideals of R.

Definition 2.4.5 If R is a domain with field of fractionsK, for any non-zero
fractional ideal I, define I−1 = HomR(I, R).
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Note that II−1 = I−1I ⊆ R. Whenever equality holds, both I and I−1 are
finitely generated: write 1 ∈ R as a finite linear combination 1 =

∑n
i=1 aibi

with ai ∈ I and bi ∈ I−1. Then the ai generate I and the bi gener-
ate I−1: for any r ∈ I, r =

∑
ai(rbi) ∈ ∑

i aiR, and for any s ∈ I−1,
s =

∑
(sai)bi ∈

∑
i biR. Fractional ideals I for which II−1 = R are called

invertible fractional ideals.
It is not true that all finitely generated fractional ideals are invertible. An

example is the ideal I = (X, Y ) in k[X, Y ], where k is a field and X and Y
variables over it. Note that here I−1 = k[X, Y ], for no other element of the
field of fraction multiplies both X and Y back into the ring.

By definition I ⊆ (I−1)−1.
The fractional ideal I−1 is in a sense more useful than the original I:

Lemma 2.4.6 If R is a domain with field of fractions K and I is a non-zero
fractional ideal, then as submodules (and even subrings) of K,

(I · I−1)−1 = HomR(I
−1, I−1) = HomR((I

−1)−1, (I−1)−1).

Proof: Let k ∈ (I ·I−1)−1. Thus k ∈ K and kI ·I−1 ⊆ R, whence kI−1 ⊆ I−1,
so that k ∈ HomR(I

−1, I−1).
Next let k ∈ HomR(I

−1, I−1). Then kI−1 ⊆ I−1. If r ∈ (I−1)−1, then
rkI−1 ⊆ I−1(I−1)−1 ⊆ R, so that rk ∈ (I−1)−1. This proves that k ∈
HomR((I

−1)−1, (I−1)−1).
Let k ∈ HomR((I

−1)−1, (I−1)−1). Then k(I−1)−1 ⊆ (I−1)−1, so that kI ·
I−1 ⊆ k(I−1)−1 · I−1 ⊆ (I−1)−1 · I−1 ⊆ R, and k ∈ (I · I−1)−1.

Discussion 2.4.7 It is worth noting that the lemma above follows from the
Hom-tensor adjointness.Namely, the first equality in the display in the lemma
follows due to

HomR(I
−1I, R) ∼= HomR(I

−1 ⊗R I, R),
since the kernel of the natural map from I−1 ⊗R I onto I−1I is a torsion
module, and any homomorphism of I ⊗R I−1 to R automatically sends tor-
sion elements to zero. Hence HomR(I

−1I, R) ∼= HomR(I
−1 ⊗R I, R) ∼=

HomR(I
−1, I−1), the last isomorphism coming from the Hom-tensor adjoint-

ness. Similarly one can prove the other parts of Lemma 2.4.6 as well as other
formulas involving I−1.

In general it is not true that HomR(I, I) = (I ·I−1)−1 (“justifying” the claim
that I−1 is more useful than I). For example, let R = k[t3, t5, t7], where t is
a variable over a field k, and let I = (t3, t5). Then I−1 = 1R + t2R + t4R,
I · I−1 = (t3, t5, t7)R, (I · I−1)−1 = 1R + t2R + t4R, and HomR(I, I) = R.
Nevertheless, in a certain sense, I is no less useful than I−1:

Proposition 2.4.8 Let R be a Noetherian domain. If I varies over non-zero
(finitely generated fractional) ideals, then

R =
⋃

I

HomR(I, I) =
⋃

I

HomR(I
−1, I−1).
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Proof: By Determinantal trick 2.1.8, HomR(I
−1, I−1),HomR(I, I) ⊆ R, giv-

ing one pair of inclusions. Let s ∈ R\R. Set J = R :R R[s]. Then J is a non-
zero finitely generated ideal in R satisfying the property that sJ ⊆ J . This
proves that R ⊆ ∪I HomR(I, I). Similarly, sJ−1J = sJJ−1 ⊆ JJ−1 ⊆ R, so
that sJ−1 ⊆ J−1, whence R ⊆ ∪I HomR(I

−1, I−1). These give the reverse
pair of inclusions.

This gives a new normality criterion for a domain:

Proposition 2.4.9 Let R be a Noetherian integral domain with field of
fractions K. Then the following are equivalent:
(1) R is integrally closed.
(2) For all non-zero fractional ideals I, (I · I−1)−1 = R.
(3) For all non-zero ideals I, (I · I−1)−1 = R.
(4) For all non-zero ideals I and all prime ideals P in R of grade one (i.e.,

the maximal length of a regular sequence contained in P is one), (I ·
I−1)−1RP = RP .

Proof: For all fractional ideals I, R ⊆ (I ·I−1)−1, so the first three statements
are equivalent by Proposition 2.4.8 and Lemma 2.4.6. Clearly (3) implies (4).
Now assume (4). Let x ∈ (I · I−1)−1. Then for all P of grade 1, x ∈ RP . But
∩PRP = R, as P varies over ideals of grade 1.

2.5. Exercises

2.1 Let Ri ⊆ Si be ring inclusions, with i varying in some index set I.
Prove that ⊕i∈ISi is integral over (resp., integrally closed in) ⊕i∈IRi
if and only if for each i, Si is integral over (resp., integrally closed
in) Ri. (Note: the direct sum rings need not have identity.)

2.2 Let A ⊆ B ⊆ C be rings such that B is the integral closure of A in C.
Let X be a variable over C. Prove that B[X ] is the integral closure
of A[X ] in C[X ].

2.3 Let R be an integrally closed domain. Let X be a variable over R.
(i) Prove that R[X ] is integrally closed.
(ii) Prove that R[[X ]] is integrally closed if R is Noetherian.

2.4 Let ϕ : R → S be a ring homomorphism and P a prime ideal in R.
Prove that ϕ−1(ϕ(P )S) = P if and only if there exists a prime ideal
Q in S such that ϕ−1(Q) = P .

2.5 Let (R,m) be an integrally closed local domain and x a non-zero
element in Q(R). Prove that mR[x] ∩mR[1/x] ⊆ m.
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2.6 Let R ⊆ S be an integral extension of rings such that for every s ∈ S,
some power of s is in R.
(i) Prove that for every prime ideal P of R there exists a unique

prime ideal in S lying over P .
(ii) Prove that there is a one-to-one natural correspondence between

prime ideals in R and prime ideals in S. Prove that under this
correspondence height is preserved.

2.7 (Homework problem from the MA 650 class with William Heinzer in
1988) Let R be a ring and G a finite group of automorphisms of R.
Let A be the ring of invariants of G, i.e., A = {r ∈ R | for all g ∈
G, g(r) = r}.
(i) Prove that A ⊆ R is an integral extension.
(ii) Prove that if Q1, Q2 are prime ideals in R such that Q1 ∩ A =

Q2 ∩ A, then there exists g ∈ G such that Q2 = gQ1.
(iii) Prove that A ⊆ R satisfies the Going-Down property.

2.8 Let R ⊆ S be an integral extension of integral domains. Assume that
R is integrally closed in its field of fractions K and that the field of
fractions L of S is a finite Galois extension of K. Prove that for each
prime ideal P of R, the number of prime ideals in S lying over P is
at most the degree [L : K]. (Hint: see Exercise 2.7.)

2.9 (Homework problem from the MA 650 class with William Heinzer in
1988) Let k be a field of characteristic different from 2, and X, Y
variables over k. Let A = k[X2 − 1, X3 − X, Y ] ⊆ R = k[X, Y ].
Prove that A ⊆ R is an integral extension that does not satisfy the
Going-Down property.

2.10 Let R ⊆ S be reduced rings satisfying one of the following:
(i) S is contained in the total ring of fractions of R.
(ii) S is integral over R and S is an integral domain.

Prove that for every s ∈ S, (R :S s) is an R-submodule of S not
contained in any minimal prime ideal of S.

2.11 Let R ⊆ S be an extension of reduced rings, and let S be a subset of
the total ring of fractions T of R. If S is module-finite over R, prove
that R :T S is an ideal in R and in S that contains a non-zerodivisor.
This ideal R :T S is called the conductor. Prove that R :T S equals
R :R S and that R :T S is the largest ideal that R and S have in
common. (More on conductors is in Chapter 12.)

2.12 Let R ⊆ S be a module-finite extension of reduced Noetherian rings.
(i) Let P be a prime ideal in R that does not contain R :R S. Prove

that SR\P = RP .
(ii) Prove that R :R S is not contained in any minimal prime ideal

of R and that R and S have the same number of minimal prime
ideals if and only if R and S have the same total ring of fractions.

2.13 Let R be an integral domain, let R be its integral closure in the field
of fractions of R, and let q ⊆ p be prime ideals in R. Suppose that
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for every prime ideal P in R with p = P ∩R there exists Q ∈ SpecR
such that Q ∩ R = q and Q ⊆ P . Prove that for every torsion-free
integral extension S of R and for every P ∈ SpecS with p = P ∩ R
there exists Q ∈ SpecS such that Q ∩R = q and Q ⊆ P .

2.14 Let F be a field extension of Q with a finite basis B. Prove that
any r ∈ F that is integral over Z is of the form 1

a

∑
b∈B abb for some

ab, a ∈ Z.
2.15 Prove that Z[ 3

√
2] is integrally closed.

2.16 Let D be a non-zero integer. Factor D = D0n
2, where D0 is a square-

free integer. Let R be the integral closure of Z[
√
D]. Prove that the

elements of R are of the form a+ bw, with a, b ∈ Z, where

(i) w = 1+
√
D0

2
if D0 ≡ 1mod4,

(ii) w =
√
D0 if D0 6≡ 1mod4.

2.17 Let R be a ring that is a direct summand of a ring S as an R-module.
Prove that if S is integrally closed, so is R.

2.18 Let k be a field, X1, . . . , Xd variables over k, and R a subalgebra of
k[X1, . . . , Xd] that is generated by finitely many monomials. The goal
of this exercise is to prove that R is a direct summand (as a module
over R) of a polynomial ring (not necessarily of k[X1, . . . , Xd]).
(i) Let E be the set of exponent vectors of monomials in R. Prove

that if there exists a matrix A such that E = (kerA)∩Nd, then
R is a direct summand of k[X1, . . . , Xd] and is integrally closed.

(ii) Let F = (Q≥0E)∩Nd. Let S be the subalgebra of k[X1, . . . , Xd]
generated by monomials whose exponents are in F . Prove that
R is a direct summand of S.

(iii) Prove that there exist b1, . . . , bm ∈ Zd such that e ∈ Q≥0E if
and only if for all i = 1, . . . , m, bi · e ≥ 0 (dot product).

(iv) Let B be the (m+ d)× d matrix whose first d rows are identity,
and the last m rows are b1, . . . , bm. Prove that B defines an
injective map Qd → Qm+d that takes F to Nm+d. Let A be a
k×(m+d) matrix whose rows generate the set of all relations on
the image of F under B. (So ABF = 0.) Prove that (kerA) ∩
Nm+d is the image of F under B.

(v) Prove that R is a direct summand of k[X1, . . . , Xm+d].
(More general results of this type are in [123].)

2.19 Let k be a field, and X, Y, t, s variables over k. Prove that the inte-
grally closed ring k[X, Y,X2t, XY t, Y 2t] is not a direct summand of
the polynomial ring k[X, Y, t] but is a direct summand of the polyno-
mial ring k[X, Y, t, s].

2.20 Let k be a field, X1, . . . , Xd variables over k, and consider the ring in-
clusion k[Xα1 , · · · , Xαn ] ⊆ k[X1, · · · , Xn], where αi = (αi1, · · · , αid) ∈
Nd. Prove that these rings have the same field of fractions if and only
if the determinant of the d× d matrix [αij ] is ±1.
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2.21 Let R = k[X ] ⊆ S = k[X, Y, Z]/(X3 + Y 2 + Z2), where X, Y and Z
are variables over a field k. Find a non-trivial grading on S such that
the integral closure of R in S is also graded. (Cf. Example 2.3.3.)

2.22 (Y. Yao) Let (G,+) be a commutative monoid such that
(i) for all x, y ∈ G and n ∈ N>0, nx = ny implies that x = y,
(ii) for all x, y and z in G, x+ z = y + z implies that x = y.

Prove that whenever R ⊆ S are G-graded rings, the integral closure
of R in S is also G-graded.

2.23 ([264]) Let R be an integral domain containing Q and let t be a
variable over R.
(i) Prove that if R is integrally closed and Noetherian, so is R[[t]].
(ii) If R is Noetherian, prove that if the integral closure R of R is

Noetherian and module-finite over R, then the integral closure
of R[[t]] is R[[t]].

(iii) Assume that R is integrally closed (and that R contains a field).
Suppose that there exists a non-unit x ∈ R such that ∩(xn) 6= 0.
Prove that R[[t]] is not integrally closed.

2.24 Let k be a field, t an indeterminate over k, and R the ring of formal
Puiseux series in t over k, i.e., R is the ring consisting of all elements
of the form

∑
i≥0 ait

i/n, where ai ∈ k and n is a positive integer.

(i) Prove that R = ∪n≥1k[[t
1
n ]] and that the field of fractions of R

equals ∪n≥1k((t
1
n )).

(ii) Prove that R has only one maximal ideal and is integrally closed.
(iii) Prove that R is integral over k[[t]].
(iv) If k is R or C, and A is the ring of all convergent Puiseux series

in t over k, prove that A is integrally closed and integral over
the ring of all convergent power series k{t} in t over k.

2.25 Let R ⊆ S be domains with the same field of fractions. An element
x ∈ S is defined to be almost integral over R if there exists a
non-zero element c ∈ R such that for all sufficiently large integers n,
cxn ∈ R.
(i) Prove that x ∈ S is almost integral over R if and only if there

exists c ∈ R \ {0} such that for all integers n ≥ 1, cxn ∈ R.
(ii) Prove that the set of all elements of S almost integral over R

forms a ring between R and S. This ring is called the complete
integral closure of R in S.

(iii) Prove that every element of S that is integral over R is almost
integral over R.

(iv) Assume that R is Noetherian and x ∈ S almost integral over R.
Prove that x is integral over R.

(v) Prove that R+XK[X ] is integrally closed and that the complete
integral closure of R +XK[X ] is K[X ] if R is integrally closed
in its field of fractions K and X is a variable over K.
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(vi) Prove that a completely integrally closed domain is integrally
closed.

(vii) Prove that a unique factorization domain is completely inte-
grally closed.

(viii) LetX be a variable over R. Prove thatR is completely integrally
closed if and only if R[X ] is completely integrally closed, and
that holds if and only if R[[X ]] is completely integrally closed.

(ix) Let k be a field, X, Y variables over k, and R = k[Xn ·Y n2 |n =
1, 2, . . .]. Prove that S = R[XY n |n = 1, 2, . . .] is integral
over R, and that Y is almost integral over S but not over R.
Conclude that the complete integral closure of R is not com-
pletely integrally closed.

2.26 (Seidenberg [264]) Let R be a Noetherian integral domain containing
Q and K the field of fractions of R. Let D : K → K be a derivation
such that D(R) ⊆ R. Prove that D takes almost integral elements
to almost integral elements. (Hint: Let t be a variable. Prove that
1+tD+(t2/2!)D2+(t3/3!)D3+ · · · is a ring endomorphism on K[[t]].)

2.27 Let R be a Noetherian domain whose integral closure R is a module
finite extension strictly containing R. Let P ∈ Ass(R/R). Prove that
depthRP = 1.

2.28 (Zariski lemma) Let k be a field, and let L be a finitely generated
k-algebra that is a field. Prove that L is a finite-dimensional k-vector
space. (Hint: Induction on the number of generators of L over k,
Proposition 2.1.18, and Theorem 2.2.5.)

2.29 Let k be a field, X1, . . . , Xn variables over k and m a maximal ideal
in k[X1, . . . , Xn]. Prove that m is generated by elements f1, . . . , fn,
where fi ∈ k[X1, . . . , Xi] is monic in Xi. Deduce the Weak Nullstel-
lensatz: if k is algebraically closed, then m = (X1 − α1, . . . , Xn−αn)
for some α1, . . . , αn ∈ k.

2.30 An integral domain R is said to be seminormal if for each x in the
field of fractions with x2, x3 ∈ R, actually x ∈ R. Prove that an
integral domain R is seminormal if and only if each x in the field
of fractions satisfying xn, xn+1 ∈ R for some positive integer n is
actually an element of R.

2.31 Let k be a field, t a variable over k, and R = k[t(t−1), t2(t−1)]. Prove
that R is the set of all polynomials f ∈ k[t] such that f(0) = f(1).
Prove that R is seminormal but not normal.

2.32 Let X, Y variables over a field k and R = k[X2, Y 2, XY,X2Y,XY 2].
Prove that R is seminormal but not normal.

2.33 Let R be a seminormal domain and S a domain containing R. Prove
that R :R S is a radical ideal in S.

Seminormality was first defined by Traverso in [298] as follows: the seminor-
malization of a reduced Noetherian ring R with module-finite integral closure
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R is the set of all elements s ∈ R of R such that for every prime ideal P of R,
s ∈ RP + J(RR\P ), where J( ) denotes the intersection of all the maximal
ideals of the ring. The ring R is said to be seminormal if it is equal to its semi-
normalization. The definition appearing in Exercise 2.30 is a characterization
due to Hamann [104]. Hamann proved the equivalence for pseudo-geometric
rings; in full generality the equivalence was proved by Gilmer and Heitmann
in [93]. Swan [279] redefined seminormality and constructed seminormaliza-
tions in greater generality: R is seminormal if whenever s, t ∈ R and s3 = t2,
there exists r ∈ R such that s = r2 and t = r3. Hamann’s and Swan’s formu-
lations are equivalent when the total ring of fractions of R is a finite direct
product of fields.

Here is another notion of integral dependence: Swan [279] defined a subin-
tegral extension to be an integral extension R ⊂ S of rings such that the
contraction of ideals from S to R gives a one-to-one correspondence between
prime ideals in S and prime ideals in R, and the induced maps of residue
fields are all isomorphisms. The seminormalization of a reduced ring R turns
out to be the largest subintegral extension of R in its total quotient ring.
Roberts and Singh [248] gave element-wise definition for subintegrality over
a Q-algebra. Later, Reid, Roberts, and Singh [244] removed the Q-algebra
assumption, and introduced a more general definition, quasisubintegrality
(later renamed weak subintegrality), which agrees with subintegrality for
Q-algebras. Vitulli and Leahy in [316] defined the notion of weak subintegral-
ity for ideals.





3

Separability

Our purpose in this chapter is to develop basic results on separability and
the tensor product of fields. We need to some of these results to prove the
main theorems on the behavior of integral closure under flat homomorphisms
in Chapter 19. A basic case to understand is the behavior of integral closures
under field extensions, and that immediately leads to the notion of separabil-
ity. One of the main results of this chapter, Theorem 3.1.3, relates to integral
closure: it shows that the integral closure of integrally closed domains in sep-
arable field extensions of the field of fractions is always module-finite. More
connections to integral and algebraic closure are in Section 3.3. The main
section, Section 3.2, contains many formulations of separability.

3.1. Algebraic separability

An algebraic field extension k ⊆ ℓ is separable if for every x ∈ ℓ, the minimal
polynomial f ∈ k[X ] of x over k is relatively prime to its formal derivative
f ′ in the polynomial ring k[X ]. In other words, in an algebraic closure of k,
all the roots of f are distinct. Some relevant properties of separable exten-
sions are summarized without proof in the following (see for example [212,
Corollaries 5.7 and 8.17]):

Theorem 3.1.1 Let k ⊆ ℓ be a finite separable field extension. Then the
following properties hold:
(1) (Primitive Element Theorem) There exists x ∈ ℓ such that ℓ = k(x).
(2) The trace map Tr : ℓ→ k is not identically zero.

Discussion 3.1.2 A consequence of Theorem 3.1.1 is that for any basis
{x1, . . . , xn} of a separable field extension ℓ over k, the n×n matrix [Tr(xixj)]
is invertible: if not, there exist c1, . . . , cn ∈ k, not all zero, such that for all
j = 1, . . . , n, 0 =

∑n
i=1 ci Tr(xixj) = Tr(

∑n
i=1 cixixj). Set c =

∑n
i=1 cixi.

By the assumption on the ci not being all zero, c 6= 0. Let a ∈ ℓ such that
Tr(a) 6= 0, and write a/c =

∑
j ajxj for some aj ∈ k. Then

0 =

n∑

j=1

aj Tr

(
n∑

i=1

cixixj

)
= Tr


c

n∑

j=1

ajxj


 = Tr(a),

which is a contradiction. Thus in particular there exist aij ∈ k such that
[aij ][Tr(xixj)] is the n × n identity matrix. Set yj =

∑n
l=1 aljxl. Then

Tr(yjxi) = δij , and by invertibility of the matrix [aij] one can easily verify
that {y1, . . . , yn} is a basis of ℓ over k.
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This is enough to show that integral closure behaves better on separable
extensions:

Theorem 3.1.3 Let R be a Noetherian integral domain that is integrally
closed in its field of fractions K. Let L be a finite separable field extension of
K. The integral closure of R in L is module-finite over R.

Proof: Let S be the integral closure of R in L and let {x1, . . . , xn} be a vector
space basis for L over K.

Each xi is algebraic overK, so that for some non-zero ri ∈ R, rixi is integral
over R. Each rixi ∈ S, and {r1x1, . . . , rnxn} is still a vector space basis for
L over K. Thus by replacing xi by rixi we may assume that each xi is in S.

As K ⊆ L is finite and separable, as in Discussion 3.1.2, there exists a dual
basis {y1, . . . , yn} of L over K such that for all i, j, Tr(xiyj) = δij , where Tr
stands for the trace of L over K and δij is Kronecker’s delta function. Let
s ∈ S. Write s =

∑
i kiyi for some ki ∈ K. Then

Tr(xjs) =
∑

i

Tr(xjkiyi) =
∑

i

ki Tr(xjyi) = kj .

But the trace of any element of S is in K and is still integral over R. Thus
Tr(xjs) = kj is in R. It follows that s ∈

∑n
i=1Ryi, hence S is an R-submodule

of
∑n

i=1Ryi, and consequently S is module-finite over R.

3.2. General separability

In this section we give many criteria for a ring to be separable over a field.
The basic definition is the following.

Definition 3.2.1 Let k be a field, and R a k-algebra. We say that R is
separable over k if for every field extension k ⊆ ℓ, the ring R⊗k ℓ is reduced.

It is not clear that this notion of separability generalizes the definition
introduced in the first section, but it does. See Proposition 3.2.4 (5) below.

Proposition 3.2.2 Let k be a field and R a k-algebra.
(1) Suppose that k ⊆ S ⊆ R. If R is separable over k then S is separable

over k.
(2) If R is separable over k and k is contained in a field ℓ, then R ⊗k ℓ is

separable over ℓ.
(3) A k-algebra R is separable over k if and only if for every subalgebra S ⊆ R

that is finitely generated as a k-algebra, S is separable over k.
(4) R is separable over k if and only if R ⊗k ℓ is reduced for all finitely

generated field extensions ℓ of k.

Proof: (1) Let ℓ be a field extension of k. Since ℓ is flat as a k-algebra, the
injection of S to R induces an injection from S ⊗k ℓ into R ⊗k ℓ. As R ⊗k ℓ
is reduced, so is S ⊗k ℓ, proving that S is separable over k.
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(2) Let L be a field extension of ℓ. Then (R ⊗k ℓ)⊗ℓ L ∼= R ⊗k L, so that
(R⊗k ℓ)⊗ℓ L is reduced, and hence R⊗k ℓ is separable over ℓ.

(3) One direction follows immediately from (1). If R is not separable over
k then there is a field extension ℓ of k and a non-zero nilpotent element
y ∈ R ⊗k ℓ. Suppose yn = 0. The tensor product of R and ℓ over k is
isomorphic to a free module F modulo the submodule N generated by certain
universal relations that give the tensor product its universal property. To say
yn = 0 means that we can represent the element corresponding to yn in this
F as a finite sum of generators of N . We can collect the coefficients needed
to define y as an element of the tensor product, and the coefficients appearing
when writing yn as a finite sum of elements of N . Let S be the subalgebra of
R generated by all the coefficients of R appearing. Define z ∈ S ⊗k ℓ using
the same coefficients as for y. Then zn = 0, and z is non-zero since it maps
to y under the injection of S ⊗k ℓ to R⊗k ℓ (using the flatness of ℓ over k).

Part (4) has a proof similar to that of (3) and we leave it as an exercise.

Discussion 3.2.3 If k ⊆ ℓ ⊆ R and R is separable over k, then R is
not necessarily separable over ℓ. For example, let k be a field of positive
characteristic p, and let t be a variable over k. Set ℓ = k(tp) and R = k(t).
By Proposition 3.2.4 below, R is separable over k, but R is not separable over
ℓ. Although this example is clear, the reader should consider the following
“proof”: suppose that k ⊆ ℓ ⊆ R and R is separable over k. We will “prove”
that R is separable over ℓ. Let ℓ ⊆ L be an arbitrary field extension. First note
that R⊗k ℓ is separable over ℓ by Proposition 3.2.2 (2). Hence (R⊗k ℓ)⊗ℓ L
is reduced. After tensoring with R over k, the inclusion of k ⊆ ℓ induces an
inclusion R ⊆ R⊗k ℓ. Tensor the latter inclusion with L over ℓ (which is flat
and will preserve the injection), to obtain that R⊗ℓ L ⊆ (R⊗k ℓ)⊗ℓ L. Since
(R⊗k ℓ)⊗ℓ L is reduced, so is R⊗ℓ L, which implies that R is separable over
ℓ. What is wrong with this “proof”?

Proposition 3.2.4 Let k be a field and R a k-algebra.
(1) If t1, . . . , tn are algebraically independent over k, then k(t1, . . . , tn) is

separable over k.
(2) R is separable over k if and only if for every reduced k-algebra S, the ring

R ⊗k S is reduced.
(3) Suppose that R = k[t]/(f). Then R is separable over k if and only if

(f, f ′) = 1, where f ′ is the derivative of f .
(4) Suppose that k ⊆ ℓ ⊆ R and that ℓ is a field. If R is separable over ℓ and

ℓ is separable over k, then R is separable over k.
(5) If k ⊆ ℓ is an algebraic field extension, then ℓ is separable over k if and

only if for every x ∈ ℓ, the minimal polynomial f ∈ k[t] of x over k
satisfies that (f, f ′) = 1.

Proof: (1) Let ℓ be an extension field of k. Then k(t1, . . . , tn) ⊗k ℓ ∼=
k[t1, . . . , tn]W ⊗k ℓ, whereW is the multiplicatively closed set consisting of the
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non-zero elements of the polynomial ring k[t1, . . . , tn]. But k[t1, . . . , tn]W ⊗kℓ
is isomorphic to (k[t1, . . . , tn]⊗k ℓ)W ∼= (ℓ[t1, . . . , tn])W , which is a domain.

(2) One direction is trivial. For the other, we first reduce to the case where
S is Noetherian. If R is separable over k and S is a reduced k-algebra such
that R ⊗k S is not reduced, then there exists a subalgebra T ⊆ S that is
finitely generated over k such that R⊗k T is not reduced. One simply needs
to use the argument in Proposition 3.2.2 (3) above. By replacing S by T we
can assume that S is Noetherian. Let P1, . . . , Pn be the minimal primes of
S. Since S is reduced, S embeds in T = S/P1 × · · · × S/Pn. Let Ki be the
field of fractions of S/Pi. As R is flat over k, R ⊗k S ⊆ ∏iR ⊗k Ki. If R is
separable over k, each R ⊗k Ki is reduced, and thus so is R ⊗k S.

(3) Assume that R is separable over k. Let k be an algebraic closure of
k. We have that k[t]/(f) ∼= R ⊗k k is reduced, which implies that f has no
multiple roots over k. Hence (f, f ′) = 1. Conversely suppose that (f, f ′) = 1.
Let ℓ be an extension field of k. If R ⊗k ℓ is not reduced, then neither is
R⊗k ℓ, where ℓ is an algebraic closure of ℓ. Thus f(t) has multiple roots over
ℓ, which gives that f and f ′ are not relatively prime.

(4) Let L be an extension field of ℓ. As ℓ is separable over k, the algebra
S = ℓ⊗k L is reduced. By (2), we then have that R⊗ℓ S is reduced, and this
tensor product is isomorphic with R⊗k L, proving that R is separable over k.

(5) If ℓ is separable over k, then for every x ∈ ℓ, by Proposition 3.2.2, k(x) is
separable over k. This is also an algebraic extension, so that k(x) = k[t]/(f),
where f is the minimal polynomial for x over k. By (3), (f, f ′) = 1. Con-
versely, assume that for every x ∈ ℓ, the minimal polynomial f ∈ k[t]
of x over k satisfies that (f, f ′) = 1, and suppose that ℓ is not separa-
ble over k. Then there exists a field extension L of k such that ℓ ⊗k L
is not reduced. By collecting the coefficients as in the proof of Proposi-
tion 3.2.2 (3), there exist x1, . . . , xn ∈ ℓ such that k(x1, . . . , xn) ⊗k L is
not reduced. Let fi(t) be the minimal polynomial for xi over k. The cri-
terion (fi, f

′
i)k[t] = 1 implies that if gi is a minimal polynomial for xi over

k(x1, . . . , xi−1), then (gi, g
′
i)k(x1, . . . , xi−1)[t] = 1. Hence by (3), k ⊆ k(x1) ⊆

k(x1, x2) ⊆ · · · ⊆ k(x1, . . . , xn) is a chain of separable extensions. Thus by
(4), k ⊆ k(x1, . . . , xn) is separable, whence k(x1, . . . , xn)⊗k L is reduced.

Definition 3.2.5 Let L and K be subfields of a common field E, both of them
containing a subfield k. We say that L and K are linearly disjoint over k
if the subalgebra LK of E generated by L and K is isomorphic to L⊗kK via
the map sending

∑
i li ⊗ ki to

∑
i liki.

Eventually we want to establish several equivalent criteria for an algebra
to be separable over a field. First we treat the case in which the algebra is
a field extension, and then handle the case of an arbitrary algebra. In the
finitely generated case we need the concept of a separably generated field.

Definition 3.2.6 Let L be a finitely generated field extension of a field k.
We say that L is separably generated over k if there exists a transcendence
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basis z1, . . . , zd for L over k such that L is separable over k(z1, . . . , zd).

Theorem 3.2.7 (MacLane’s criterion [200]) Let k be a field and let L be a
field extension of k. The following are equivalent:
(1) L is separable over k.
(2) L⊗k k is reduced, where k is an algebraic closure of k.
(3) L⊗k k′ is reduced for every purely inseparable field extension k′ of k.
(4) Either k has characteristic 0, or k has positive characteristic p and L⊗k

k1/p is reduced.
(5) Either k has characteristic 0, or k has positive characteristic p and L and

k1/p are linearly disjoint over k.
Furthermore, in case that L is finitely generated over k, these conditions are
equivalent to:
(6) If L = k(z1, . . . , zn), there exists a transcendence basis zi1 , . . . , zid for L

over k such that L is separable over k(zi1 , . . . , zid).
(7) L is separably generated over k.

Proof: Clearly (1) implies (2), (2) implies (3), and (3) implies (4).
We prove that (4) implies (5). There is nothing to prove unless k has

positive characteristic p. Assume (4). Consider the natural map from L ⊗k
k1/p → Lk1/p, where Lk1/p is the subalgebra of the field L1/p generated by the
images of L and k1/p. Let P be the kernel of this map. We claim in general
that P is nilpotent; this will prove (5) since we are assuming that L ⊗k k1/p
is reduced. Let α =

∑m
i=1 li ⊗ a

1/p
i ∈ P , where li ∈ L and ai ∈ k. Then αp =∑m

i=1 l
p
i ⊗ ai = (

∑m
i=1 l

p
i ai) ⊗ 1. However,

∑m
i=1 l

p
i ai = (

∑m
i=1 lia

1/p
i )p = 0,

proving that P is nilpotent.
We next prove that (5) implies (6) under the assumption that L is finitely

generated over k. Say L = k(z1, . . . , zn). We may assume that the charac-
teristic of k is a positive prime p, and that z1, . . . , zn are not algebraically
independent. Thus there exists a non-zero polynomial f ∈ k[T1, . . . , Tn] of
minimal degree such that f(z1, . . . , zn) = 0. Not every monomial in f is
a pth power since L and k1/p are linearly disjoint over k. So by possibly
reindexing we may assume that Tn appears in some monomial to the ith
power, where i an integer that is not a multiple of p. Then by the min-
imal degree assumption on f the coefficient of T in in f(z1, . . . , zn−1, Tn) is
non-zero. Hence k(z1, . . . , zn−1) ⊆ k(z1, . . . , zn) = L is separable algebraic.
Now k(z1, . . . , zn−1) and k1/p are still linearly disjoint over k, so by induc-
tion, after reindexing, z1, . . . , zd are algebraically independent over k and
k(z1, . . . , zn−1) is separable algebraic over k(z1, . . . , zd). Then by Proposi-
tion 3.2.4 (4), L = k(z1, . . . , zn) is separable algebraic over k(z1, . . . , zd). This
proves (6).

Clearly (6) implies (7).
Assume (7). Then L is separable over k(z1, . . . , zd) for some transcendence

basis z1, . . . , zd of L over k. By Proposition 3.2.4 we know that k(z1, . . . , zd)
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is separable over k, and an application of the same proposition then shows
that L is separable over k.

It remains to prove that (5) implies (1) without necessarily assuming that L
is finitely generated over k. By Proposition 3.2.2, to prove that L is separable
over k it suffices to prove that every finitely generated subfield of L is separable
over k. Since (5) clearly passes to subfields, it suffices to prove the case where
L is finitely generated over k. But with this assumption, the equivalence of
(1) through (7) has been proved.

Theorem 3.2.8 Let k be a field and let R be a Noetherian k-algebra. The
following are equivalent.
(1) For every reduced k-algebra S, R ⊗k S is reduced.
(2) R is separable over k.
(3) There exists an algebraically closed field extension field ℓ of k such that

R ⊗k ℓ is reduced.
(4) For all purely inseparable field extensions k′ of k, R ⊗k k′ is reduced.
(5) R is reduced and for every minimal prime P of R, κ(P ) is separable

over k.

Proof: Clearly (1) implies (2) and (2) implies (3). Assume (3). Every purely
inseparable field extension k′ of k can be embedded into ℓ. Then R ⊗k k′ ⊆
R ⊗k ℓ, proving that R ⊗k k′ is reduced, which proves that (3) implies (4).

Assume (4). By assumption R = R ⊗k k is reduced. Let W be the multi-
plicatively closed set of R equal to R \P . Let k′ be a purely inseparable field
extension of k. To prove that κ(P ) is separable over k, it suffices to prove that
κ(P )⊗kk′ is reduced, by Theorem 3.2.7, part (3). But κ(P )⊗kk′ ∼= (R⊗kk′)W ,
which is reduced since R ⊗k k′ is reduced. This proves (5).

Finally assume (5). Let P1, . . . , Pn be the minimal primes of R. Set
Ri = R/Pi, and let Ki = κ(Pi). To prove (1) we may assume S is a
finitely generated k-algebra, hence Noetherian. Let Q1, . . . , Qm be the mini-
mal primes of S, and set Li = κ(Qi). There are embeddings of R into

∏
iKi

and S into
∏
i Li which induce an embedding of R ⊗k S into

∏
i,jKi ⊗k Lj .

As Ki is separable over k for all i, the product is reduced, proving (1).

3.3. Relative algebraic closure

This section examines the behavior of algebraic closures of a subfield in a larger
field under various extensions, such as tensoring and adjoining indeterminates.

Theorem 3.3.1 Let K = k(x1, . . . , xn) be a purely transcendental extension
of a field k. Let L be an arbitrary extension of k such that k is algebraically
closed in L. Then K is algebraically closed in L(x1, . . . , xn).

Proof: By induction on n it suffices to prove the theorem for n = 1. Suppose
that η ∈ L(x) is algebraic over K = k(x). Let f(T ) = Tn+α1T

n−1+ · · ·+αn
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be the minimal polynomial for η over K. Write αi =
ai
bi

with ai, bi ∈ k[x].
Let b be the least common multiple of the bi. Then bη is algebraic over K
with minimal polynomial Tn + bα1T

n−1 + · · · + bnαn having coefficients in
k[x]. Since bη is integral over k[x] it follows that bη ∈ L[x]. Write g(x) = bη.
If g(x) ∈ k[x] we are done since then η ∈ k(x).

We have reduced the problem to proving that if k is algebraically closed in
L, and g(x) ∈ L[x] is integral over k[x], then g(x) ∈ k[x]. By Theorem 2.3.2
the integral closure of k[x] in L[x] is graded. If g(x) = cnx

n+ · · ·+c0 this fact
implies that each cix

i is integral over k[x]. Thus each ci must be algebraic
over k forcing ci ∈ k for all i.

Proposition 3.3.2 Let K ⊆ L be a finitely generated extension of fields.
Let F be the algebraic closure of K in L. Then F is finite over K.

Proof: Choose a transcendence basis x1, . . . , xd for L over K. If d = 0, then
L = F is finitely generated over K and algebraic over K, hence finite. Assume
that d > 0. Let L1 be the algebraic closure of K(x1) in L. By induction on
d, L1 is finite over K(x1), and is therefore finitely generated over K. Clearly
F is the algebraic closure of K in L1 as well. Thus we can replace L by L1

and assume that d = 1. Let x = x1.
If linearly independent elements of F over K remain linearly independent

over K(x), then [F : K] ≤ [L : K(x)]. The latter is finite since L is finitely
generated and algebraic over K(x). If there are linearly independent elements
of F that are not linearly independent over K(x), then there is a non-zero
polynomial f(T ) ∈ F [T ] such that f(x) = 0. In this case x is algebraic over
F , contradicting the choice of F as the algebraic closure of K in L.

Theorem 3.3.3 Let F be a field, let F ⊆ K be an arbitrary separable field
extension of F , and let F ⊆ L be a finitely generated field extension of F such
that F is algebraically closed in L. Then K is integrally closed in K ⊗F L.
Proof: We may write K as a (directed) union of finitely generated extensions
Ki of F , and by Proposition 3.2.2 (1) each of these is separable. If we prove
that Ki is integrally closed in Ki ⊗F L, then as K ⊗F L = ∪Ki ⊗F L, it will
follow that K is integrally closed in K ⊗F L. Thus we reduce to the case
where K is finitely generated over F . Then by Theorem 3.2.7 this extension
is separably generated, and so there exists a transcendence basis Y for K over
F so that K is finite separable algebraic over F (Y ).

By Theorem 3.3.1, the field F (Y ) is algebraically closed in L(Y ). Note that
K ⊗F L = (K ⊗F (Y ) F (Y ))⊗F L = K ⊗F (Y ) L(Y ), so that by replacing F by
F (Y ) and L by L(Y ) we have reduced to the case where K is finite separable
algebraic over F .

There exists a primitive element a ∈ K so that K = F (a). By Lemma 3.3.4
below, [L(a) : L] = [F (a) : F ]. We claim that F (a) is algebraically closed in
L(a). Suppose that b is in L(a) and is algebraic over F (a) (and hence also
algebraic over F ). Since L(a)/L is separable algebraic it follows that F (b) is



56 3. Separability

also a separable algebraic field extension of F . We claim that b ∈ F (a). If
not, then F (a, b) is separable algebraic over F , and by applying Lemma 3.3.4
below we obtain that [L(a) : L] = [L(a, b) : L] = [F (a, b) : F ] > [F (a) :
F ] = [L(a) : L], which is a contradiction. Therefore b ∈ F (a). Note that
K ⊗F L = F (a)⊗F L = L(a), and this identification finishes the proof.

Lemma 3.3.4 Let F be a field, let F ⊆ K be a finite separable field extension
of F , and let F ⊆ L be a finitely generated field extension of F such that F
is algebraically closed in L. For every subfield ℓ of K containing F , [ℓ : F ] =
[ℓL : L], where ℓL is the subfield of an algebraic closure of L generated by the
images of elements of ℓ.

Proof: Without loss of generality, ℓ = K. As K is separable over F , there
exists a primitive element a ∈ K so that K = F (a). Let g(X) ∈ F [X ] be the
minimal polynomial for a. Since F is algebraically closed in L, g(X) must be
irreducible in L[X ] because the coefficients of every factor of g(X) are sums of
products of roots of g(X), hence algebraic over K. Hence [KL : L] = [L(a) :
L] = [F (a) : F ].

3.4. Exercises

3.1 Prove (4) of Proposition 3.2.2.
3.2 Determine exactly what is wrong with the “proof” given in Discus-

sion 3.2.3.
3.3 Let E and L be extension fields of a field k. Find necessary and

sufficient conditions for E ⊗k L to be local.
3.4 Let k be an algebraically closed field, and let E and L be arbitrary

extension fields of k. Prove that E ⊗k L is a domain.
3.5 Let k be a field, and let E be a separable algebraic extension field

of k and L be an arbitrary extension field of k. If k is separably
algebraically closed in L, prove that E ⊗k L is a field.

3.6 Let k be an algebraically closed field, and let R be a k-algebra. Prove
that k is algebraically closed in R if and only if R is reduced and has
no non-trivial idempotents.

3.7* (Sweedler [285]) Prove the Units Theorem: if k is an algebraically
closed field and R and S are two k-algebras that are reduced and
have no non-trivial idempotents, then every unit in R ⊗k S has the
form a⊗ b, where a is a unit in R and b is a unit in S.

3.8 Let R and S be k-algebras. Let r ∈ R, s ∈ S be transcendental
over k. Prove that r ⊗ 1 + 1 ⊗ s in R ⊗k S is not invertible. (Hint:
Use Exercise 3.7.)

3.9* (Sweedler [286]) Let R and S be k-algebras, k a field. Prove that the
following are equivalent:
(i) R⊗k S is local.
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(ii) R is local with maximal ideal m, S is local with maximal ideal
n, either R or S is algebraic over k, and (R/m)⊗k (S/n) is local.

3.10 Let k be a field, and let E and F be two finitely generated extension
fields of k. Prove that every maximal ideal of the ring R = E ⊗k F
has height min{e, f}, where e is the transcendence degree of E over k
and f is the transcendence degree of E over k.

3.11 Let F be a field, K a finite separable field extension of F and R an
integrally closed F -domain. Prove that if K ⊗F R is a domain, it is
integrally closed.

3.12 Let L and K be subfields of a field E, and let k be a subfield of L∩K.
Prove that L and K are linearly disjoint over k (with respect to E) if
and only if elements of L that are linearly independent over k remain
linearly independent over K.

3.13 Let k be a field and X a variable over k.
(i) Prove that the field of fractions of k[[X ]] is uncountable.
(ii) Prove that if k is countable, so is the algebraic closure of any

finitely generated field extension of k.
(iii) Prove that the transcendence degree of the field of fractions of

k[[X ]] over k(X) is infinity.
(iv) Prove that

∑
i>0X

i! ∈ k[[X ]] is transcendental over k(X).
3.14 Let k be a field of characteristic 0 and X1, . . . , Xn variables over k.

For each j = 1, . . . , n, let Gj be a square-free polynomial in k[Xj]

(so that
√

(Gj) = (Gj)). Prove that k[X1, . . . , Xn]/(G1, . . . , Gn) is
reduced.
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Noetherian rings

This book is mostly about Noetherian rings. However, the integral closure of
a Noetherian domain R need not be Noetherian (Exercise 4.9), so we need to
develop some results for non-Noetherian rings as well. Nevertheless, integral
closure of Noetherian rings is fairly well-behaved, and we concentrate on their
good properties in this chapter. In Section 4.10 we present Krull domains and
the Mori–Nagata Theorem that the integral closures of Noetherian domains
are Krull domains. In Sections 4.3 and 4.6 we present different scenarios in
which we can conclude that the integral closure of a given ring in an extension
ring is necessarily module-finite over the base ring. In Section 4.9 we prove
the Krull–Akizuki Theorem: the integral closure of a Noetherian domain of
dimension one is Noetherian, though not necessarily module-finite. In Sec-
tion 4.10 we prove that the integral closure of a two-dimensional Noetherian
domain is Noetherian. The first two sections analyze principal ideals in inte-
grally closed rings and normalization theorems. Section 4.4 covers Jacobian
ideals, Section 4.5 covers Serre’s criteria. Section 4.8 analyzes Lying-Over and
preservation of heights under integral extensions.

4.1. Principal ideals

Proposition 1.5.2 shows that principal ideals in integrally closed reduced Noe-
therian rings that are generated by non-zerodivisors are themselves integrally
closed. Such ideals also have good primary decompositions:

Proposition 4.1.1 (Cf. Proposition 1.5.2.) Let R be a Noetherian ring that
is integrally closed in its total ring of fractions. The set of associated primes of
an arbitrary principal ideal generated by a non-zerodivisor x consists exactly
of the set of minimal prime ideals over (x).

Furthermore, all such associated prime ideals are locally principal.

Proof: All minimal prime ideals over (x) are associated to (x). Let P be
a prime ideal associated to xR. By Prime Avoidance there exists a non-
zerodivisor y in R such that P = xR :R y. We may localize at P and
assume without loss of generality that R is a local ring with maximal ideal
P . By definition y

xP ⊆ R. If y
xP ⊆ P , then by Lemma 2.1.8, y

x ∈ R = R,
so that y ∈ xR and P = xR :R y = R, which is a contradiction. Thus
necessarily y

xP = R. Hence there exists z ∈ P such that y
xz = 1. Then

P = xR :R y = yzR :R y = zR, so P is a prime ideal of height 1. Thus P is
minimal over xR.

The last statement follows immediately.



60 4. Noetherian rings

The proposition implies that for any principal ideal (even generated by a
zerodivisor, say by Corollary 2.1.13) in a reduced integrally closed Noetherian
ring, the primary decomposition is particularly simple: xR = ∩P (xRP ∩ R),
as P varies over the minimal prime ideals over xR.

The non-zerodivisor assumption in Proposition 4.1.1 is necessary:

Example 4.1.2 Let k be a field, X and Y variables over k, and R =
k[X, Y ]/(X3, XY ). Then R is integrally closed in its total ring of fractions,
but the principal ideal generated by the zerodivisor X2 has an embedded
prime ideal.

A special case of integrally closed domains are one-dimensional Noetherian
integrally closed domains, also known as Dedekind domains. The following
is an easy consequence of Proposition 4.1.1, and we leave the details to the
reader (cf. Proposition 6.3.4).

Proposition 4.1.3 Let (R,m) be a Noetherian local ring. Then m is princi-
pal generated by a non-zerodivisor if and only if R is a Dedekind domain, and
that holds if and only if every non-zero ideal in R is principal and generated
by a non-zerodivisor. Furthermore, for such a ring R, every ideal is a power
of m, and there are no rings strictly between R and its field of fractions.

4.2. Normalization theorems

We present several versions of the Noether Normalization Theorem.

Lemma 4.2.1 Let R be a finitely generated algebra over a field k, x1, . . . , xn
elements in R, X1, . . . , Xn variables over R, and f ∈ k[X1, . . . , Xn] a non-
zero polynomial such that f(x1, . . . , xn) = 0.
(1) Then there exists an integer e such that for all positive integers e1 ≥

e, e2 ≥ ee1, . . ., en−1 ≥ en−2, xn is integral over the ring k[x1 +
xe1n , . . . , xn−1 + x

en−1
n ].

(2) If R is a domain and ∂f
∂Xn

(x1, . . . , xn) 6= 0, then there are infinitely many
e1, . . . , en−1 so that xn satisfies a monic polynomial h(Xn) of integral
dependence over k[x1 + xe1n , . . . , xn−1 + x

en−1
n ] and that h′(xn) 6= 0.

(3) If k is an infinite field, there exists a non-empty Zariski-open subset U
of kn−1 such that whenever (c1, . . . , cn−1) ∈ U , then xn is integral over
k[x1 − c1xn, . . . , xn−1 − cn−1xn].

(4) Suppose that k is infinite and that R is a domain. If ∂f
∂Xn

(x1, . . . , xn) 6= 0,
there exist infinitely many c1, . . . , cn−1 ∈ k such that xn satisfies a monic
polynomial h(Xn) of integral dependence over k[x1 − c1xn, . . . , xn−1 −
cn−1xn] such that h′(xn) 6= 0.

Proof: Let e be a positive integer strictly larger than the degree of f . Set
e1 ≥ e, and for each i ≥ 2, set ei ≥ e · ei−1. Then g(X1, . . . , Xn) =
f(X1 −Xe1

n , . . . , Xn−1 −X
en−1
n , Xn) is a non-zero polynomial. By the choice
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of e1, . . . , en−1, g is, up to a scalar multiple, monic in Xn. But g(x1 +
xe1n , . . . , xn−1 + x

en−1
n , xn) = f(x1, . . . , xn) = 0, so that g is an equation of

integral dependence of xn over k[x1+x
e1
n , . . . , xn−1+x

en−1
n ]. This proves (1).

Suppose that R is a domain and ∂f
∂Xn

(x1, . . . , xn−1, xn) 6= 0. By the chain

rule, ∂g
∂Xn

equals
∑n−1
i=1 (−eiXei−1

n ) ∂f∂Xi
+ ∂f
∂Xn

evaluated at (X1−Xe1
n , . . . , Xn−1−

X
en−1
n , Xn). After passing to Xn 7→ xn and Xi 7→ xi + xein for i < n, by pos-

sibly increasing the previously determined ei, this is not zero, for otherwise∑n−1
i=1 (−eixei−1

n ) ∂f∂Xi
(x1, . . . , xn)+

∂f
∂Xn

(x1, . . . , xn) = 0 for all infinitely many
possibilities for the ei, which is a contradiction. This proves (2).

If k is infinite, let d be the degree of f , and let fd the component of f
of degree d. As fd is a non-zero polynomial and k is infinite, there exist
a1, . . . , an ∈ k such that fd(a1, . . . , an) 6= 0 and an 6= 0. The polynomial
g(X1, . . . , Xn) = f(X1 + a1Xn, . . . , Xn−1 + an−1Xn, anXn) has then degree
at most d, and has coefficient of Xd

n equal to fd(a1, . . . , an), which is non-zero.
Thus up to a scalar multiple g is a monic polynomial in Xn such that

g(x1 − a1a
−1
n xn, . . . , xn−1 − an−1a

−1
n xn, a

−1
n xn) = f(x1, . . . , xn) = 0,

whence xn is integral over k[x1 − a1a
−1
n xn, . . . , xn−1 − an−1a

−1
n xn]. Setting

ci = aia
−1
n for i = 1, . . . , n− 1 and U = {(c1, . . . , cn−1) | fd(c1, . . . , cn−1, 1) 6=

0} finishes the proof of (3).
Now suppose that k is infinite and in addition that ∂f

∂Xn
(x1, . . . , xn) 6=

0. By the chain rule, ∂g
∂Xn

(x1 − a1a
−1
n xn, . . . , xn−1 − an−1a

−1
n xn, Xn) equals∑n

i=1 ai
∂f
∂Xi

(x1 − a1a
−1
n xn + a1Xn, . . . , xn−1 − an−1a

−1
n xn + an−1Xn, anXn).

This is not zero if a1 = · · · = an−1 = 0 and an = 1. Since k is infinite, it is
possible to find infinitely many a1, . . . , an such that this is non-zero and such
that fd(a1, . . . , an)an 6= 0, which proves (4).

Theorem 4.2.2 (Noether normalization) Let k be a field and R a finitely
generated k-algebra. Then there exist elements x1, . . . , xm ∈ R such that
k[x1, . . . , xm] is a transcendental extension of k (i.e., k[x1, . . . , xm] is isomor-
phic to a polynomial ring in m variables over k) and such that R is integral
over k[x1, . . . , xm].

If k is infinite, x1, . . . , xm may be taken to be k-linear combinations of
elements of a given generating set of R.

In any case, if R is a domain and the field of fractions of R is separably
generated over k, then x1, . . . , xm above can be chosen so that the field of
fractions of R is separable over k[x1, . . . , xm].

Proof: Write R = k[y1, . . . , yn]. We use induction on n to prove the first
claim, including the assertion that if k is infinite, x1, . . . , xm may be taken
to be the sufficiently general k-linear combinations of elements of the yi. We
may choose the yi so that k[y1, . . . , yl] is transcendental over k and such
that k[y1, . . . , yl] ⊆ R is algebraic. If n = l, set xi = yi and l = m, and
we are done. We thus assume that n > l. By Lemma 4.2.1, there exist
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z1, . . . , zn−1 such that k[z1, . . . , zn−1, yn] = k[y1, . . . , yn] and such that yn is
integral over k[z1, . . . , zn−1]. If k is infinite, z1, . . . , zn−1 may be taken to be
k-linear combinations of y1, . . . , yn. By induction on n we may assume that
there exist elements x1, . . . , xm ∈ k[z1, . . . , zn−1] such that k[z1, . . . , zn−1] is
integral over k[x1, . . . , xm] and such that x1, . . . , xm are transcendental over
k. If k is infinite, x1, . . . , xm may be taken to be k-linear combinations of
z1, . . . , zn−1, and therefore k-linear combinations of y1, . . . , yn−1. It follows
that R is integral over k[x1, . . . , xm].

If Q(R) is separable over k, by Theorem 3.2.7 (6), there exist algebraically
independent x1, . . . , xm ∈ {y1, . . . , yn} such that k(x1, . . . , xm) ⊆ Q(R) is
separable algebraic. By the choice of the xi, k[x1, . . . , xm] ⊆ R. Suppose that
y1, . . . , yr satisfy separable equations of integral dependence over k[x1, . . . , xm]
but yr+1, . . . , yn do not. If r = n we are done, so we suppose that r < n.
By Lemma 4.2.1 (2) and (4), there are x′1, . . . , x

′
m ∈ R, with the differences

xi−x′i all powers of yr+1 or all scalar multiples of yr+1 in case k is infinite, such
that yr+1 is separable and integral over k[x′1, . . . , x

′
m]. Then k[x′1, . . . , x

′
m] ⊆

k[x′1, . . . , x
′
m, yr+1] = k[x1, . . . , xm, yr+1] ⊆ k[x1, . . . , xm, y1, . . . , yr+1] are all

separable integral extensions, and necessarily the extension k(x′1, . . . , x
′
m) ⊆

Q(R) is separable algebraic. By repeating this step, we eventually get that
all yi are separable and integral over an m-generated polynomial subring.

Observe that the proof above is quite explicit about how to choose a gener-
ating set for a Noether normalization. The same holds for the graded version
below.

Theorem 4.2.3 (Graded Noether normalization) Let k be a field and R
a finitely generated N-graded k-algebra such that R0 = k. There exist alge-
braically independent x1, . . . , xm ∈ R, homogeneous of the same degree, such
that R is integral over k[x1, . . . , xm]. If k is infinite and R is generated over
k by elements of degree 1, then the xi may be taken to be of degree 1.

Proof: Write R = k[y1, . . . , yn], with y1, . . . , yn homogeneous elements. Let
d be an integer multiple of all deg(yi). Then R is module-finite over the k-
subalgebra R̃ generated by all elements of degree d. Thus it suffices to replace
R by R̃ and assume that all the yi have the same degree d.

Suppose that k is infinite. By Theorem 4.2.2, there exist linear combinations
x1, . . . , xm of the yi that are algebraically independent over k such that R is
integral over k[x1, . . . , xm]. Note that each xi is homogeneous of degree d.

Now assume that k is an arbitrary field, possibly finite. By repeated use of
Corollary A.3.2, which says that all associated prime ideals in R are homo-
geneous, and by repeated use of the homogeneous Prime Avoidance Theorem
(A.1.3), there exists a sequence x1, . . . , xm of homogeneous elements in R
such that for all i = 1, . . . , m, xi is not in any prime ideal minimal over
(x1, . . . , xi−1). Let m be the maximal integer for which this is possible. By
possibly lifting each xi to a power, we may assume that all xi have the same
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degree, say degree ed. By construction the only prime ideal in R containing
x1, . . . , xm is the maximal homogeneous idealM. Then M

c ⊆ (x1, . . . , xm) for
some integer c, and in particular if R̃ is the subring of R generated over k by
all homogeneous elements of degree ed, then the maximal ideal of R̃ raised to
the cth power is contained in (x1, . . . , xm)R̃. Thus as in the first paragraph we
may assume thatR is generated by elements of degree ed. By homogeneity and
degree count Mc = M

c−1(x1, . . . , xm), so thatM is integral over (x1, . . . , xm).
By Proposition 2.3.8, R is integral over its subring A = k[x1, . . . , xm]. Since
M has height m by the construction of the xi, there exists a minimal prime
ideal P in R such that the height of M/P is m and hence by the Dimen-
sion Formula (Theorem B.5.1) the height of (x1, . . . , xm)A = M ∩ A mod-
ulo A/(P ∩ A) is m. This means that ht((x1, . . . , xm)A) = m and so that
x1, . . . , xm are algebraically independent over k.

Observe that in the theorems above, given any finite set of algebra gener-
ators of R over k, the xi in the conclusion of the theorem may be obtained
from the given set by successively applying exponentiation and addition.

Theorem 4.2.4 Let R be a Noetherian ring and S a finitely generated R-
algebra containing R that is a domain. Then there exist elements x1, . . . , xm ∈
S and r ∈ R such that R[x1, . . . , xm] is a transcendental extension of R and
such that Sr is integral over R[x1, . . . , xm]r (localization at one element).

Proof: Let W = R \ {0}, which is a multiplicatively closed subset of R. Then
W−1R ⊆ W−1S is a finitely generated algebra extension of the field W−1R,
so that by Theorem 4.2.2 and the observation above, there exist elements
x1, . . . , xm ∈ S such that W−1R ⊆ W−1R[x1, . . . , xm] is transcendental and
W−1R[x1, . . . , xm] ⊆ W−1S is integral. Thus clearly R ⊆ R[x1, . . . , xm] is
transcendental. Let {s1, . . . , sn} be a generating set of S as an algebra over
R[x1, . . . , xm]. Each si is integral overW

−1R[x1, . . . , xm], so that there exists
ui ∈ W such that si is integral over R[x1, . . . , xm]ui

. Let r = u1 · · ·un.
Then each algebra generator si of Sr over R[x1, . . . , xm]r is integral over
R[x1, . . . , xm]r, which proves the theorem.

4.3. Complete rings

We present a first set of connections between integral closure and complete
rings. Many more connections are in Sections 4.6, 4.8, and in Chapter 9 on
analytically unramified rings. Theorem 4.3.4 shows that the integral closure
of a complete local Noetherian domain is a module-finite extension, hence
Noetherian. We start with showing that module-finite extensions of complete
local Noetherian rings are direct products of complete local rings.

Proposition 4.3.1 Let R be a ring and I an ideal in R such that I is
complete in the I-adic topology. Then any idempotent of R/I lifts to an
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idempotent in R.

Proof: Let e ∈ R such that e+I is an idempotent in R/I, i.e., e2−e ∈ I. Fix
n ≥ 1. Write the expansion of 1 = (e+(1− e))2n−1 as 1 = enpn+ (1− e)nqn,
and set en = enpn. Then en is a multiple of en, 1−en is a multiple of (1−e)n,
and en(1− en) ∈ (en(1− e)n) ⊆ In. Thus en + In is an idempotent in R/In.

Furthermore, en + I =
∑2n−1
i=n

(
2n−1
i

)
ei(1− e)2n−1−i + I = e2n−1 + I = e+ I.

The sequence {en}n of elements of R is a Cauchy sequence in the I-adic
topology:

en+1 − en + In = e2n+1 − e2n + In = (en+1 − en)(en+1 + en) + In

= (1− en − 1 + en+1)(en+1 + en) + In

= ((1− e)nqn − (1− e)n+1qn+1))(e
n+1pn+1 + enpn) + In

= 0.

By assumption the limit of this sequence exists in R. Let f be the limit. Then
f(1− f) = lim en(1− en) = 0, so that f is an idempotent in R. But en + In

is a lift of e+ I and the en converge to f , so that f + I = e+ I.

The lifting of idempotents has the following important consequence:

Proposition 4.3.2 Let (R,m) be a complete local Noetherian ring, and let
R ⊆ S be a module-finite extension ring of R. Then S has finitely many
maximal ideals, say {m1, . . . ,mt}, and S ∼= Sm1

× · · · × Smt
.

Proof: There are only finitely many prime ideals in S that are minimal
over mS, say m1, . . . ,mt, and these are all the maximal ideals of S. By the
Chinese Remainder Theorem, S/mS ∼= (S/mS)m1

× · · · × (S/mS)mt
are iso-

morphic as rings. In particular, there exist mutually orthogonal idempotents
e1, . . . , et ∈ S/mS that give this decomposition, so that e1 + · · · + et = 1.
Note that S is complete in the m-adic topology and Noetherian. Idempotents
can be lifted in complete rings by Proposition 4.3.1, so that each ej lifts to
fj ∈ S that are mutually orthogonal and necessarily f1 + · · ·+ ft = 1. Hence
S ∼= Sm1

× · · · × Smt
.

Complete local domains have a normalization result reminiscent of normal-
ization results in the previous section:

Theorem 4.3.3 (Cohen Structure Theorem) Let (R,m) be a complete Noe-
therian local domain, and k a coefficient ring of R. In case k is a discrete
valuation domain of rank one with maximal ideal generated by p, we assume
that p, x1, . . . , xd is a system of parameters. If R contains a field, we assume
that x1, . . . , xd is a system of parameters. Then the subring k[[x1, . . . , xd]] of
R is a regular local ring and R is module-finite over it.

We only comment on a proof. The most difficult part is establishing the
existence of the coefficient ring k, and we do not provide a proof of that in
this book. Once a coefficient ring and a system of parameters are chosen, the
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theorem is proved as follows. Let I be the ideal generated by the system of
parameters. For notation we set x0 to be either 0 if R contains a field and
p otherwise. As the R-module R/I has finite length, there exists a finite set
S of elements in R with the property that whenever r ∈ R, then there exist
s ∈ S and a unit u ∈ k such that r − su ∈ I. Clearly A = k[[x1, . . . , xd]]
of R is a subring of R. We claim that R is module-finite over A and is
generated by the elements of S. If r ∈ R, choose s1 ∈ S, a unit u1 ∈ k
and r10, . . . , r1d ∈ R such that r = s1u1 +

∑
i r1ixi. Repeat this for r1i to

obtain that for some s2i ∈ S, for some units u2i ∈ k and some r2ij ∈ R,
r1i = s2iu2i +

∑
j r1ijxj . Substitute this expression in r to obtain r = s1u1 +∑

i r1ijs2iu2ixi+
∑
ij r1ijxixj . We continue this process: r =

∑
s∈S rnss+ tn,

with tn ∈ In, rns an element of k[x1, . . . , xd], and rns − rn−1,s ∈ In for each
n, s. Thus {rns} is a Cauchy sequence in k[x1, . . . , xd], whence rs ∈ limn rns ∈
k[[x1, . . . , xd]] ⊆ R and r =

∑
s∈S rss. This proves that R is module-finite

over A. By Theorem 2.2.5 dimR = dimA, so that there cannot be any
algebraic relations among x1, . . . , xd. Thus A is a regular local ring.

Theorem 4.3.4 The integral closure of a complete local Noetherian do-
main R is module-finite over R. More generally, if L is a finite field exten-
sion of the field of fractions K of R, then the integral closure S of R in L is
module-finite over R. Furthermore, S is a complete Noetherian local domain.

Proof: Let m be the maximal ideal and k a coefficient ring of R. If R contains
a field, let x1, . . . , xd be a system of parameters in R. If R does not contain a
field, then k is a complete local discrete valuation domain with maximal ideal
(x0). In this case we choose a system of parameters x0, x1, . . . , xd. By the
Cohen Structure Theorem 4.3.3, A = k[[x1, . . . , xd]] is a regular local subring
of R and R is module-finite over it. Then L is a finite algebraic extension of
the field of fractions of A and the integral closure of A in L equals S. Thus
by replacing R by A we may assume that R is a regular local ring.

As R is regular, it is integrally closed. If the characteristic of K is zero,
K ⊆ L is separable, and then the theorem holds by Theorem 3.1.3.

Thus it remains to consider the case when the characteristic of K is a
positive prime integer p. In this case, k is a field of characteristic p. Then
there exists a finite extension L′ of L and an intermediate field K ′ between
K and L′ such that K ⊆ K ′ is purely inseparable and K ′ ⊆ L′ is separable.
Suppose that the integral closure R′ of R in K ′ is module-finite over R. As
the integral closure of R′ in L′ is the same as the integral closure of R in L′,
by Theorem 3.1.3, the integral closure of R in L′ is module-finite over R. But
S is contained in the integral closure of R in L′, so that by the Noetherian
assumption S is also module-finite over R. Thus it suffices to prove that the
integral closure R′ of R in K ′ is module-finite over R.

By switching notation we may assume that K ′ = L is a purely inseparable
extension of K. Let q = [L : K]. If r ∈ S, then rq ∈ K ∩ S = R, so
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that r ∈ R1/q = k1/q[[x
1/q
1 , . . . , x

1/q
d ]]. Observe that R1/q is a regular local

ring. For every non-zero r ∈ S we define its lowest form to be the non-zero
homogeneous component of r of smallest possible degree, when r is considered
as an element of R1/q.

Let a1, . . . , as ∈ S and let fi be the lowest form of ai. If f1, . . . , fs are
linearly independent over R, so are a1, . . . , as. As L is finite-dimensional over
K, the cardinality of sets of such linearly independent lowest forms must be
finite. Let {f1, . . . , fs} be a maximal linearly independent set of such lowest
forms. Let c1, . . . , ct ∈ k1/q be all the coefficients appearing in the fi. Note

that fi ∈ k(c1, . . . , ct)[[x
1/q
1 , . . . , x

1/q
d ]].

For any a ∈ S ⊆ R1/q, the lowest form f of a also lies in R1/q. Furthermore,
by the maximal linearly independent assumption, there exists a homogeneous

r ∈ R \ {0} such that rf ∈ k(c1, . . . , ct)[[x
1/q
1 , . . . , x

1/q
d ]]. This implies that all

the coefficients of f lie in k(c1, . . . , ct), and hence that all the lowest forms

of elements of S lie in k(c1, . . . , ct)[[x
1/q
1 , . . . , x

1/q
d ]]. Let T be the subring

of R1/q generated over R by the lowest forms of elements of S. Then T ⊆
k(c1, . . . , ct)[[x

1/q
1 , . . . , x

1/q
d ]], and as the latter is module-finite over R, so is T .

Let g1, . . . , gl be the generators of T over R. For each i, let bi ∈ S be such that
gi is the lowest form of bi. Set R′ = R[b1, . . . , bl]. Then R′ is module-finite
over R, hence complete.

Clearly R′ ⊆ S, and we next prove that S ⊆ R′. Let a ∈ S. For each
i ∈ N we define ai ∈ R′ such that the lowest form of a − ai has degree at
least i. Start with a0 = 0. Suppose that a0, a1, . . . , an have been found
with this property. Let f be the lowest form of a − an. Then we can write
f =

∑
j hjgj for some homogeneous forms hj ∈ R. Set an+1 = an +

∑
j hjbj .

Then a − an+1 = (a − an) −
∑
j hjbj has the lowest form of degree strictly

greater than the degree of the lowest form of a−an. This constructs a Cauchy
sequence {an} in R′. As R′ is complete, this Cauchy sequence has a limit in
R′, but the limit equals a. This proves that S = R′, and so S is finitely
generated over R.

In particular, S is Noetherian, and complete in the m-adic topology. By
Proposition 4.3.2, then S is the direct product of the r rings Si, where r is the
number of maximal ideals in S. But S is an integral domain, so that r = 1,
and S has only one maximal ideal.

It is also true that if R is an integral domain that is finitely generated over
a complete Noetherian local ring, then R is module-finite over R. A proof is
worked out in Exercise 9.7.

4.4. Jacobian ideals

In this section we define Jacobian ideals and prove basic properties about
them. Jacobian ideals will be used in the subsequent section to prove a few
criteria for when a ring is locally an integrally closed integral domain. Further
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uses of Jacobian ideals be found in Chapters 7, 12, 13, 15.

Definition 4.4.1 Let A be a commutative ring and R a localization of
a finitely generated A-algebra. Write R as W−1A[X]/(f1, . . . , fm), where
A[X] = A[X1, . . . , Xn], X1, . . . , Xn are variables over A, fi ∈ A[X], and
W is a multiplicatively closed subset of A[X]. A Jacobian matrix of R over
A is defined as the m × n matrix whose (i, j) entry is ∂fi

∂Xj
. These partial

derivatives are symbolic:

∂(Xa1
1 · · ·Xan

n )

∂Xj
= ajX

a1
1 · · ·Xaj−1

j−1 X
aj−1
j X

aj+1

j+1 · · ·Xan
n ,

and extend A-linearly to all of A[X].
Assume furthermore that A is universally catenary, and that there exists a

non-negative integer h such that for each prime ideal P in A[X] that is mini-
mal over (f1, . . . , fm) and such that P ∩W = ∅, A[X]P is equidimensional of
dimension h. Observe that this set of prime ideals is in one-to-one correspon-
dence with the minimal primes of R. Under these conditions, the Jacobian
ideal of R over A, denoted JR/A, is the ideal in R generated by all the h× h
minors of the Jacobian matrix of R over A.

Example 4.4.2 Let k be a field, X, Y variables, and R = k[X ]/(X3) ∼=
k[X, Y ]/(XY, Y−X2). Both presentations ofR allow us to define the Jacobian
ideal and both give JR/k = 3X2R. The second presentation gives the Jacobian
matrix [

Y X
−2X 1

]
.

Example 4.4.3 It can happen that JR/A = 0. For instance, let A = k be
a field of characteristic 2, and let R = k[X ]/(X2). Then JR/A = 0. Even
when R contains Q, the Jacobian ideal can be zero. For example, let R =
Q[X, Y ]/(X2, XY, Y 2). The Jacobian ideal JR/Q is the image of (X2, XY, Y 2)
in R, which is 0.

Clearly the Jacobian matrix depends on the choice of the fi and the Xj.
However, the Jacobian ideal JR/A is independent:

Proposition 4.4.4 The Jacobian ideal JR/A is well-defined, i.e., if R and R′

are both localizations of finitely generated A-algebras and are A-isomorphic,
then the isomorphism takes one Jacobian ideal to the other.

Proof: The proof proceeds in several steps.
Let A[X1, . . . , Xn] = A[X] and R = W−1A[X]/(f1, . . . , fm). Set W ′ to be

the saturation ofW , i.e.,W ′ is the set of all polynomials in A[X] whose image
is invertible in R. Then R = (W ′)−1A[X]/(f1, . . . , fm) and the Jacobian ideal
computed either with W or with W ′ is the same. Thus we may always make
the multiplicatively closed set W as large as possible.

Next, we prove that if we fix the images of X1, . . . , Xn in R, then the Jaco-
bian ideal is independent of the presenting ideal and its generators. Namely,
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with set-up as above, let h be such that for each prime ideal P in A[X] dis-
joint from W and minimal over (f1, . . . , fm), A[X]P is equidimensional of
dimension h. Let xi be the image of Xi in R.

Suppose that (g1, . . . , gs) is another ideal in A[X] such that via the A-
algebra map Xi 7→ xi, W

−1(A[X]/(g1, . . . , gs)) is isomorphic to R, and such
that for each prime ideal P in A[X] that is minimal over (g1, . . . , gs) and with
P ∩ W = ∅, A[X]P is equidimensional of dimension h. Then there exists
an element u ∈ W such that for all i = 1, . . . , s, ugi ∈ (f1, . . . , fm). Write
ugi =

∑
kDikfk for some Dik ∈ A[X]. Then

u
∂gi
∂Xj

+
∂u

∂Xj
gi =

∑

k

∂Dik
∂Xj

fk +
∑

k

Dik
∂fk
∂Xj

,

so that in R, u ∂gi
∂Xj

=
∑
kDik

∂fk
∂Xj

. As u is a unit in R, Ih(
∂gi
∂Xj

) ⊆ Ih(
∂fi
∂Xj

)R.

Hence by symmetry, Ih(
∂gi
∂Xj

)R = Ih(
∂fi
∂Xj

)R, which proves that JR/A is inde-

pendent of the presentation ideal.
Thus we may assume that (f1, . . . , fm) = W−1(f1, . . . , fm) ∩ A[X]. We

need to check that this kernel satisfies the condition that A[X]P is equidi-
mensional of dimension h for every prime ideal P in A[X] that is minimal
over (f1, . . . , fm) and satisfies P ∩W = ∅. But such primes correspond ex-
actly to the minimal primes of R, and by our assumption they satisfy the
condition.

Let x0 ∈ R. Let X0 be a variable over A[X], and under the natural A-
algebra homomorphism taking Xi 7→ xi, let K be the kernel and U the set of
all elements in A[X0, . . . , Xn] that map to a unit in R. Observe that W ⊆ U .
As R ∼=W−1(A[X]/(f1, . . . , fm)), there exist u ∈W and f ∈ A[X] such that
uX0 − f ∈ K. Let π :W−1A[X] → R be the surjection as before with kernel
(f1, . . . , fm). Let ϕ be the natural homomorphism from U−1A[X0, . . . , Xn]
onto R extending π and sending X0 to x0. We claim that the kernel of ϕ is
generated by f1, . . . , fm, uX0 − f . These elements are clearly in the kernel.
Suppose that ϕ(g) = 0 for some g ∈ U−1A[X0, . . . , Xn]. Without loss of
generality we may even assume that g ∈ A[X0, . . . , Xn]. If the degree of
g in X0 is e, then we can write ueg − (uX0 − f)g′ ∈ A[X] for some g′ ∈
A[X0, . . . , Xn], whence π(ueg − (uX0 − f)g′) = ϕ((ueg − (uX0 − f)g′) =
0. Since the kernel of π is generated by f1, . . . , fm, we obtain that ueg ∈
U−1(f1, . . . , fm, uX0 − f), and therefore g ∈ U−1(f1, . . . , fm, uX0 − f).

We have proved that U−1A[X0, . . . , Xn]/(f1, . . . , fm, uX0 − f) ∼= R. Let Q
be a prime ideal in A[X0, . . . , Xn] that is minimal over (f1, . . . , fm, uX0 − f)
and such that Q ∩ U = ∅. We will prove that A[X0, . . . , Xn]Q is equidi-
mensional of dimension h + 1, so that we can use this representation to
compute the Jacobian ideal. Let q be an arbitrary minimal prime ideal in
A[X0, . . . , Xn]Q. We know that q is naturally an extension of a minimal
prime ideal p in A. For any ideal I in A[X], let Ie denote IA[X0, . . . , Xn].
Let P be a prime ideal in A[X] that is contained in Q and is minimal over
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(f1, . . . , fm). SinceW ⊆ U , Q∩U = ∅ implies that P ∩W = ∅. We claim that
ht(Q/P e) = 1. By Krull’s Height Theorem (Theorem B.2.1), ht(Q/P e) ≤ 1.
If the height is 0, then P e = Q, and it follows that uX0 − f ∈ P e, which
implies that u ∈ P . But P ∩ W = ∅, so we have a contradiction. Thus
ht(Q/P e) = 1.

Since Q∩A = P∩A, P contains p. By assumption A[X]P is equidimensional
of dimension h, hence ht(P/pA[X]) = h. The assumption that A is universally
catenary gives that

ht(Q/q) = ht(Q/pA[X0, . . . , Xn])

= ht(P e/pA[X0, . . . , Xn]) + ht(Q/P e) = h+ 1.

The value of ht(Q/q) is independent of Q and q. It follows that the Jacobian
ideal R over A can also be defined using the algebra generators x0, . . . , xn.
We claim that this is the same as the Jacobian ideal defined using the algebra
generators x1, . . . , xn. The Jacobian matrix for R over A with respect to the
algebra generators x0, . . . , xn and the relations f1, . . . , fm, uX0 − f is

C =

[
0
(
∂fi
∂Xj

)

u ∗

]
.

Clearly Ih+1(C)R = uIh(
∂fi
∂Xj

)R = Ih(
∂fi
∂Xj

)R.

Using a straightforward induction, it follows that whenever the Jacobian
ideal R over A is defined using the algebra generators x1, . . . , xn, then the
same Jacobian ideal is obtained after adding further elements of R to the
algebra generating list. Hence if R can also be written as a localization of
A[Y1, . . . , Yr]/(g1, . . . , gs) at a multiplicatively closed set U , and there is a
fixed integer l such that for every minimal prime P over (g1, . . . , gs) with
P ∩ U = ∅, we have that A[Y1, . . . , Yr]P is equidimensional of dimension l,
then if yi is the image in R of Yi, by above the Jacobian ideal defined via the
algebra generators x1, . . . , xn is the same as the Jacobian ideal defined via
the algebra generators x1, . . . , xn, y1, . . . , yr, which in turn is the same as the
Jacobian ideal defined via the algebra generators y1, . . . , yr.

Corollary 4.4.5 Let A be a universally catenary Noetherian ring, and let R
be W−1A[X]/(f1, . . . , fm) for some variables X1, . . . , Xn over A, some fi ∈
A[X], and some multiplicatively closed subset W of A[X]. Assume that there
exists a non-negative integer h such that for each prime ideal P in A[X] that is
minimal over (f1, . . . , fm) and such that P∩W = ∅, A[X]P is equidimensional
of dimension h. Let U be an arbitrary multiplicatively closed subset of R. The
Jacobian ideal of U−1R over A is defined as well, and

U−1(JR/A) = J(U−1R)/A.

Proof: The fact that the Jacobian ideal is defined follows at once from the
definition since the set of primes for which the equidimensionality condition
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needs to be checked can only get smaller after localizing at W . The equal-
ity follows since we may use the same elements f1, . . . , fm to compute the
Jacobian ideal.

We defined Jacobian matrices in greater generality than Jacobian ideals.
We show on an example that without the height restrictions on (f1, . . . , fm)
the Jacobian ideal need not localize as expected (as in this corollary):

Example 4.4.6 Let k be a field of characteristic other than 2, let X, Y, Z
be variables over k and R = k[X, Y, Z]/(XY 2, XZ2). The Jacobian matrix of
R over k is [

Y 2 2XY 0
Z2 0 2XZ

]
,

whose ideal of 1× 1 minors is I1 = (Y 2, 2XY,Z2, 2XZ)R and whose ideal of
2× 2 minors is I2 = 4X2Y ZR. The minimal prime ideals of R are P = XR
and Q = (Y, Z)R. Observe that RP is a localization of k[X, Y, Z]/(X), hence
its Jacobian ideal is clearly RP . If we want Corollary 4.4.5 to apply to this R,
since I2RP 6= RP , necessarily I2 is not the Jacobian ideal, so we would then
require a possible Jacobian ideal of R/k to be I1. But RQ is a localization
of k[X, Y, Z]/(Y 2, Z2), so its Jacobian ideal is 4Y ZRQ, which is not I1RQ.
Thus we cannot define a Jacobian ideal for this non-equidimensional R and
still expect Corollary 4.4.5 to hold.

Discussion 4.4.7 Although we have chosen to give a “bare-hands” proof
of the fact that the Jacobian ideal is well-defined (under our assumptions),
a possibly better way of presenting this material is through the module of
Kähler differentials. We highlight relevant statements in this discussion. We
opted not to develop Jacobian ideals in this way simply because we did not
want to include a detailed discussion of Kähler differentials, but wanted this
book to be largely self-contained.

First, for simplicity, let A = k be a field, and let R = k[X]/(f1, . . . , fm) be a
finitely generated k-algebra. We let J be the Jacobian matrix of R over k. By
viewing J as a matrix with entries in R, J is actually a presentation matrix
for the module of k-linear Kähler differentials ΩR/k. Thus the various ideals
generated by the minors of J (the Fitting ideals of ΩR/k) are independent
of the chosen generators of I or the presentation of R; they depend only on
the k-isomorphism class of R. The formation of Fitting ideals commutes with
localization and base change, e.g., if W is a multiplicatively closed subset of
R, then ΩW−1R/k

∼=W−1R⊗R ΩR/k (cf. Corollary 4.4.5). The problem with
defining the Jacobian ideal with this approach is that ΩR/k may not have a
rank, so that there is not a good unique choice of which Fitting ideal should be
the Jacobian ideal. In other words, after localizing at a minimal prime ideal
of R, ΩR/k may not be free, or even if it is free, the rank may vary depending
on which minimal prime is used. However, if R is an equidimensional finitely
generated k-algebra of dimension d and has no embedded primes, then the
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ideal of (n − d) × (n − d) minors of J reduced modulo I can be taken to be
the Jacobian ideal. Of course, when we replace k by an arbitrary ring A,
one needs some additional equidimensionality assumptions, which accounts
for the version we give above.

An important lemma is the following:

Lemma 4.4.8 Let R ⊆ S ⊆ T be regular Noetherian rings with S and T
localizations of finitely generated rings over R. Assume that the total ring of
fractions of T is algebraic over the total ring of fractions of R. Then

JT/R = JT/SJS/R.

Proof: We proved above that Jacobian ideals localize. Thus the equality in
the lemma holds if and only if it holds after localizing at all the prime ideals
of T . Thus we may assume that T is local, and by also inverting the elements
in R and S that are units in T we may assume in addition that R and S are
local. As these are regular rings, they are domains.

We may write S = (R[X1, . . . , Xn]/Q)P for some variables X1, . . . , Xn over
R, and some prime ideals Q ⊆ P in R[X1, . . . , Xn]. Necessarily there exist
f1, . . . , fl ∈ R[X1, . . . , Xn] that after localization at P form part of a reg-
ular system of parameters and generate QP . By Prime Avoidance we may
assume that f1, . . . , fl generate an ideal of height l in R[X1, . . . , Xn], so that
as R is regular, (f1, . . . , fl) has all minimal prime ideals of the same height
l. Note that S = (R[X1, . . . , Xn]/(f1, . . . , fl))P . By the algebraic dependence
assumption on the fields of fractions of S and R, l ≥ n. But letting K be the
field of fractions of R, QK[X1, . . . , Xn] is a prime ideal of height l. Necessarily
l ≤ n, hence n = l.

Thus R[X1, . . . , Xn]/(f1, . . . , fn) is equidimensional and S is its localiza-
tion. Similarly, for some variables Y1, . . . , Ym over S and some polynomials
g1, . . . , gm ∈ S[Y1, . . . , Ym], T is a localization of the equidimensional ring
S[Y1, . . . , Ym]/(g1, . . . , gm). Hence JS/R is generated by the determinant of

the m×m matrix ( ∂fi∂Xj
), JT/S by the determinant of the n×n matrix ( ∂gi∂Yj

),

and JT/R by the determinant of the (n+m) × (n+m) matrix

(
∂fi
∂Xj

)
0

(
∂gi
∂Xj

) (
∂gi
∂Yj

)

 ,

whence the lemma follows.

We prove in the next theorem that the Jacobian ideal determines the reg-
ularity and thus the normality of finitely generated algebras over a field. We
also prove a partial converse, namely that regularity of the ring supplies some
information on the Jacobian ideal, if in addition we assume a separable con-
dition on residue fields. (For separability, see Chapter 3.)

Theorem 4.4.9 (Jacobian criterion) Let k be a field and R an equidimen-
sional finitely generated k-algebra. Let J be the Jacobian ideal JR/k. Let P
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be a prime ideal in R. If J is not contained in P , then RP is a regular ring.
Conversely, if RP is a regular ring and κ(P ) is separable over k (say if k

is a perfect field, by Theorem 3.2.7 (4)), then J is not contained in P .

Proof: Let S = k[X1, . . . , Xn] and (f1, . . . , fm) an ideal in S such that R =
S/(f1, . . . , fm). As R is equidimensional and polynomial rings over a field are
catenary domains, all the prime ideals in S minimal over (f1, . . . , fm) have
the same height h. Let Q be the preimage of P in S.

Suppose that J is not contained in P . By possibly reindexing, we may
assume that the minor of the submatrix of the Jacobian matrix consisting of
the first h columns and the first h rows is not in Q.

Claim: f1, . . . , fh are elements of Q whose images are linearly independent in
the vector space QSQ/Q

2SQ. Indeed, when r1, . . . , rh ∈ S such that
∑
i rifi ∈

Q2SQ, then for some s ∈ S \Q, s
∑
i rifi ∈ Q2. Then for all j,

∑
i sri

∂fi
∂Xj

+
∑
i
∂(sri)
∂Xj

fi ∈ Q. Hence in RP , for all j,
∑
i ri

∂fi
∂Xj

∈ P . This gives a linear

dependence relation on the columns of the fixed h×h submatrix after passing
to RP /PRP . By our assumption on P , this is the trivial relation, so that all
ri are in P . This proves the claim.

But SQ is a regular local ring, so that by the claim, f1, . . . , fh is part of a
regular system of parameters in SQ. Thus (f1, . . . , fh)SQ is a prime ideal of
height h, and by equidimensionality (f1, . . . , fm)SQ = (f1, . . . , fh)SQ. Then
RP = (S/(f1, . . . , fh))Q is a regular local ring.

For the converse, suppose that k is a perfect field and that RP is regular. By
Theorem 3.2.7 we may choose xi in κ(P ) such that k ⊆ k(x1, . . . , xt) is tran-
scendental and k(x1, . . . , xt) ⊆ κ(P ) is separable algebraic. By the Primitive
Element Theorem (Theorem 3.1.1), there exists g(Y ) ∈ k[x1, . . . , xt][Y ] that
is separable in Y such that κ(P ) = k(x1, . . . , xt)[Y ]/(g(Y )). Then Jκ(P )/k

is the ideal generated by the ∂g
∂x1

, . . . , ∂g∂xt
, ∂g∂Y . As ∂g

∂Y is non-zero, Jκ(P )/k is
non-zero.

Since RP is regular, we may choose f1, . . . , fh ∈ S such that (f1, . . . , fh) has
height h in S, such that f1, . . . , fh is part of a regular system of parameters
in SQ, and such that RP as a localization of k[X1, . . . , Xn]/(f1, . . . , fh) at
Q. As κ(Q) = κ(P ) is a regular quotient of RP , there exist k1, . . . , ks ∈ S
such that (f1, . . . , fh, k1, . . . , ks) has height h+ s = htQ, and such that after
localization at Q, S/(f1, . . . , fh, k1, . . . , ks) equals κ(Q). By computing the
Jacobian ideal of κ(P ) over k this way, we get that

Jκ(P )/k = Ih+s



(
∂fi
∂Xj

)
(
∂ki
∂Xj

)

κ(P ) ⊆ Ih

(
∂fi
∂Xj

)
κ(P ) = JR/kκ(P ).

As Jκ(P )/k 6= 0, it follows that JR/k 6⊆ P .

Example 4.4.10 Let k be a field of positive characteristic p. Suppose that
α ∈ k is not a pth power. Set R = k[T ]/(T p − α). Obviously JR/k = 0, but
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R is isomorphic to k(α1/p) and is a field. This explains why in the converse
direction of the Jacobian criterion we need some condition on separability.

The assumption in Theorem 4.4.9 that k be a field cannot be relaxed to k
being a regular ring. Namely, if R ⊆ S are regular local rings with the same
field of fractions, the Jacobian ideal JS/R need not be the unit ideal. For
example, let R = k[[X, Y ]], where k is a field and X and Y variables over k.

Let S be a localization of R[ YX ] ∼= R[T ]
(XT−Y ) . Then both R and S are regular

and JS/R = XS, but JS/R is a unit ideal if and only if X is a unit in S.
If a ring is regular, it is normal, so the Jacobian criterion gives a sufficient

condition of normality. More conditions for normality are in the next section.

4.5. Serre’s conditions

Serre’s conditions (Rk) and (Sk) are convenient conditions for normality, reg-
ularity, Cohen–Macaulayness and other properties of rings.

Definition 4.5.1 Let R be a Noetherian ring and k a non-negative integer.
R is said to satisfy Serre’s condition (Rk) if for all prime ideals P in R of
height at most k, RP is a regular local ring.

The ring R is said to satisfy Serre’s condition (Sk) if for all prime ideals
P in R, the depth of RP is at least min{k, htP}.

In other words, R satisfies Serre’s condition (Rk) if and only if for all P ∈
SpecR, µ(PRP ) = htP , and R satisfies Serre’s condition (Sk) if and only
if for all P ∈ SpecR, PRP contains a regular sequence of length at least
min{k, htP}.

It is clear that every zero-dimensional Noetherian ring satisfies all (Sk),
and more generally, that every Cohen–Macaulay ring satisfies all (Sk). Recall
that R is Cohen–Macaulay if and only if for all P ∈ SpecR, PRP contains an
RP -regular sequence of length htP .

Theorem 4.5.2 A Noetherian ring is reduced if and only if it satisfies Serre’s
conditions (R0) and (S1).

Proof: Every reduced Noetherian ring clearly satisfies (S1) and (R0). Con-
versely, by the (S1) condition, the only associated primes of the zero ideal are
the minimal prime ideals. By the (R0) condition, localization at each mini-
mal prime ideal is a regular local ring, thus a domain. Thus the only primary
components of the zero ideal are the minimal prime ideals, proving that R is
reduced.

Serre’s conditions characterize integrally closed rings:

Theorem 4.5.3 (Serre’s conditions) A Noetherian ring R is normal if and
only if it satisfies Serre’s conditions (R1) and (S2).

Proof: First assume that R is normal. Let P be a prime ideal in R of
height one. Then RP is a one-dimensional integrally closed domain. By
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Proposition 4.1.1, the maximal ideal of RP is principal, so that RP is a regular
local ring. Thus R satisfies (R1). Now let P be a prime ideal of height at
least 2. As RP is an integrally closed domain of dimension at least 2, there
exists x ∈ P that is a non-zerodivisor in RP . By Proposition 4.1.1, PRP is
not associated to xRP , so that there exists an element y ∈ P such that x, y
is a regular sequence in RP . Thus R satisfies (S2).

Assume that R satisfies (R1) and (S2). By Theorem 4.5.2, R is reduced.
We need to show that for every prime ideal P in R, RP is an integrally closed
domain. As R is reduced, so is RP . We first show that RP is integrally closed
in its total ring of fractions. Let x, y ∈ RP be non-zero elements such that
y is not in any minimal prime ideal of RP and x/y is integral over RP . Set
I = yRP :RP

x, an ideal of RP . By assumption (S2), all the associated primes
of I have height one. Let Q be an associated prime ideal of I. As RQ satisfies
(R1),

x
y ∈ RQ, so that IQ = RQ, and that contradicts the hypothesis that

Q was associated to I. Thus I has no associated primes, so that I = RP .
This means that x is an RP -multiple of y, so x

y ∈ RP , and so RP is integrally
closed. Hence by Corollary 2.1.13, RP is a domain.

In geometric terms, this says in particular that a normal variety of di-
mension d has singular locus of dimension at most d − 2 (and it is a closed
subscheme, by Theorem 4.4.9).

Definition 4.5.4 Let R be a ring. The singular locus of R is the set of all
P ∈ SpecR such that RP is not regular.

Let (R,m) → (S, n) be a flat local homomorphism of Noetherian local rings.
We assume familiarity with the following facts:
(1) If S is regular (respectively Cohen–Macaulay), so is R;
(2) If R and S/mS are regular (respectively Cohen–Macaulay), then S is also

regular (respectively Cohen–Macaulay).

Theorem 4.5.5 Let (R,m) → (S, n) be a flat local map of Noetherian local
rings, and let k be in N.
(1) If S satisfies Serre’s condition (Rk), respectively (Sk), so does R.
(2) If R and all κ(P )⊗R S with P ∈ Spec(R) satisfy Serre’s condition (Rk),

respectively (Sk), so does S.

Proof: Let P ∈ SpecR be of height at most k. Let Q ∈ SpecS be minimal
over PS. By Proposition B.2.3, htQ = htP ≤ k. Thus SQ satisfies Serre’s
condition (Rk), respectively (Sk). In either case, SQ is Cohen–Macaulay.
Then by the remark above, since RP → SQ is faithfully flat, RP also satisfies
Serre’s condition (Rk), respectively (Sk).

Now let Q ∈ SpecS have height at most k. Let P = Q∩R. Since PS ⊆ Q,
by Proposition B.2.3, htP ≤ htQ ≤ k. By assumption RP and κ(P ) ⊗R S
satisfy Serre’s condition (Rk), respectively (Sk). Again, the conclusion follows
from the remark above.
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Corollary 4.5.6 Let (R,m) → (S, n) be a local flat homomorphism of Noe-
therian local rings. Then S is normal if and only if R and all the fibers
κ(P )⊗R S are normal, as P varies over the prime ideals of R.

Proof: Apply the theorem above and Theorem 4.5.3.

Checking Serre’s conditions on an arbitrary ring may be an impossible task,
as a property has to be checked for each of the possibly infinitely many prime
ideals. However, for localizations of finitely generated algebras over a field
the task is reduced to a finite task by using the Jacobian ideals:

Theorem 4.5.7 (Serre’s conditions) (Matsumoto [201, Proposition 2]) Let
R be a Noetherian ring and J an ideal in R such that V (J) is exactly the
singular (non-regular) locus of R. (For example, if k is a perfect field, R is
a localization of an equidimensional finitely generated k-algebra, and J the
Jacobian ideal of this extension.) Then for any integer r, J has grade at least
r if and only if R satisfies (Rr−1) and (Sr).

Proof: Suppose that J has grade at least r. If P is a prime ideal of height
at most r − 1, then J 6⊆ P , so that by assumption RP is regular. Thus R
satisfies (Rr−1). If a prime ideal P contains J , it has grade at least r, so
depthRP ≥ r. If a prime ideal P does not contain J , then RP is regular, so
again depthRP = htP . Thus R satisfies (Sr).

Conversely, assume that R satisfies (Rr−1) and (Sr). By assumption that
V (J) is the singular locus and that the condition (Rr−1) holds, J has height
at least r. Hence by assumption (Sr), J has grade at least r.

An immediate corollary of this theorem and of Theorems 4.5.2 and 4.5.3 is
as follows:

Corollary 4.5.8 (Matsumoto [201, Corollary 3]) Let R be a Noetherian
ring, K its total ring of fractions, and J an ideal in R such that V (J) is the
singular locus of R. Then
(1) R is reduced if and only if the grade of J is at least one, and
(2) R is a direct product of normal domains if and only if J has grade at

least two, which holds if and only if 0 :R J = 0 and R :K J = R.

A consequence is about the normal locus of a ring, which we define next.

Definition 4.5.9 The set of all prime ideals P in a ring R for which RP is
normal is called the normal locus of R.

Corollary 4.5.10 Let R be a Noetherian domain, and S a module-finite
extension domain of R. Assume that there exists a non-zero element f ∈ R
such that Sf is normal. Then the subset of SpecR consisting of those prime
ideals P for which SP is normal is open in SpecR.

Proof: Let Q1, . . . , Qr be the prime ideals in S minimal over fS such that SQi

does not satisfy (R1). Set Pi = Qi ∩R. Then SPi
does not satisfy (R1). Let
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T1 be the closed subset of SpecR consisting of the prime ideals that contain
one of the Pi. If P ∈ T1, as SPi

does not satisfy (R1), neither does SP . If
instead P ∈ SpecR such that SP does not satisfy (R1), then for some prime
ideal Q in S of height one such that Q∩(R\P ) = ∅, SQ does not satisfy (R1).
Thus SQ is not integrally closed, so necessarily f ∈ Q, and Q is minimal over
fS. Thus Q = Qi for some i, so Q contains Pi, and Pi ⊆ P . This proves that
P ∈ T1 if and only if SP does not satisfy Serre’s condition (R1).

Let T2 be the closed subset of SpecR consisting of those prime ideals that
contain one of the embedded prime ideals of the R-module S/fS. By assump-
tion on normality of Sf , for any prime ideal P in R, P ∈ T2 if and only if SP
does not satisfy Serre’s condition (S2).

Thus T1 ∪ T2 is a closed subset of SpecR consisting of those prime ideals
P for which SP does not satisfy either (R1) or (S2), i.e., for which SP is not
normal. Thus SpecR \ (T1 ∪ T2) is open.
Corollary 4.5.11 Let R be a Noetherian domain whose normal locus is
non-empty and open. Then the integral closure of R is module-finite over R
if and only if for each maximal ideal m in R, the integral closure of Rm is
module-finite over Rm.

Proof: By assumption there exists f ∈ R such that Rf is normal. For each
maximal ideal m in R let S(m) be a finitely generated R-module contained inR
such that S(m)m = Rm. As S(m)f = Rf , by Corollary 4.5.10, the normal locus
of S(m) is open. Set Tm = {P ∈ SpecR |S(m)P is integrally closed}. Then
m ∈ Tm and by Corollary 4.5.10, Tm is open in SpecR. Thus ∪mTm is an open
subset of SpecR that contains every maximal ideal, whence ∪mTm = SpecR.
As SpecR is quasi-compact, there exist maximal ideals m1, . . . ,mr such that
∪ri=1Tmi

= SpecR.
Set S =

∑r
i=1 S(mi). Then S is a module-finite extension of R contained

in R. Let P ∈ SpecR. Then P ∈ Tmi
for some i, so that S(mi)P is normal.

Thus S(mi)P = RP = SP . It follows that S is the integral closure of R.

4.6. Affine and Z-algebras

In this section we develop some criteria for module-finiteness via completion,
and prove that finitely generated algebras over fields and over Z that are
domains have module-finite integral closures.

Lemma 4.6.1 Let R be a semi-local Noetherian domain and let x be a
non-zero element contained in every maximal ideal of R. Assume that for
all P ∈ Ass(R/xR), RP is a one-dimensional integrally closed ring and the
completion of R/P with respect to its Jacobson radical is reduced. Then the
completion of R is reduced.

Proof: Let P1, . . . , Pr be the prime ideals associated to R/xR. By Proposi-
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tion 4.1.1, for each i = 1, . . . , r, there exists yi ∈ Pi such that yiRPi
= PiRPi

.

Let Qi1, . . . , Qini
be the associated prime ideals of R̂/PiR̂. By assumption,

R̂/PiR̂ is reduced, so the Qij are minimal over PiR̂ and PiR̂ = ∩ni

j=1Qij .

Thus QijR̂Qij
= PiR̂Qij

= yiR̂Qij
, and yi is a non-zerodivisor in R̂. Thus the

maximal ideal in RQij
is principal generated by a non-zerodivisor, so that by

Proposition 4.1.3, R̂Qij
is a one-dimensional integrally closed domain.

Clearly, these Qij are all the minimal prime ideals over xR̂. Let Q ∈
Ass(R̂/xR̂). As R/xR → R̂/xR̂ is flat, non-zerodivisors on R/xR map to

non-zerodivisors on R̂/xR̂, so that Q ∩R is contained in some Pi. As Pi has
height 1, necessarily Q ∩ R = Pi. Then Q contains yi. Since the depth of
R̂Q is one and yi is a non-zerodivisor in Q it follows that Q is also associated

to yiR̂. Set W to be the multiplicatively closed set R \ Pi. Then W−1Q

is associated to yiW
−1R̂ = PiW

−1R̂, which is a radical ideal with minimal
primes Qi1, . . . , Qini

. Thus Q is one of the minimal primes over xR̂, and

Ass(R̂/xR̂) = {Qij | i, j}. Write xR̂ = ∩qij , where qij is Qij-primary. Let

ϕij be the natural map R̂ → R̂Qij
. Then kerϕij ⊆ qij , so ∩i,j kerϕij ⊆ xR̂.

For any y0 ∈ ∩i,j kerϕij , write y0 = y1x for some y1 ∈ R̂. As x is a non-

zerodivisor in R̂, necessarily y1 ∈ ∩i,j kerϕij . By repeating this argument,

y0 ∈ ∩nxnR̂ = 0. Thus ∩i,j kerϕij = 0. If r ∈ R̂ and rn = 0, then 0 =

ϕij(r
n) = ϕij(r)

n, and as R̂Qij
is a domain, necessarily ϕij(r) = 0. As this

holds for all i, j, r = 0. Thus R̂ is reduced.

With this we can prove a criterion for module-finiteness:

Corollary 4.6.2 Let R be a Noetherian semi-local domain, with Jacobson
radical m. Let R̂ be the m-adic completion of R.
(1) If R̂ is reduced, then R is a module-finite extension of R.
(2) If for every P ∈ SpecR the integral closure of R/P in any finite field

extension of κ(P ) is a module-finite extension of R/P , then R̂ is reduced.

Proof: Assume that R̂ is reduced. Let Min(R̂) = {P1, · · · , Pn}. As in Corol-

lary 2.1.13, the integral closure R̂ of R̂ is R̂/P1×· · ·×R̂/Pn. By Theorem 4.3.4
the integral closure of a complete semi-local domain is a module-finite ex-

tension, so that R̂ is module finite over R̂/P1 × · · · × R̂/Pn, and hence it

is module-finite over R̂. Let K be the total ring of fractions of R. Then
R ⊆ R ⊆ K. Since R̂ is faithfully flat over R, R̂ ⊆ R⊗R R̂ ⊆ K ⊗R R̂. Every
non-zerodivisor on R is a non-zerodivisor on R̂, so K ⊗R R̂ is contained in
the total ring of fractions of R̂. Therefore the elements of R ⊗R R̂ are in the
total ring of fractions of R̂ and are integral over R̂, so they are contained in

R̂, which implies that R⊗R R̂ is a finitely generated R̂-module. But R̂-module
if faithfully flat over R, so necessarily R is module-finite over R.

Now assume that for all P ∈ SpecR, the integral closure of R/P in any
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finite field extension of κ(P ) is module-finite over R. If the dimension of R is

zero, there is nothing to prove: R̂ = R is a field. So assume that dimR > 0.
By assumption R is module-finite over R, so R̂ ⊆ R̂ ⊗R R, which is the
completion of R in the topology defined by the Jacobson radical of R.

For every prime ideal Q in R, R/Q is module-finite over R/(Q∩R). Let L be
a finite field extension of κ(Q). Then L is a finite field extension of κ(Q∩R),
so by assumption the integral closure of R/(Q ∩ R) and thus of R/Q in L
is module-finite over R/(Q ∩ R). Thus R satisfies the same hypotheses on
integral closures as does R.

Let x be a non-zero element contained in every maximal ideal of R. Let
P ∈ Ass(R/xR). As R is integrally closed, by Proposition 4.1.1, P is minimal
over xR, so the height of P is one. Hence RP is a one-dimensional integrally
closed local domain. As dim(R/P ) < dimR, by induction on dimension the

completion of R/P is reduced. By Lemma 4.6.1, R̂ is reduced. As R̂ ⊆ R̂, it

follows that R̂ is reduced.

An example for which the conclusion of (1) in Corollary 4.6.2 holds but the
hypothesis does not is in Exercise 4.11.

Theorem 4.6.3 Let R be a domain that is a finitely generated algebra over
a field. Let K be the field of fractions of R and L a finite field extension of K.
Then the integral closure of R in L is module-finite over R.

Proof: By Theorem 4.2.2 (Noether normalization), R is module-finite over a
polynomial subring A = k[x1, . . . , xm] in m variables over a subfield k. The
integral closure R of R in L is the integral closure of A in L, A is integrally
closed, and L is a finite extension over k(x1, . . . , xm). If the characteristic of
k is zero, by Theorem 3.1.3, R is module-finite over A and hence over R.

Now suppose that the characteristic of k is p > 0. By standard field theory
there exists a finite extension L′ of L such that the extension k(x1, . . . , xm) ⊆
L′ can be factored with k(x1, . . . , xm) ⊆ F ⊆ L′, where k(x1, . . . , xm) ⊆ F is
purely inseparable, and F ⊆ L′ is separable algebraic. By possibly enlarging F

and L′, we may assume that F is the field of fractions of k′[x1/p
e

1 , . . . , x
1/pe

m ] for
some non-negative integer e and some purely inseparable finite field extension
k′ of k. If the integral closure of A in L′ is module-finite, so is the integral
closure of A in L. Thus it suffices to assume that L = L′. It also suffices
to prove that the integral closure of k′[x1/p

e

1 , . . . , x
1/pe

m ] in L is module-finite.
But as L is a separable extension of F , this follows by Theorem 3.1.3.

We will also prove the analogous result for finitely generated Z-algebras.

Theorem 4.6.4 Let A be a Noetherian integrally closed domain satisfying
the following properties:
(1) The field of fractions has characteristic 0.
(2) For every non-zero prime ideal p in A, and every finitely generated (A/p)-

algebra R that is a domain, the integral closure of R in a finite field
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extension L of the field of fractions of R is module-finite over R.
Let R be a domain that is finitely generated over A. Let K be the field of
fractions of R and L a finite field extension of K. Then the integral closure
of R in L is module-finite over R.

Proof: Let p be the kernel of the map A→ R. If p is not zero, the conclusion
follows from assumption (2). Thus without loss of generality A ⊆ R. By
Theorem 4.2.4, there exist a finitely generated polynomial ring B over A
contained in R and an element f ∈ B such that Bf ⊆ Rf (localization at
one element) is an integral extension. By Exercise 2.3, B is integrally closed.
Let C be the integral closure of B in L. Then L is the field of fractions of
C, and by the characteristic assumption L is a finite separable extension of
Q(R) = Q(Rf ) ⊇ Q(Bf) = Q(B). By Theorem 3.1.3, C is module-finite
over B. Then R[C] is module-finite over R, and it suffices to prove that the
integral closure of R[C] is module-finite over R[C].

Thus we may rename R[C] to be R: this new R contains an integrally closed
finitely generated A-algebra C, R is finitely generated over C, Rf = Cf , and
the fields of fractions of R and C coincide. Under these assumptions we need
to prove that the integral closure of R is module-finite over R. By induction
on the number of generators of R over C without loss of generality R = C[x].

As, Cf = Rf , by Corollary 4.5.10, the normal locus of R is open, and as R
is a domain, the normal locus of R is non-empty. Thus by Corollary 4.5.11
it suffices to prove that for every maximal ideal Q in R, RQ is module-finite
over RQ. Choose a maximal ideal Q in R.

First assume that x ∈ Q. We claim that, with X being a variable over C,
the kernel J of the natural map C[X ] → C[x] = R is generated by elements
of the form aX − b, where ax = b: any element of the kernel can be written
in the form anX

n+ · · ·+ a0 for some ai ∈ C. Then anx is integral over C, so
b = anx ∈ C. By subtracting Xn−1(anX − b) from anX

n + · · ·+ a0 we get a
polynomial in the kernel of degree strictly smaller than n, and an induction
establishes our claim. Hence

R

xR
∼= C[X ]

XC[X ] + J
=

C[X ]

XC[X ] + I
∼= C

I
,

where

I = xC ∩ C = {b ∈ C | there exists a ∈ C such that ax = b}.

Let P ∈ Ass(R/xR), P ⊆ Q. Set p = P ∩ C. As R/xR ∼= C/I, then
p ∈ Ass(C/I). If x = a

b
for elements a, b ∈ C, then as C-modules, xC ∩ C is

isomorphic to aC ∩ bC, so that as C is integrally closed, by Proposition 4.1.1,
all the associated primes of I = xC∩C have height one. Thus p has height one,
and as C is integrally closed, Cp is a one-dimensional regular ring by Serre’s
conditions. As Cp ⊆ RP have the same field of fractions, necessarily Cp = RP .
By induction on dimension, R/P has the property that for every quotient
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that is a domain, its integral closure is a module-finite extension. Thus by
Corollary 4.6.2, the completion of (R/P )Q is reduced. By Lemma 4.6.1, the
completion of RQ is reduced, and then by Corollary 4.6.2, the integral closure
of RQ is module-finite over RQ.

It remains to prove that RQ is module-finite over RQ whenever x 6∈ Q. As
Q is a maximal ideal in C[x], there exists q ∈ Q and a ∈ C[x] such that
ax+ q = 1. Write a =

∑r
i=0 bix

i for some bi ∈ C. Then q = 1−∑r
i=0 bix

i+1,
and necessarily at least one bi is not in Q, so that that there exists a monic
polynomial f(X) ∈ CQ∩C [X ] such that f(x) ∈ QRQ∩C. Let L′ be a finite
field extension of the field of fractions of R that contains all the roots of
f(X). Let C′ be the integral closure of CQ∩C in L′. By Theorem 3.1.3, C′ is
module-finite over CQ∩C . Set R′ = C′[x] = R[C′], and let M be a maximal
ideal in R′ containing Q. As f(x) ∈ QR′ ⊆ M , there exists ai ∈ C′ such
that x − ai ∈ M . Then R′ = C′[x − ai], the fields of fractions of R′ and
C′ are identical, C′ is a localization of an integrally closed finitely generated
A-algebra, and C′

f = R′
f . Thus by the previous case, as x − ai ∈ M , the

integral closure of R′
M is module-finite over R′

M . Thus by Corollaries 4.5.10
and 4.5.11, R′

Q is module-finite over R′
Q. But R

′ is module-finite over RQ∩C ,

and R is a submodule of R′, so that RQ is module-finite over RQ.

Corollary 4.6.5 Let R be a finitely generated Z-algebra that is an integral
domain. Let L be a finite field extension of the field of fractions of R. Then
the integral closure of R in L is module-finite over R.

Proof: By Theorem 4.6.3, the hypotheses of Theorem 4.6.4 are satisfied by
A = Z. Thus the conclusion of Theorem 4.6.4 holds.

For an alternate proof via Krull domains modify Exercise 9.7.

4.7. Absolute integral closure

There is the concept of the “largest” integral extension:

Definition 4.7.1 Let R be a reduced ring with finitely many minimal prime
ideals, let K = K1 × · · · ×Ks be the total ring of fractions of R, and for each
i = 1, . . . , s, let Ki be an algebraic closure of Ki. We define the algebraic
closure of K to be K = K1×· · ·×Ks, and we define the absolute integral
closure of R to be the integral closure R+ of R in K.

Clearly R+ is the smallest ring contained in K that contains all the roots
in K of all the monic polynomials in one variable with coefficients in R. As K
is unique up to isomorphism, similarly, R+ is unique up to isomorphism. If S
is any integral extension of R that is contained in K, then S is a subring of
R+. If R is a domain, the field of fractions of R+ is K, hence algebraically
closed. The absolute integral closure is rarely Noetherian (see Exercise 4.2).

Discussion 4.7.2 Let R be an integrally closed domain with an alge-
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braically closed field of fractions. For example, R could be the integral closure
of a domain in an algebraic closure of its field of fractions. Let {Pi}i∈I be
an arbitrary family of prime ideals of R. Then

∑
i Pi is either a prime ideal

or it is equal to R. This remarkable property was first discovered by Michael
Artin in [15], and a simpler proof, that we give below, is from Hochster and
Huneke [127].

The proof reduces at once to a finite family of primes, and then by induction
to the case of two primes, P and P ′. Suppose that xy ∈ P+P ′. Let z = y−x,
so that x2 + zx = a + b with a ∈ P and b ∈ P ′. The equation T 2 + zT = a
has a solution t ∈ R, and since t(t+ z) ∈ P , either t ∈ P or t + z ∈ P . Now
x2 + zx = t2 + zt + b, and so (x − t)(x + t + z) = b ∈ P ′, so that either
x− t ∈ P ′ or x+ t+ z ∈ P ′. Since x = (x− t) + t = (x+ t+ z)− (t+ z) and
x+ z = (x− t) + (t+ z) = (x+ t+ z)− t, we see that in all four cases, either
x ∈ P + P ′ or y = x+ z ∈ P + P ′, as required.

The absolute integral closure of a Noetherian local ring is contained in the
absolute integral closure of the completion (modulo nilradicals). Part of the
following is from Nagata [215, 33.10]:

Proposition 4.7.3 Let R be a semilocal reduced Noetherian ring, R̂ its
completion with respect to the Jacobson radical, T = (R̂)red, and T the integral
closure of T . Let K be the total ring of fractions of R and L the total ring of
fractions of T . Then K ⊆ L and

T ∩K = R.

Write L = L1 × · · · × Ls, where each Li is a field. Set L = L1 × · · · × Ls,
where Li denotes an algebraic closure of Li. Let K be the algebraic closure
of K in L. Let T+ denote the integral closure of T in L, and R+ the integral
closure of R in K. Then

T+ ∩K = R+.

Proof: Let Min(R̂) = {Q1, . . . , Qs}. Then T ⊆ R̂/Q1 × · · · × R̂/Qs, and the
two rings have the same integral closure. As R is reduced, the composition
R →֒ R̂ →→ T is an inclusion. Every non-zerodivisor x of R is a non-zerodivisor
in T , for otherwise x is contained in some Qi, which contradicts the flatness
of the map R → R̂. Thus K is contained in L.

By possibly reindexing we have that Li is the field of fractions of the com-
plete Noetherian integral domain R̂/Qi. Let T i be the integral closure of R̂/Qi
in Li, and T+

i the integral closure of T i in Li. Clearly T = T1 × · · · × Ts,
T+ = T+

1 × · · · × T+
s , R ⊆ T ∩K, and R+ ⊆ T+ ∩K.

If x
y
∈ T ∩K, with x, y non-zero elements of R and y not in any minimal

prime ideal of R, then x ∈ yT . Since x, y ∈ R, by Proposition 1.6.1 the image
of x in T is in the integral closure of yT , whence by Proposition 1.1.5 the
image of x in R̂ is in the integral closure of yR̂, and by Proposition 1.6.2,
x ∈ yR, whence by Propositions 1.6.1 and 1.5.2, x ∈ yR. Thus x

y ∈ R, which
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proves that R = T ∩K.
Now let α ∈ T+ ∩ K. Since K is the total ring of fractions of R+, there

exist x, y ∈ R+ such that y is not in any minimal prime ideal of R+ and
such that α = x

y
. Let R′ be the subring of R+ generated over R by x and y.

Since R′ is a module-finite extension of R, it is Noetherian. By Lemma 2.1.7,
each maximal ideal m′ in R′ contracts to a maximal ideal in R, and by the
Incomparability Theorem (2.2.3), m′ is minimal over (m′ ∩ R)R′. Since R′

is Noetherian, for every maximal ideal m of R, there are only finitely many
prime ideals in R′ minimal over mR′, which shows that R′ is semilocal. Let T ′

be obtained from R′ in the same way that T is constructed from R. Since
R̂ ⊆ R̂′ is module-finite, necessarily T ⊆ T ′ and T+ ⊆ (T ′)+. Since y is not
in any minimal prime ideal of R+, it is not in any minimal prime ideal of
R′, and so not in any minimal prime ideal of T ′. Thus α ∈ Q(T ′) is integral
over T and hence over T ′, so that α ∈ T ′. Thus α ∈ Q(R′) ∩ T ′, and by the
previous paragraph, α ∈ R′. It follows that α ∈ R+.

More on the absolute integral closure is in Section 16.7. See also Exer-
cises 4.3 and 4.4.

4.8. Finite Lying-Over and height

If R ⊆ S are rings and S is Noetherian, then certainly for every prime ideal P
in R there exist at most finitely many prime ideals Q in S that are minimal
over PS. In particular, if R ⊆ S is in addition an integral extension so that
the Incomparability property holds, then for every P , there exist only finitely
many prime ideals Q in S that contract to P . In this section we prove that
the finite Lying-Over property holds more generally, and that under some
conditions the heights are preserved.

First note that arbitrary integral extension do not have this finite Lying-
Over property: C[X ] ⊆ S = C[X1/n |n = 1, 2, . . .] is an integral extension.
For each positive integer n, if un1, . . . , unn denote the nth roots of unity in C,
then each X1/n−uni is a factor of X − 1 in S. Thus (X1/n−uni)S ∩C[X ] =
(X − 1)C[X ], and there exists a prime ideal Q in S that contains X1/n − uni
and contracts to (X − 1)C[X ]. For each n, a proper ideal in S can contain at
most one such factor, for otherwise this proper ideal has to contain the non-
zero complex number uni−unj = (X1/n−unj)− (X1/n−uni). Thus S must
have at least n prime ideals contracting to (X−1)C[X ]. But n was arbitrary,
so that S contains infinitely many prime ideals that lie over (X − 1)C[X ].

Finite Lying-Over holds over a complete Noetherian local domain:

Lemma 4.8.1 If (R,m) is a complete Noetherian local domain, then R+

(the integral closure of R in an algebraic closure of the field of fractions of R)
has only one maximal ideal.

Proof: Write R+ = ∪Ri, where each Ri is module-finite over R. By the
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module-finite assumption, Ri is complete in the m-adic topology and Noe-
therian. By Proposition 4.3.2 each Ri is a direct product of rings correspond-
ing to the maximal ideals of Ri. Since each Ri is a domain, there can be only
a unique maximal ideal mi of Ri. Clearly then R+ has a unique maximal ideal
that is the union of all the mi.

For non-complete rings there is a weaker version of the finite Lying-Over:

Proposition 4.8.2 Let R be a reduced Noetherian ring, and K = K1×· · ·×
Ks its total ring of fractions, with each Ki a field. For each i = 1, . . . , s, let
Li be a finite field extension of Ki. Let S be contained in the integral closure
of R in L = L1 × · · · × Ls. Then for any prime ideal P of R, there are only
finitely many prime ideals in S that contract to P .

If R is an integral domain, the number of prime ideals in the integral closure
of R that contract to P is at most the number of minimal prime ideals in the
P -adic completion of RP .

An integral domain R′ is said to be almost finite over a subdomain R if
R′ is integral over R and the field of fractions of R′ is finite algebraic over
the field of fractions of R. In [111, Theorem 2], Heinzer proves that if R is a
Noetherian domain and R′ is an almost finite extension domain of R, then R′

has a Noetherian spectrum, meaning in particular that for every ideal I in R′,
the set of prime ideals in R′ minimal over I is finite. This result of Heinzer’s
implies the first statement of the proposition above. The first statement also
follows if R is integrally closed by using Exercises 2.6 and 2.8. We give a
different proof below, which in addition gives the second statement.

Proof of Proposition 4.8.2: By the set-up, R has only finitely many minimal
prime ideals. We label them as P1, . . . , Ps, with Pi = ker(R → Li). By
Lying-Over, we may assume that S is the integral closure of R in L.

Let Si be the integral closure of R/Pi in Li. By Corollary 2.1.13,

R ⊆ (R/P1)× · · · × (R/Ps) ⊆ S1 × · · · × Ss = S

are all integral extensions. Clearly there are only finitely many prime ideals
in (R/P1) × · · · × (R/Ps) that contract to P . If we can prove that for each
i = 1, . . . , s, every prime ideal of R/Pi is the contraction of only finitely many
prime ideals in Si, then by the structure of prime ideals in direct sums, every
prime ideal in R contracts from only finitely many prime ideals in S. Thus by
working with each R/Pi instead of with R, without loss of generality we may
assume that R is a Noetherian domain, with field of fractions K, and that L
is a finite field extension of K.

Let s1, . . . , sn ∈ S such that L = K(s1, . . . , sn). Set R′ = R[s1, . . . , sn].
Then R′ is module-finite over R, and the field of fractions of R′ is L. By
the Incomparability Theorem (Theorem 2.2.3), every prime ideal in R′ that
contracts to P in R has to be minimal over PR′, and as R′ is Noetherian,
there are only finitely many such prime ideals in R′. Thus it suffices to prove
that each prime ideal in R′ is contracted from only finitely many prime ideals
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in S. This reduces the proof to showing that whenever R is a Noetherian
domain with field of fractions K, if S is the integral closure of R, then a
prime ideal P in R is contracted from at most finitely many prime ideals in S.

We may in addition assume that R is local. As SR\P is the integral closure
of RP in L, and as the set of prime ideals in S contracting to P is, after
localization at R \P , the same as the set of prime ideals in SR\P contracting
to PRP , without loss of generality we may replace R by the localization of R
at P and assume that R is a Noetherian local domain with maximal ideal P .

Let Q1, . . . , Qr be the minimal prime ideals in the P -adic completion R̂ of
R. Set Ti = R̂/Qi, T = T1×· · ·×Tr. Then Ti is a complete local domain. By
Theorem 4.3.4, Ti has only one maximal ideal, i.e., exactly one prime ideal
contracting to PTi. It follows that T has exactly r prime ideals contracting
to P in R.

We claim that there are at most r prime ideals in R that contract to P .
Suppose not. Let P1, . . . , Pr+1 be distinct prime ideals in R that contract to
P . By the Incomparability Theorem (Theorem 2.2.3), there are no inclusion
relations among the Pi. Thus for all i, j ∈ {1, . . . , r + 1} with i 6= j, there
exists aij ∈ Pi \ Pj . Let B = R[aij | i, j]. Then B is a module-finite ring
extension of R contained in R ⊆ K. Set pi = Pi∩B. By the choice of the aij ,
all the pi are distinct, and they all contract to P in R. A prime ideal in B
contracts to P if and only if it is a maximal ideal, and this holds if and only
if it is minimal over PB. But B is Noetherian, so that there are only finitely
many prime ideals in B contracting to P . Let n be the number of these prime
ideals. We have proved that n ≥ r + 1.

The completion B̂ of B in the P -adic topology is the direct sum of n rings.
Also, R̂ ⊆ B̂ ∼= B ⊗R R̂ ⊆ K ⊗R R̂. Observe that R̂/

√
0 ⊆ K ⊗R (R̂/

√
0),

as non-zero elements in R are non-zerodivisors on R̂. The image B′ of B̂ in
K ⊗R (R̂/

√
0) is generated by the aij over R̂/

√
0, so it is integral over R̂/

√
0.

As K⊗R (R̂/
√
0) lies in the total ring of fractions of R̂/

√
0, it follows that B′

lies in T . By Lying-Over for B′ ⊆ T , B′ has at most r maximal ideals. But
B′ = B̂/

√
0, so that B itself has at most r maximal ideals.

Observe that the proof above shows even more:

Lemma 4.8.3 Let R be a Noetherian local domain with maximal ideal P .
Let Q be a prime ideal in R that contracts to P . Let T be the integral closure
of R̂/

√
0. Then Q is the contraction of a maximal ideal in T.

Proof: We use notation as in the previous proof. Since B′ ⊆ T is an integral
extension, every maximal ideal in B′ is contracted from a maximal ideal in
T . The maximal ideals in B′ correspond to maximal ideals in B. By Propo-
sition 4.7.3, B ⊆ T , so that every maximal ideal in B is contracted from a
maximal ideal in T . By construction of B, there is a one-to-one correspon-
dence between maximal ideals in R and B (via contraction), so that as R ⊆ T ,
every maximal ideal in R is contracted from a maximal ideal in T .
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Lemma 4.8.4 Let R be a Noetherian domain and Q a prime ideal in the
integral closure R of R. Then there exist a finitely generated R-algebra ex-
tension C ⊆ R and a prime ideal P in C such that Q is the only prime in R
contracting to P .

In particular, htP = htQ and RQ is the integral closure of CP .

Proof: Let q = Q ∩ R. By Proposition 4.8.2 there are only finitely many
prime ideals in R that contract to q. Let Q = Q1, . . . , Qr be all such prime
ideals. Choose an element x ∈ Q\(Q2∪· · ·∪Qr). Set C = R[x] and P = C∩Q.
Then R ⊆ C ⊆ R and by construction Q is the only prime ideal in R that
contracts to P . Thus CP ⊆ RC\P is a local module-finite extension, so that

htP = dim(CP ) = dim(RC\P ) = htQ. Also, as R is integrally closed, so is

RC\P , hence RQ is the integral closure of CP .

The following is adapted from Nagata [215, 33.10]:

Proposition 4.8.5 Let R be a reduced Noetherian ring, K its total ring of
fractions, and K the algebraic closure of K. Let L be a module-finite extension
of K contained in K and S a subring of the integral closure of R in L. For
any prime ideal P of R and any prime ideal Q in S lying over P , κ(P ) ⊆ κ(Q)
is a finite field extension.

Proof: By the structure theorem of integral closures of reduced rings (Corol-
lary 2.1.13), it is easy to reduce to the case where R is an integral domain, L
is a field, and S is the integral closure of R in L. By localizing at R \ P , we
may assume that R is local with maximal ideal P .

As L is finitely generated over the field of fractions of R, it is even generated
by finitely many elements of S. Let R′ be the subring of S generated over R
as an algebra by these finitely many generators. Then R′ is Noetherian, with
the same field of fractions as S, and module-finite over R, so that R/P =
κ(P ) ⊆ κ(Q∩R′) = R′/(Q∩R′) is a finite field extension. Thus it suffices to
prove that κ(Q∩R′) ⊆ κ(Q) is a finite field extension, and so we may replace
R by R′ and assume that S is the integral closure of R. Again, by localizing,
we may assume that R is local with maximal ideal P .

By Lemma 4.8.3, if T is the integral closure of R̂/
√
0, Q is the contraction

of a prime ideal M in T . Then κ(PR̂) = κ(P ) ⊆ κ(Q) ⊆ κ(M), so that

it suffices to prove that κ(PR̂) ⊆ κ(M) is a finite field extension. But this

is clear as R̂/
√
0 → T is a module-finite extension by Corollary 2.1.13 and

Theorem 4.3.4.

We saw in Example 2.2.6 that even if R ⊆ S is a module-finite extension
of Noetherian rings, it can happen that for a prime ideal Q in S, htQ 6=
ht(Q ∩R). The following proposition gives a condition for equality:

Proposition 4.8.6 Let R be a Noetherian integral domain that satisfies the
dimension formula. Let S be an integral extension of R contained in a finite
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field extension of the field of fractions of R. Then for any prime ideal Q in S,
ht(Q) = ht(Q ∩R).
Proof: Set P = Q∩R. By the Incomparability Theorem, ht(P ) ≥ ht(Q). By
Proposition 4.8.2, there exist only finitely many prime ideals Q1, . . . , Qs in S
minimal over PS. By the Incomparability Theorem, there are no inclusion
relations among the Qi and after renumbering, Q = Q1. For each i 6= j, let
rij ∈ Qi \ Qj . Let R′ = R[rij]. Then R′ is module-finite over R and Q′

i =
Qi ∩R′ are incomparable prime ideals in R′, all contracting to P in R. As R
satisfies the dimension formula and R′ is module-finite over R, ht(P ) = ht(Q′

i)
for all i. Thus it suffices to prove that ht(Q′

1) = ht(Q1). Let W = R′ \ Q′
1.

Then W is a multiplicatively closed subset of R′, W−1R′ ⊆ W−1S is an
integral extension of rings, W−1R′ is Noetherian local of dimension ht(P ),
and all the maximal ideals of W−1S contract to Q′

1W
−1R′ in R′ and thus to

P in R. As W contains an element r ∈ Q′
2 ∩ · · · ∩Q′

s \Q′
1, necessarily W

−1S
has only one maximal ideal, namely QW−1S. Thus ht(Q) = ht(QW−1S) =
dimW−1S = dimW−1R′ = ht(Q′

1W
−1R′) = ht(Q′

1) = ht(P ).

See Example 2.2.6 showing that the locally formally equidimensional as-
sumption above is necessary.

4.9. Dimension one

The previous sections showed that many Noetherian domains have module-
finite integral closures. However, not every Noetherian domain has this prop-
erty. Already in dimension one the integral closure of a Noetherian integral
domain need not be a module-finite extension, see Example 4.9.1 below. Nev-
ertheless, the integral closure of a one-dimensional Noetherian domain and
even of a two-dimensional Noetherian domain is always Noetherian. This was
proved by Krull and Akizuki for dimension one and by Nagata for dimension
two. In this section we prove the case of dimension one: the result is stronger
for dimension one and the proof is more accessible. We postpone proving the
case of dimension two until introducing Krull domains, and all this is done in
Section 4.10.

We first give an example of a non-local one-dimensional Noetherian ring for
which the integral closure is not a module-finite extension. A local example,
due to Nagata, is in Exercise 4.8.

Example 4.9.1 Let k be a field and X1, X2, . . . variables over k. Let
A be the subring k[Xn

n , X
n+1
n |n = 1, 2, . . .] of the polynomial ring S =

k[X1, X2, . . .]. The rings A and S are certainly not Noetherian. Let W be the
subset of A consisting of all polynomials that, as elements of S, do not have
any variable as a factor. Then W is a multiplicatively closed subset of A. Set
R =W−1A. It is straightforward to verify that the only prime ideals in R are
0 and Pn = (Xn

n , X
n+1
n )R as n varies over positive integers. All of these prime
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ideals are finitely generated, so that R is Noetherian and of dimension one. It
is clear that the integral closure of R is W−1S. This is not module-finite over
R as for each n, after localizing at Pn, (W

−1S)R\Pn
is minimally generated

by n elements over RPn
. We leave verification to the reader.

Thus the integral closure of a one-dimensional Noetherian domain need
not be a module-finite extension. However, the integral closure of a one-
dimensional Noetherian domain is still Noetherian. This follows from the
more general result of Krull and Akizuki:

Theorem 4.9.2 (Krull–Akizuki) Let R be a one-dimensional Noetherian
reduced ring with total ring of fractions K. If S is any ring between R and
K, with S 6= K, then S is one-dimensional and Noetherian. In particular,
the integral closure of R is one-dimensional and Noetherian.

Proof: Let P1, . . . , Pr be the minimal prime ideals of R. For each i = 1, . . . , r,
let Ki be the field of fractions of R/Pi. We know that K = K1×· · ·×Kr. Let
Ji be the kernel of the composition map S → K → Ki, so that R/Pi ⊆ S/Ji ⊆
Ki. If the theorem holds for integral domains, then S/Ji is Noetherian for all
i. Furthermore, the dimension of S/Ji is 1 if S/Ji 6= Ki and is 0 otherwise.
As J1 ∩ J2 ∩ · · · ∩ Jr = 0, it follows that S is Noetherian. Clearly S has
dimension at most 1 and has dimension 0 exactly when each S/Ji = Ki.
Thus by assumption S has dimension 1.

Hence it suffices to prove the theorem under the assumption that R is an
integral domain. We first prove that any non-zero ideal I in S is finitely
generated. As I is a non-zero ideal, there exists a non-zero element a ∈ I ∩R.
The images of the set of ideals {anS ∩R + aR}n form a descending chain of
ideals in the Artinian ring R/aR, so that there exists an integer l such that
for all n ≥ l, (anS ∩R) + aR = (an+1S ∩R) + aR.

Claim: alS ∈ al+1S +R.
Note that it suffices to prove the claim after localization at each maximal

ideal m of R, so that without loss of generality we may assume that R is a
local ring with maximal ideal m. If a is a unit, there is nothing to show, so
we may assume that a ∈ m. Let x be a non-zero element in S. Write x = b

c
for some non-zero b, c ∈ R. Then there exists an integer n ≥ l such that
m
n+1 ⊆ cR ⊆ 1

xR. In particular, an+1x ∈ R. Thus an+1x ∈ an+1S ∩ R ⊆
an+2S ∩R+ aR, so that anx ∈ an+1S+R. Now let n be the smallest integer
greater than or equal to l such that anx ∈ an+1S +R. If n > l, then

anx ∈ (an+1S +R) ∩ anS = an+1S + anS ∩R
⊆ an+1S + an+1S ∩R + aR = an+1S + aR,

so that an−1x ∈ anS+R, contradicting the minimality of n. This proves that
n = l. Thus

S

aS
∼= alS

al+1S
⊆ al+1S +R

al+1S
∼= R

al+1S ∩R,
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so that S/aS has finite length as an R-module. In particular, the image of I in
S/aS is finitely generated, hence I is finitely generated. This proves that S is
Noetherian. Furthermore, the display above shows that S/aS has dimension
zero, so S has dimension one.

The Krull–Akizuki Theorem fails in dimension 2 or higher. For exam-
ple, let k be a field, X and Y variables over k, and R = k[X, Y ]. Then

S = k[X, Y
X
, Y

2

X3 ,
Y 3

X7 , . . . ,
Y n

X2n−1 , . . .] is a ring between R and Q(R) that is not

Noetherian (the maximal ideal (X, Y n

X2n−1 |n) is not finitely generated).
Nevertheless, the integral closure of a two-dimensional Noetherian domain

is still Noetherian. We give a proof of this fact that uses Krull domains, so
we only present it in the section on Krull domains. See Theorem 4.10.7.

Here is a strengthening of the Krull–Akizuki Theorem:

Proposition 4.9.3 Let R be a reduced Noetherian ring, S its integral clo-
sure, and Q a prime ideal in S such that S/Q has dimension 1. Then S/Q is
Noetherian.

Proof: Let P = Q ∩ R. Then R/P ⊆ S/Q is an integral extension, so
that dim(R/P ) = dim(S/Q) = 1. By Proposition 4.8.5, κ(P ) ⊆ κ(Q) is a
finite field extension. Thus there exist finitely many elements s1, . . . , sm ∈
S such that κ(Q) is generated over κ(P ) by the images of these si. Let
R′ = R[s1, . . . , sm]. Then R′ is Noetherian and S is its integral closure. Set
P ′ = Q ∩R′. Then R′/P ′ ⊆ S/Q is an integral extension and κ(P ′) = κ(Q).
Thus by the Krull–Akizuki Theorem, S/Q is Noetherian.

Lemma 4.9.4 Let R be a Noetherian domain, K its field of fractions, and
Q a prime ideal of height one in the integral closure R of R. Then RQ is a
one-dimensional integrally closed Noetherian local domain. Moreover, there
exist a finitely generated R-algebra extension C ⊆ R and a prime ideal P of
height one in C such that RQ is the integral closure of CP .

Proof: By Lemma 4.8.4 there exist a finitely generated R-algebra extension
C ⊆ R and a prime ideal P in C such that RQ is the integral closure of CP .
Then htP = dimCP = dim(RQ) = htQ = 1. The rest is the Krull–Akizuki
Theorem (Theorem 4.9.2).

Lemma 4.9.5 Let R be a Noetherian domain and let R be the integral closure
of R. If Q is a height one prime ideal of R and q = Q∩R, then depthRq = 1.

Proof: By localization we may assume that q is the unique maximal ideal of
R. By Lemma 4.9.4 there exists a module-finite R-subalgebra C ⊆ R such
that if P = Q ∩ C, then Q is the unique prime lying over P and furthermore
the height of P is 1. Since C is module-finite over R, J = R :R C 6= 0.
Choose a non-zero element x ∈ J . If J 6⊆ P , then CP = R(= Rq) and so R
has dimension one, whence depthRq = 1. Now assume that J ⊆ P . Suppose
for contradiction that depthR > 1. Choose y ∈ q that is a non-zerodivisor on
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R/xR. Let P = P1, . . . , Pk be the primes in C that are minimal over xC. Since√
xC = P1 ∩ · · · ∩Pk, we can choose b ∈ P2 ∩ · · · ∩Pk \P1 such that byn ∈ xC

for some n. Since xC ⊆ R, we find that (xbC)yn = x(bynC) ⊆ x(xC) ⊆ xR.
Because y is a non-zerodivisor on R/xR, it follows that xbC ⊆ xR and thus
bC ⊆ R. Then b is in J , a contradiction as b /∈ P .

4.10. Krull domains

Integral closures of Noetherian domains need not be Noetherian, see Nagata’s
examples in the exercises. Nevertheless, integral closure of Noetherian do-
mains has some good Noetherian-like properties, as will be proved below. In
particular, in such rings there is a primary decomposition of principal ideals.

Definition 4.10.1 An integral domain R is a Krull domain if
(1) for every prime ideal P of R of height one, RP is a Noetherian integrally

closed domain,
(2) R = ∩ht(P )=1RP , and
(3) every non-zero x ∈ R lies in at most finitely many prime ideals of R of

height one.

Krull domains need not be Noetherian. They are always integrally closed
because for each prime ideal P of height one in R, RP is integrally closed,
hence their intersection R is integrally closed.

Proposition 4.10.2 Let R be a Krull domain. If α is in the field of fractions
of R, and I is an ideal in R of height at least two such that αI ⊆ R, then
α ∈ R.

Proof: For any prime ideal P in R of height 1, α ⊆ αIRP ⊆ RP . Thus by
assumptions, α ∈ ∩PRP = R.

Primary decomposition in non-Noetherian rings is not easy to come by, but
principal ideals in Krull domains have a simple primary decomposition:

Proposition 4.10.3 Let R be a Krull domain and x a non-zero element
of R. Let P1, . . . , Ps be all the prime ideals in R of height one containing x.
Then xR = ∩i(xRPi

∩ R) is a minimal primary decomposition of xR. In
particular, principal ideals in Krull domains have no embedded primes.

Proof: Let I = ∩i(xRPi
∩ R) and y ∈ I. Then y

x ∈ RPi
for all i = 1, . . . , s.

Furthermore, if P is any other prime ideal in R of height one, then y
x
∈ RP .

Thus by the second property of Krull domains, y
x ∈ R, so that y ∈ xR.

This proves that I = xR. Furthermore, as each Pi has height one, RPi
is

Noetherian and xRPi
is primary, so that xR = ∩i(xRPi

∩ R) is a minimal
primary decomposition of xR.

A partial converse holds:
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Proposition 4.10.4 An integrally closed Noetherian domain is Krull.

Proof: Let R be an integrally closed Noetherian domain. Properties (1) and
(3) of Krull domains are clear.

The inclusion R ⊆ ∩ht(P )=1RP is straightforward. To prove the other
inclusion let α ∈ ∩ht(P )=1RP . Write α = x

y for some x, y ∈ R, with y 6= 0.
Consider the ideal J = yR :R x. For every prime ideal P of R of height 1,
x
y ∈ RP , so that JRP = RP . Thus J is not contained in any height one
prime ideal of R. The associated prime ideals of J are contained in the set
of associated primes of yR and by Proposition 4.1.1, all of these prime ideals
are of height 1. This forces J to have no associated primes, i.e., J is forced
to be the unit ideal. Thus x ∈ yR, so α ∈ R.

A much stronger result is the following result of Mori and Nagata proving
that the integral closure of a Noetherian domain is a Krull domain.

Theorem 4.10.5 (Mori–Nagata) The integral closure R of a reduced Noe-
therian ring R in its total ring of fractions is a direct product of r Krull
domains, where r is the number of minimal prime ideals of R.

Proof: Let P1, . . . , Pr be the minimal prime ideals of R. Then the total ring
of fractions of R is K1×· · ·×Kr, where Ki is the field of fractions of R/Pi. By
Corollary 2.1.13, the integral closure of R is the direct product of the integral
closures of the R/Pi in Ki. Thus it suffices to prove that each integral closure
of R/Pi is a Krull domain. This reduces the proof to the case where R is a
Noetherian domain.

By Lemma 4.9.4, R satisfies the first property of Krull domains.
For an arbitrary non-zero x ∈ R, there exists a non-zero y ∈ R such that

yx ∈ R. Lemma 4.9.5 proves that the contractions of height-one primes
minimal over xyR are among the associated primes of xyR. There are only
finitely many such contracted ideals. By Proposition 4.8.2 there are then only
finitely many prime ideals in R that lie over these contractions, so that xy
and hence x are contained in only finitely many prime ideals of R of height
one. This proves that R satisfies the third property.

It remains to prove that R satisfies the second property of Krull domains.
Suppose that the second property holds for R if R is a local domain. Then
Rm =

⋂
P (Rm)P , where P varies over all the height-one prime ideals in Rm.

Since Rm is a localization of R, each such (Rm)P is a localization of R at a
unique corresponding prime ideal Q in R of height one. Also, every prime
ideal Q in R of height one contracts to a prime ideal in R contained in some
maximal ideal m of R, whence RQ is a localization of Rm at a height-one prime
ideal. Thus

⋂
m
Rm =

⋂
QRQ, where Q varies over all the height-one prime

ideals in R, and m varies over all the maximal ideals in R. Clearly R ⊆ Rm

for each maximal ideal m. If α ∈ ⋂
m
Rm, then the ideal (R :R α) is not

contained in any maximal ideal of R, hence it must contain 1, whence α ∈ R.
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This proves that R =
⋂

m
Rm as m varies over all the maximal ideals of R,

whence by what we already proved, R =
⋂
QRQ, where Q varies over all the

height-one prime ideals in R. Thus it remains to prove the second property
of Krull domains for R under the assumption that R is a local domain.

Let R̂ be the completion of R in the topology determined by the maximal
ideal. Let Q1, . . . , Qs be all the minimal prime ideals in R̂. Set Ti = R̂/Qi.
By Proposition 4.7.3, R embeds canonically in T = T1 × · · · × Ts, the field
of fractions K of R is contained in the total ring of fractions L of T , and
R = T ∩ K. Certainly R ⊆ ∩QTQ as Q varies over all the height-one prime
ideals in T . Now let α ∈ ∩QTQ ∩ K. By the form of prime ideals in direct
sums, for each i = 1, . . . , s, α ∈ ∩Q(T i)Q, where Q varies over all the height-
one prime ideals in T i. By Theorem 4.3.4 and by Proposition 4.10.4, T i is a
Krull domain, so that α ∈ T i for all i. By Proposition 2.1.16, α ∈ T (the role
of R in that proposition is played by T here, and the role of S is played by
L). Hence α ∈ T ∩ K = R. This proves that R =

⋂
Q(TQ ∩ K), where Q

varies over height-one prime ideals in T .
We next prove that for any non-zero element b in R and any prime ideal P

in R containing b there exists a height-one prime ideal in R contained in P
and containing b. Let S0 consist of the height-one prime ideals in T that
contain b. Then S0 is a finite set, and bR =

⋂
Q(bTQ∩R) = ⋂Q∈S0

(bTQ∩R).
Each bTQ is primary, hence so is each bTQ ∩R, and by possibly merging and
omitting we get an irredundant primary decomposition bR = q1 ∩ · · · ∩ qs,
with each

√
qi contracted from at least one prime ideal in T . By Lemma 4.8.4

there exists a Noetherian ring A between R and R such that with p = P ∩A,
RP is the integral closure of Ap. Note that A[b] is Noetherian and that the
integral closure of A[b]P∩A[b] is RP , so by possibly changing notation we may

assume that b ∈ A. By Propositions 1.6.1 and 1.5.2, bAp = bRP ∩ Ap =
bRP ∩Ap, which is the intersection of all the qiRP ∩Ap. Since A is Noetherian,
bAp has height one, whence some qiRP ∩ Ap has height one. It follows by
Theorem B.2.5 (Dimension Inequality) that ht qiRP ≤ 1, and so qi ⊆ P and
ht qi ≤ 1. Since b ∈ qi, necessarily qi and the prime ideal

√
qi have height one.

We next prove that for any non-zero b in R, all primary components of
bR have height 1. We use notation as in the previous paragraph. Suppose
for contradiction that the height of p1 =

√
q1 is not 1. By Exercise 4.30,

Rp1 =
⋂
(TQ ∩K), where Q varies over those height-one prime ideals of T for

which Q∩R ⊆ p1. First suppose that each such Q contains b. Then (Rp1)b =⋂
((TQ)b∩K) = K, so that b is contained in every non-zero prime ideal of Rp1 .

By the established third property of Krull domains, this means that Rp1
has only finitely many height-one prime ideals. By the Prime Avoidance
Theorem (A.1.1), there is x ∈ p1 not contained in any of these height-one
prime ideals, contradicting the previous paragraph. Thus necessarily there is
a height-one prime ideal Q0 in T such that Q0 ∩ R ⊆ p1 and b 6∈ Q0. Set



92 4. Noetherian rings

P = Q0 ∩ R. Since the given primary decomposition of bR is contracted
from a primary decomposition in a Noetherian ring, pt1 ⊆ q1 for some positive
integer t. By irredundancy there is a possibly smaller positive integer t such
that pt1 ∩ q2 ∩ · · · ∩ qs ⊆ bR and pt−1

1 ∩ q2 ∩ · · · ∩ qs 6⊆ bR. Let c ∈ pt−1
1 ∩

q2 ∩ · · · ∩ qs \ bR. Then cP ⊆ cp1 ⊆ bR. As b is a unit in TQ0
, it follows

that c
b
P ⊆ R ∩ Q0 = P . We will get a contradiction when we prove that

c
b ∈ R, thus establishing that all primary components of bR have height one.

Namely, for any d ∈ P and any positive integer n, ( cb )
nd ∈ P ⊆ R. By

Proposition 4.1.3, for each height-one prime Q in T , there is y ∈ T such that
yTQ = QTQ, and we can write d = uyi and c

b = vyj for some integers i, j and

some units u, v in TQ. Since ( c
b
)nd = uvnyi+nj ∈ TQ, necessarily i + nj ≥ 0

for all n, whence j ≥ 0, which says that c
b ∈ TQ. Since this holds for all Q,

we get that c
b ∈ R, which is the needed contradiction.

It follows that bR = ∩P bRP ∩ R, as P varies over height-one primes con-
taining b, or even as P varies over all the height-one prime ideals in R.

If a
b
∈ ∩PRP , where P varies over the height-one prime ideals in R, then

a ∈ ∩P bRP ∩R = bR, so a
b ∈ R. This finishes the proof of the theorem.

We prove two strong consequences of the Mori–Nagata Theorem.

Theorem 4.10.6 (Nagata) The integral closure of a two-dimensional Noe-
therian domain is Noetherian.

Proof: Let R be a two-dimensional Noetherian domain. By Theorem 4.10.5,
R is a Krull domain. By Proposition 4.9.3, for every non-zero prime ideal P
of R, R/P is Noetherian. The theorem follows by applying the next theorem
of Mori and Nishimura, Theorem 4.10.7.

Theorem 4.10.7 (Mori–Nishimura Theorem) Let R be a Krull domain such
that R/P is Noetherian for all prime ideals P of height one. Then R is
Noetherian.

Proof: Let P be a prime ideal of height one. Choose a ∈ P \ R ∩ P 2RP .
As R is a Krull domain, a is contained in only finitely many prime ideals
of height one, say in P, P1, . . . , Pm. For each i = 1, . . . , m, let bi ∈ Pi \ P
such that biRPi

= aRPi
. Then x = a/(b1 · · · bm) ∈ RP has the property that

x ∈ PRP \P 2RP , and that x is not in any QRQ as Q varies over other prime
ideals of height one.

Let n be a positive integer. As (xnR[x]∩R)P = PnRP , then x
nR[x]∩R ⊆

PnRP ∩ R. Let y ∈ PnRP ∩ R = xnRP ∩ R. Choose s ∈ R \ P such that
sy ∈ xnR. Write sy = rxn for some r ∈ R. Then for any height-one prime
ideal Q 6= P , rxn = sy ∈ sRQ∩R implies that r ∈ sRQ∩R. As r ∈ RP = sRP
and as R is a Krull domain, then r ∈ sR. Hence y ∈ xnR ∩R ⊆ xnR[x] ∩R,
which proves that xnR[x] ∩R = PnRP ∩R.

Thus Pn+1RP ∩R is the kernel of the composition PnRP ∩R →֒ xnR[x] →
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(xnR[x])/(xn+1R[x]). It follows that (PnRP ∩ R)/(Pn+1RP ∩ R) is an R-
submodule of (xnR[x])/(xn+1R[x]) ∼= R[x]/xR[x] ∼= R/P , whence it is a
Noetherian R-module. Then the short exact sequences

0 −→ PnRP ∩R
Pn+1RP ∩R −→ R

Pn+1RP ∩R −→ R

PnRP ∩R −→ 0

together with induction on n prove that each R/(PnRP ∩R) is Noetherian.
Let a be an arbitrary non-zero element of R. As R is a Krull domain, by

Proposition 4.10.3, aR has a primary decomposition ∩i(aRPi
∩ R) for some

finitely many prime ideals Pi of height one. As RPi
is a Dedekind domain,

aiRPi
= Pni

i RPi
for some positive integer ni. By above, each R/(Pni

i RPi
∩

R) is Noetherian, so that R/(a) is Noetherian. As a was arbitrary, R is
Noetherian.

Thus the integral closure of Noetherian domains of dimension at most two is
a Noetherian ring (but not a necessarily module-finite extension). However,
the integral closure of a three-dimensional Noetherian domain need not be
Noetherian; see Nagata’s example in Exercise 4.9.

4.11. Exercises

4.1 Let R be a Noetherian domain, S an integral extension contained in
a finite field extension of the field of fractions of R, and Q a prime
ideal in S. Prove that there exists a module-finite extension R′ of R
contained in S such that R′

Q∩R′ ⊆ SR′\(Q∩R′) = SQ.
4.2 Let R be an integral domain that is not a field whose field of fractions

is algebraically closed. Prove that R is not Noetherian.
4.3 Let R be an integrally closed domain with algebraically closed field of

fractions. Suppose that qi is primary to a prime Pi in R for every i.
Suppose that P =

∑
i Pi is a proper ideal (necessarily a prime ideal,

by Discussion 4.7.2). Prove that
∑
i qi is primary to P .

4.4 Let R be a domain. Prove that for any multiplicatively closed subset
W of R, (W−1R)+ = W−1(R+), and that for any prime ideal P
in R+, R+/P = (R/(P ∩R))+.

4.5 (Generalized Jacobian criterion) Let A be a regular ring and R a
quotient of a polynomial ring over A by a radical ideal L all of whose
minimal prime ideals have the same height such that A is a subring
of R. Let J be the Jacobian ideal of R over A. Prove that V (J)
contains the singular locus of R. (See for example [202, Theorem
30.4].)

4.6 (Abhyankar and Moh [8]) Let K ⊆ L be fields of characteristic zero,
X a variable over L, and

∑∞
i=0 aiX

i ∈ L[[X ]] integral over K[[X ]].
Prove that [K(ai | i ≥ 0) : K] <∞.

4.7 (Nagata [215, page 206]) Let k be a field of positive prime character-
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istic p. Let X1, . . . , Xn be variables over k. Set R to be the subring
of k[[X1, . . . , Xn]] generated by kp[[X1, . . . , Xn]][k]. Prove that R is a
regular local ring whose completion equals k[[X1, . . . , Xn]].

4.8 (Nagata) Let k be a field of positive prime characteristic p that is an
infinite-dimensional vector space over the subfield kp = {xp |x ∈ k}.
Let b1, b2, . . . be a countable subset of k of elements that are linearly
independent over kp. Let X be a variable over k and c =

∑
n bnX

n.
Set R to be the subring of k[[X ]] generated by kp[[X ]][c] and k.
(i) Prove that R is a one-dimensional Noetherian local domain.
(ii) Prove that R is not finitely generated over R.
(iii) Prove that Q(R) is a finitely generated R-algebra.

4.9 ([215, Example 5, page 209]) Let k be a field of characteristic 2
that is an infinite-dimensional vector space over the subfield k2 =
{x2 |x ∈ k}. Let b1, b2, . . . be a countable subset of k such that for
all n, [k2(b1, . . . , bn) : k

2] = 2n. Let X, Y, Z be variables over k and
d = Y

∑
n>0 b2nX

n + Z
∑
n≥0 b2n+1X

n. Set R to be the subring of

k[[X, Y, Z]] generated by k2[[X, Y, Z]][k][d].
(i) Prove that R is a three-dimensional Noetherian local domain.
(ii) Prove that the integral closure of R is not Noetherian.

4.10 Let R and X be as in the previous exercise. Prove that the integral
closure of R in R[ 1X ] is not Noetherian.

4.11 ([215, Appendix] or [214]) Let k0 be a perfect field of characteristic 2,
X, Y,X1, Y1, X2, Y2, . . . variables over k0, k = k0(X1, Y1, X2, Y2, . . .),
set A = k2[[X, Y ]][k], f =

∑∞
i=1(XiX

i + YiY
i), and R = A[f ].

(i) Prove that R is a normal Noetherian local ring whose completion
contains non-zero nilpotent elements. (Cf. Corollary 4.6.2 (1).)

(ii) Prove that R is a module-finite extension of A.
(iii) Prove that k2[[X, Y, Z]][k] has module-finite integral closure, but

that some quotient of it does not.
4.12 Let R be a Noetherian domain, with field of fractions K and integral

closure R. Prove that {P ∈ SpecR |P = (R :R x) for some x ∈ K}
equals {Q ∩R |Q ∈ SpecR, htQ = 1}.

4.13 Prove that a Krull domain is a Dedekind domain if and only if after
localization at each maximal prime ideal it is a principal ideal domain.

4.14 Prove that a one-dimensional Noetherian domain is a Krull domain
if and only if it is a Dedekind domain.

4.15 Let R be a Krull domain. Prove that the integral closure of R in a
finite field extension of the field of fractions of R is a Krull domain.

4.16 Let R be a Krull domain. Prove that the polynomial ring (resp.,
power series ring) in finitely many variables over R is a Krull domain.

4.17 Let R be a reduced Noetherian ring and R its integral closure. Let I
be an ideal in R of height at least 2 and α in the total ring of fractions
of R such that Iα ⊆ R. Prove that α ∈ R.
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4.18 Let (R,m) be a one-dimensional reduced Noetherian local ring. Prove

that R is module-finite over R if and only R̂ is reduced.
4.19 Prove that any unique factorization domain is a Krull domain.
4.20 The purpose of this exercise: to construct a Noetherian domain R that

is essentially of finite type over C, with maximal ideal m of positive
height d, a prime ideal P strictly contained in m such that the m-
adic completion R̂ has two minimal primes p1, p2 with dim(R̂/p1) =

dim(R̂/p2) = d and PR̂+ p1 is mR̂-primary.
Let S = C[X1, . . . , Xd] be a polynomial ring over C, let m1,m2 be
distinct maximal ideals in S, and J = m1 ∩m2. Set R = C+ J .
(i) Prove that R is a Noetherian domain, finitely generated over C,

and that m = J is a maximal ideal of R.
(ii) Prove that S is the integral closure of R and that m1 and m2

are the only prime ideals in S lying over m.
(iii) Prove that the integral closure of R̂ equals Ŝm1

× Ŝm2
. Let pi be

the kernel of the natural map R̂ → Ŝmi
. Prove that R̂ has two

minimal primes, p1 and p2, both of dimension d.
(iv) Prove that R has an isolated singularity at m, i.e., that for any

prime ideal p strictly contained in m, Rp is regular.
(v) Assume that d ≥ 2. Show that there exists a prime ideal Q in S

such that dim(S/Q) = 1 and Q ⊆ m2, Q 6⊆ m1. Set P = Q ∩R.
Prove that P is a prime ideal strictly contained in m and that
PR̂+ p1 is mR̂-primary.

4.21 Let R be a Noetherian domain satisfying Serre’s condition (R1).
(i) LetM be a finitely generated R-module that satisfies the condi-

tion that for each prime ideal P in R, the PRP -grade on MP is
at least min{2, htP}. Prove that HomR(HomR(M,R), R) (M ’s
R-double dual) is isomorphic to M .

(ii) Assume that S is a module-finite extension domain. Prove that
HomR(HomR(S,R), R) is a subring of S containing R.

(iii) (Vasconcelos [306]) Let S be a module-finite extension of R that
is a domain and that satisfies Serre’s condition (R1). Prove that
HomR(HomR(S,R), R) is S.

4.22 Let R be a finitely generated algebra over a perfect field k. If R is a
domain that satisfies (S2), prove that HomR(J

−1, J−1) satisfies (S2),
where J is the Jacobian ideal of R over k.

4.23 Let R be a Noetherian domain and R the integral closure of R in its
field of fractions. Let I be a non-zero ideal in R.
(i) Prove that if I is a radical ideal contained in an associated prime

of R/R, then HomR(I, I) properly contains R.
(ii) Prove that if I is an ideal not contained in any associated prime

of R/R, then HomR(I, I) = R.
4.24* (Ulrich [45]) (Ulrich’s proof uses canonical modules) Let (R,m) be a
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Cohen–Macaulay local ring, I an m-primary ideal and J an ideal in I
that is a complete intersection. Prove that J : (J : I) ⊆ I.

4.25 (Tate) Let R be a Noetherian integrally closed domain and x a non-
zero element ofR. Assume that xR is a prime ideal, thatR is complete
and separated in the topology determined by xR, and that the integral
closure of R/xR in any finite field extension of κ(xR) is module-finite
over R/xR. Prove that the integral closure of R in any finite field
extension of Q(R) is module-finite over R.

4.26* (Zariski’s Main Theorem) Let R be a ring, S a finitely generated R-
algebra, R the integral closure of R in S. Let Q be a prime ideal in
S, P = Q ∩ R, and P = Q ∩ R. Assume that SQ/PSQ is a finitely
generated module over κ(P ).
(i) Suppose that S = R[x]. Prove that x is integral over RP .

(ii) Prove that RP = SR\P = SQ. (Hint: Use induction on the

number of algebra generators of S over R.)
(iii) Prove that there exists f ∈ R \Q such that Sf = Rf .

4.27* (Zariski’s Main Theorem, version by Evans [75]) Let R be a ring, S
a finitely generated R-algebra and T an integral extension of S such
that R is integrally closed in T . Let Q ∈ Spec T such that the image
of Q in κ(Q ∩R)⊗R T is a minimal and maximal prime ideal. Prove
that there exists s ∈ R \ (Q ∩R) such that Ts = Rs.

4.28* (Zariski’s Main Theorem, version in [215, Theorem (37.4)]) Let (R,m)

be a Noetherian normal local domain whose m-adic completion R̂ is
a domain. Let (R′,m′) be a Noetherian local ring in Q(R) containing
R such that
(i) m

′ ∩R = m,
(ii) R′/m′R is finite over R/m,
(iii) dimR′ = dimR.
Prove that R = R′.

4.29* (Abhyankar [7]) Let d be a positive integer, k a field, and (R,m) a
d-dimensional domain that is essentially of finite type over k. Let K
be the field of fractions of R and L a finite algebraic extension. Let
Ω be a set of d-dimensional normal local domains (S, n) with field of
fractions L such that n ∩ R = m, S/n is finite algebraic over R/m,
and mS is n-primary. (Ω could be the set of all localizations of the
integral closure of R in L. Why?) Then |Ω| ≤ [L : K].

4.30 Let R be a domain contained in a field L. Assume that R =
⋂
V ∈S V ,

where S is a collection of one-dimensional integrally closed Noetherian
domains contained in L such that every non-zero element of R is a
non-unit in at most finitely many elements of S. Prove that for any
multiplicatively closed subset W of R, W−1R =

⋂
V ∈S0

V , where S0

consists of those elements V of S in which all elements ofW are units.
4.31 Prove that a localization of a Krull domain is a Krull domain.
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4.32 Let R be a Krull domain (not necessarily Noetherian). Prove that
every principal ideal in R has primary decomposition, all of whose
associated primes have height one.





5

Rees algebras

5.1. Rees algebra constructions

Definition 5.1.1 Let R be a ring, I an ideal and t a variable over R. The
Rees algebra of I is the subring of R[t] defined as

R[It] =

{
n∑

i=0

ait
i
∣∣n ∈ N; ai ∈ Ii

}
= ⊕
n≥0

Intn,

and the extended Rees algebra of I is the subring of R[t, t−1] defined as

R[It, t−1] =

{
n∑

i=−n
ait

i
∣∣n ∈ N; ai ∈ Ii

}
= ⊕
n∈Z

Intn,

where, by convention, for any non-positive integer n, In = R.

For every ideal J of R,

J ⊆ JR[It] ∩R ⊆ JR[It, t−1] ∩R ⊆ JR[t, t−1] ∩R = J,

so that equality holds throughout. Thus every ideal of R is contracted from
an ideal of R[It] and R[It, t−1]. Also,

R

J
⊆ R[It]

JR[t, t−1] ∩R[It] ⊆
R[It, t−1]

JR[t, t−1] ∩R[It, t−1]
⊆ R[t, t−1]

JR[t, t−1]
,

where the two rings in the middle are isomorphic to the Rees algebra, respec-
tively the extended Rees algebra, of the image of I in R/J . In particular, if P
is a minimal prime ideal of R, then PR[t, t−1]∩R[It] and PR[t, t−1]∩R[It, t−1]
are minimal prime ideals in their respective rings. Any nilpotent element of
R[It] or R[It, t−1] is also nilpotent in R[t, t−1], so it lies in ∩PPR[t, t−1], as
P varies over the minimal prime ideals of R. Thus all the minimal prime
ideals of the two Rees algebras are contracted from the minimal prime ideals
of R[t, t−1], each of which is of the form PR[t, t−1], for some minimal prime
ideal P of R. Thus

dimR[It] = max

{
dim

(
R

P

[
I + P

P
t

]) ∣∣∣∣ P ∈ MinR

}
, (5.1.2)

dimR[It, t−1] = max

{
dim

(
R

P

[
I + P

P
t, t−1

]) ∣∣∣∣ P ∈ MinR

}
. (5.1.3)

Theorem 5.1.4 Let R be a Noetherian ring and I an ideal of R. Then
dimR is finite if and only if the dimension of either Rees algebra is finite. If
dimR is finite, then
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(1) dimR[It] =





dimR + 1, if I 6⊆ P for some prime ideal P
with dim(R/P ) = dimR,

dimR, otherwise.

(2) dimR[It, t−1] = dimR + 1.
(3) If m is the unique maximal ideal in R, and if I ⊆ m, then mR[It, t−1] +

ItR[It, t−1] + t−1R[It, t−1] is a maximal ideal in R[It, t−1] of height
dimR + 1.

Proof: First we compute dim(R[It]). By Equation (5.1.2), it suffices to prove
that for an integral domain R, dimR[It] = dimR if I is the zero ideal and is
dimR + 1 otherwise. Thus we may assume that R is a domain. Dimension
Inequality, Theorem B.2.5, implies that for every prime ideal Q in R[It],
htQ ≤ ht(Q ∩R) + 1 ≤ dimR+ 1, which proves that dimR[It] ≤ dimR+ 1.
Clearly dimR[It] = dimR if I is the zero ideal. So assume that I is non-zero.
Let P0 = ItR[It]. Then P0 ∩R = (0), It ⊆ P0, htP0 > 0, and R[It]/P0

∼= R,
proving that P0 is prime, and that dimR[It] ≥ dimR + 1. This proves (1).

Similarly, by Equation (5.1.3), to verify the equality for dimR[It, t−1], it
suffices to assume that R is a domain. By the Dimension Inequality (Theo-
rem B.2.5), dimR[It, t−1] ≤ dimR+ 1, and the other inequality follows from
dimR[It, t−1] ≥ dimR[It, t−1]t−1 = dimR[t, t−1] = dimR + 1.

Let P0 ( P1 ( · · · ( Ph = m be a saturated chain of prime ideals in R,
with h = htm. Set Qi = PiR[t, t

−1] ∩ R[It, t−1]. As Qi ∩ R = Pi, Q0 ⊆
Q1 ⊆ · · · ⊆ Qh is a chain of distinct prime ideals in R. The biggest one is
Qh = mR[t, t−1] ∩ R[It, t−1] = mR[It, t−1] + ItR[It, t−1], which is properly
contained in the maximal ideal Qh + t−1R[It, t−1]. This proves (3).

There are two other closely related rings:

Definition 5.1.5 The associated graded ring of I is

grI(R) = ⊕n≥0(I
n/In+1) = R[It]/IR[It] = R[It, t−1]/t−1R[It, t−1].

If R is Noetherian local with maximal ideal m, the fiber cone of I is the ring

FI(R) =
R[It]

mR[It]
∼= R

m
⊕ I

mI
⊕ I2

mI2
⊕ I3

mI3
⊕ · · · .

We also denote it as FI . The Krull dimension of FI is also called the analytic
spread of I and is denoted ℓ(I).

Clearly FI = grI(R)/mgrI(R).

Proposition 5.1.6 For any ideal I in (R,m),

ℓ(I) = dimFI ≤ dim(grI(R)) = dimR.

Furthermore, if M is the maximal ideal in grI(R) consisting of all elements
of positive degree and of m/I, then dim(grI(R)) = htM .

Proof: As FI is a quotient of grI(R), dimFI ≤ dimgrI(R). As t−1 is a
non-zerodivisor in R[It, t−1] and grI(R) = R[It, t−1]/t−1R[It, t−1], by Theo-
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rem 5.1.4 (2) we conclude that dim grI(R) ≤ dimR. Let Q = mR[It, t−1] +
ItR[It, t−1] + t−1R[It, t−1]. By Theorem 5.1.4 (3), Certainly dimgrI(R) ≥
dim(grI(R))Q, and by Theorem 5.1.4 (3), dim(grI(R))Q is htQ − 1 = h =
dimR.

Just as the integral closure of ideals reduces to the integral closure of ideals
modulo the minimal prime ideals, the same goes for the analytic spread:

Proposition 5.1.7 Let (R,m) be a Noetherian local ring and I an ideal in
R. Then ℓ(I) = max{ℓ(I(R/P )) |P ∈ Min(R)}.
Proof: By the one-to-one correspondence between minimal prime ideals in R
and minimal prime ideals in R[It],

dimFI = dimR[It]/mR[It]

= max{dim(R/P )[((I + P )/P )t]/m(R/P )[((I + P )/P )t] |P ∈ MinR}
= max{dimFI(R/P ) |P ∈ MinR}.

The associated graded ring can be thought of as the special fiber of the
extended Rees algebra, i.e., the ring one gets by setting t−1 = 0. (Setting t−1

in R[It, t−1] equal to a unit of R is isomorphic to R.) This has an important
effect: for most ring-theoretic properties, if grI(R) has the property, so does
R. For example, let I be an ideal in a Noetherian ring R such that ∩nIn = 0.
If grI(R) is either a reduced ring, an integral domain, or an integrally closed
domain, then R has the corresponding property. We leave the proofs to the
exercises. See Exercise 5.9.

5.2. Integral closure of Rees algebras

We proved in Theorem 2.3.2 that if A ⊆ B is an extension of N-graded rings,
then the integral closure of A in B is also N-graded. Thus in particular, the
integral closure of R[It] in R[t] is

I0 ⊕ I1t⊕ I2t
2 ⊕ I3t

3 ⊕ · · · ,

for some R-submodules Ii of R. These ideals Ii are integrally closed ideals:

Proposition 5.2.1 Let R be a ring and t a variable over R. For any ideal
I in R, the integral closure of R[It] in R[t] equals the graded ring

R⊕ It⊕ I2t2 ⊕ I3t3 ⊕ · · · .
Similarly, the integral closure of R[It, t−1] in R[t, t−1] equals the graded ring

· · · ⊕Rt−2 ⊕Rt−1 ⊕R⊕ It⊕ I2t2 ⊕ I3t3 ⊕ · · · .

Proof: Let S be the integral closure of R[It] in R[t]. By Theorem 2.3.2, S is
an N-graded submodule of R[t]. Denote the graded piece of S of degree k ∈ N

by Sk.
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Let s ∈ Sk, k ∈ N. Write s = skt
k for some sk ∈ R. As s is integral over

R[It], there exist a positive integer n and ai ∈ R[It], i = 1, . . . , n, such that

snk t
kn + a1s

n−1
k tk(n−1) + a2s

n−2
k tk(n−2) + · · ·+ an−1skt

k + an = 0.

Expand each ai =
∑ki
j=0 ai,jt

j , with ai,j ∈ Ij. The homogeneous part of
degree kn in the equation above is exactly

tkn(snk + a1,ks
n−1
k + a2,2ks

n−2
k + · · ·+ an−1,(n−1)ksk + an,nk) = 0.

As ai,ik ∈ Iik, this equation says that sk is integral over the ideal Ik. Thus

Sk ⊆ Iktk. The other inclusion is easy to prove.

With this, as the integral closure of the ring in an overring is integrally
closed in that overring, it follows easily that for every ideal I in R, I is an

ideal and I = I. (Compare with Corollary 1.3.1.)
An extension of rings is integral if and only if it is generated by elements

that are integrally dependent on the subring (see Proposition 2.1.10). Similar
result holds for ideals:

Corollary 5.2.2 For any ideals I ⊆ J in R, every element of J is integral
over I if and only if each element in some generating set of J over I is integral
over I.

It follows that the integral closure of a homogeneous ideal is homogeneous:

Corollary 5.2.3 Let I be a homogeneous ideal in a G-graded ring R, where
G is Zd × Ne. Then I is also G-graded.

Proof: When R is G-graded, then R[It] is G⊕N-graded. By Theorem 2.3.2,
the integral closure of R[It] in R[t] is G⊕N-graded, so that by the structure
of this integral closure, each In is G-graded.

In particular, as already proved in Proposition 1.4.2, the integral closure of
a monomial ideal in a polynomial ring is again a monomial ideal.

One can also compute the absolute integral closure of Rees algebras:

Proposition 5.2.4 Let R be a ring and R the integral closure of R in its
total ring of fractions. The integral closure of R[It] in its total ring of fractions
equals

R ⊕ IRt⊕ I2Rt2 ⊕ I3Rt3 ⊕ · · · ,
and the integral closure of R[It, t−1] in its total ring of fractions equals

· · · ⊕Rt−1 ⊕R ⊕ IRt⊕ I2Rt2 ⊕ I3Rt3 ⊕ · · · .

Proof: Observe that for all n, InR = InR. The integral closure of R[It]
clearly contains R[IRt]. By Proposition 5.2.1, the integral closure of the latter

ring in R[t] is R⊕ IRt⊕ I2Rt2 ⊕ I3Rt3 ⊕ · · · . But R[t] is integrally closed (see
Exercise 2.3), so that integral closure of R[It] is as displayed above.
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The proof of the second part is similar.

Observe that the integral closure of R[It] equals the integral closure of
R[IRt] in R[t], and that the integral closure of R[It, t−1] equals the integral
closure of R[IRt, t−1] in R[t, t−1].

The following is a criterion for when the integral closure of a Rees algebra
is Noetherian:

Proposition 5.2.5 Let R be a Noetherian ring and I an ideal in R. Let S
be the Rees algebra R[It] of I, and T be an N-graded ring containing S. Then
T is module-finite over S if and only if there exists an integer k such that for
all n ≥ k, Tn = In−kTk.

In particular, if T is the integral closure of S in R[t], then T is module-
finite over S if and only if there exists an integer k such that for all n ≥ k,
In = In−kIk.

Proof: First assume that T is module-finite over S. As T is N-graded, there
exist homogeneous generators of T over S of degrees at most k. Then for all
n ≥ k, Tn = Sn−kTk.

Conversely, assume that there exists an integer k such that for all n ≥ k,
Tn = Sn−kTk. Then T = ST0 + ST1 + · · · + STk, so that T is a finitely
generated module over S.

By Proposition 5.2.1, if T is the integral closure of S, then T is N-graded
and Tn = In. The rest follows easily.

5.3. Integral closure of powers of an ideal

Extended Rees algebras help analyze powers of an ideal: since

t−nR[It, t−1] ∩R = In,

many properties of In descend from the corresponding properties of the powers
of the principal ideal t−1R[It, t−1] generated by a non-zerodivisor. Principal
ideals generated by a non-zerodivisor are in general easier to handle.

Similarly, the integral closure of the Rees algebra is used to capture some
properties of the integral closures of powers of an ideal. We present the general
method of descent in this section, and apply it in Section 5.4 to study the
associated primes of the integral closures of powers of an ideal. A lot of the
work on the sets of associated primes of powers and of integral closures of
powers of an ideal was done by Ratliff [229]; Brodmann [27]; McAdam and
Eakin [206]; Katz [158]; McAdam and Ratliff [207]. Katz [158] characterized
the sets for integral closures with asymptotic sequences, which in turn were
first defined by Rees in [236]. A good overview of this area is [205]. Also see
Exercises 5.18–5.20.

Proposition 5.3.1 Let I be an ideal in a ring R, S = R[It, t−1] and S the
integral closure of S in R[t, t−1]. We grade S by giving t degree 1 (therefore
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S is also graded by Theorem 2.3.2).
(1) The ideal t−nS is Z-graded, and the degree m component of t−nS equals

(Im+n ∩ Im)tm.
(2) Also, t−nS is Z-graded in S, and its degree m component equals Im+ntm.

Proof: The ideal t−nS is Z-graded by Corollary 5.2.3. Every element of
degree m in S is of the form rtm for some r ∈ Im. If rtm ∈ t−nS, then there
is an equation of integral dependence (rtm)k + a1(rt

m)k−1 + · · · + ak = 0,
with ai ∈ t−niS. Write ai = bit

−ni, for some bi ∈ S. By looking at terms
of t-degree mk in the equation, without loss of generality bi = cit

(m+n)i for
some ci ∈ I(m+n)i. Thus r is integral over Im+n, and rtm ∈ S implies that
r ∈ (Im+n ∩ Im)tm.

Conversely, if r ∈ Im+n, write rk + c1r
k−1 + · · · + ck = 0 for some ci ∈

I(m+n)i. If, further, r is in Im, then (rtm)k+ c1t
m(rtm)k−1+ · · ·+ cktmk = 0,

and for each i, cit
mi ∈ t−niS. Thus rtm ∈ t−nS. This proves the first part.

By Corollary 5.2.3, t−nS is Z-graded. Let rtm be a homogeneous element
of S that is integral over t−nS. Write

(rtm)k + b1t
−n(rtm)k−1 + b2t

−2n(rtm)k−2 + · · ·+ ckt
(m+n)kt−nk = 0,

for some bi ∈ S. By looking at the terms of degree nk, without loss of
generality bi = cit

i(m+n) ∈ S of t-degree i(m + n). By Proposition 5.2.1,

ci ∈ Ii(m+n). Multiply the equation above through by t−mk. We see that
r is integral over Im+n, so that by Corollary 1.3.1, r ∈ Im+n. Now for any
r ∈ Im+n, let rk+c1r

k−1+ · · ·+ck = 0 be an equation of integral dependence
of r over Im+n. Multiply this equation through by tmk to get an equation of
integral dependence of rtm ∈ Sm over t−nS.

We have already seen that each ideal of R contracts from an ideal in a Rees
algebra. But some ideals in R contract from principal ideals in the extended
Rees algebra:

Proposition 5.3.2 Let I be an ideal in a ring R and t a variable over R.
Let S be the extended Rees algebra R[It, t−1] of I. Then for any n ∈ N,

t−nS ∩R = In and t−nS ∩R = In.

If R is reduced and S the integral closure of S, then also t−nS ∩ S = t−nS.

Proof: Clearly In ⊆ t−nS ∩ R and In ⊆ t−nS ∩ R. If r ∈ t−nS ∩ R, then
r = t−n(rtn), with rtn ∈ Sn, so that necessarily r ∈ In, which proves the first
equality. The second equality follows from Proposition 5.3.1.

If R is reduced, so is S. As t−nS is integrally closed by Proposition 1.5.2,
it follows that t−nS ⊆ t−nS ∩ S. The opposite inclusion holds by Proposi-
tion 1.6.1.

Here are some immediate applications to the associated primes of integral
closures of powers of ideals.
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Proposition 5.3.3 Let I be an ideal in a ring R, and let S = R[It, t−1].
(1) Let P be a prime ideal associated to some In. There exists Q ∈ SpecS

such that Q ∩R = P and Q is associated to t−nS.
(2) For any integer n and Q ∈ Ass(S/t−nS) there exists an integer m ≥ n

such that Q ∩R ∈ Ass(R/Im).
(3) Let S denote the integral closure of S in R[t, t−1]. For every integer n

and Q ∈ Ass(S/t−nS) there exists an integer m ≥ n such that Q ∩ R ∈
Ass(R/Im).

Proof: By Proposition 5.3.2, In contracts from t−nS, and so an irredundant
primary decomposition of t−nS contracts to a possibly redundant primary
decomposition of In. This proves (1).

To prove the rest of the proposition, by localizing at Q ∩ R without loss
of generality we may assume that R is a ring with only one maximal ideal,
that ideal being P = Q ∩ R. First let Q = t−nS : xtr for some x ∈ Ir. By
Proposition 5.3.1, the degree r component of t−nS is (Ir+n ∩ Ir)tr, so that
P = (Ir+n ∩ Ir) : x = Ir+n : x. This proves (2).

If instead Q ∈ Ass(S/t−nS), by Proposition 5.2.1, Q = t−nS : xtr for some
x ∈ Ir. Thus by Proposition 5.3.1, P = In+r : x, so that P ∈ Ass(R/In+r).
This proves (3).

For many of the rings analyzed in this section, the integral closure of Rees
algebras behaves well:

Proposition 5.3.4 Let a domain R be one of the following:
(1) (R,m) is complete local Noetherian,
(2) R is finitely generated over a field or over Z,
(3) or, more generally, R is finitely generated over a Noetherian integrally

closed domain A satisfying the property that every finitely generated A-
algebra has a module-finite integral closure.

Let I be an ideal in R, and S either the Rees algebra of I or the extended Rees
algebra of I. Then the integral closure of S is a module-finite extension of S,
and there exists an integer k such that for all n ≥ k, In = In−kIk.

Proof: By the forms of the integral closures given in Proposition 5.2.4, it
suffices to prove that the integral closure of the Rees algebra S = R[It] is
module-finite over S.

Rings of form (2) are rings of form (3), by Theorem 4.6.3 and by Corol-
lary 4.6.5. Thus if R is of the form (2) or (3), the integral closure S of S is
module-finite over S, and the last statement follows by Proposition 5.2.5.

Now assume that R is of form (1), i.e., that (R,m) is a complete local
domain. Let I = (a1, . . . , ar), and t a variable over R. Let T be the subring
of the ring of formal power series R[[t]] generated over R by power series in
a1t, . . . , art. This is a Noetherian ring, and since it is a subring of R[[t]], it is
a domain.
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Let M be the ideal in T generated by all power series whose constant term
is in m. It is easy to see that T/M = R/m and that the elements of T not in
M are units in T . Thus T is a Noetherian local ring with maximal ideal M.

Claim: T is complete in the M-adic topology.

Proof of claim: An element
∑

i cit
i in T , with ci in R, lies in M

n if for all
i, ci ∈ m

n−iIi. Let {xj}j be a Cauchy sequence in T , with xj =
∑

i cj,it
i,

cj,i ∈ R, and xj − xj+1 ∈ M
j for all j. Hence for all i, cj,i − cj+1,i ∈ m

j−iIi.
It follows that for each i, c1,i, c2,i, c3,i, . . . is a Cauchy sequence in R, with
limit ci an element of Ii. Hence the limit

∑
i cit

i of {xj}j is an element of T .
This proves the claim.

It follows by Theorem 4.3.4 that the integral closure T of T is a module-
finite extension. Clearly T ⊆ R[[t]]. As in Proposition 5.2.4, T =

∏
n≥0 I

ntn.

But finite generation of T over T implies that there exists an integer k such
that for all n ≥ k, In = In−kIk, which is by Proposition 5.2.5 equivalent to
saying that S is module-finite over S.

5.4. Powers and formal equidimensionality

In this section we prove Ratliff’s Theorem that was stated in Chapter 1, and
we also prove its converse. We then expand on the associated primes of powers
of an ideal and on the associated primes of integral closures of powers of an
ideal.

Theorem 5.4.1 (Ratliff [230]) Let R be a locally formally equidimensional
Noetherian ring, and let (x1, . . . , xn) be a parameter ideal, i.e., the height of
(x1, . . . , xn) is at least n. For all m ≥ 1,

(x1, . . . , xn−1)m : xn = (x1, . . . , xn−1)m .

Proof: Set J = (x1, . . . , xn−1). We fix an element r ∈ Jm : xn. If r /∈ Jm,
choose a prime ideal minimal over Jm : r. We can localize at this prime
ideal without changing the assumptions; note that localization commutes with
integral closure. Thus without loss of generality R is a local ring with maximal
ideal m, and some power of m multiplies r into Jm.

Next, pass to the completion to assume that R is a complete Noetherian
local ring. Note that parameters are preserved under passage to completion,

and Proposition 1.6.2 implies that r /∈ JmR̂. Henceforth we assume that R
is complete. We claim that the images of x1, . . . , xn stay parameters after
reducing R modulo an arbitrary minimal prime of R. Let P be a minimal
prime of R, and let Q be a prime ideal that is minimal over P + (x1, . . . , xn).
Since Q contains (x1, . . . , xn), the height of Q is at least n, so there is some
minimal prime P ′ ⊆ Q such that ht(Q/P ′) ≥ n. By Lemma B.4.2, dimR =
dim(R/Q) + ht(Q/P ) and dimR = dim(R/Q) + ht(Q/P ′). Thus ht(Q/P ) =
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ht(Q/P ′) ≥ n, so that modulo each minimal prime ideal, x1, . . . , xn is still a
system of parameters. If r is in the integral closure of the image of Jm modulo
each minimal prime ideal of R, then by Proposition 1.1.5, r ∈ Jm. Hence we
may assume that R is a complete Noetherian local domain. Let R be the
integral closure of R. By Theorem 4.3.4, R is a Noetherian local domain,
module-finite over R. By Corollary B.3.7, R satisfies the dimension formula,
so parameters of R stay parameters in R. If r is in the integral closure of
JmR, then by Proposition 1.6.1, r ∈ Jm.

Thus by changing notation we may assume that (R,m) is a complete Noe-
therian local integrally closed domain, r ∈ Jm : xn, and that m

lr ⊆ Jm for
some l. It remains to prove that r ∈ Jm. If n = 1, this is trivial, so we may
assume that n > 1.

Set S = R[Jt]. Let S denote the integral closure of S inside its field of
fractions. By Proposition 5.3.4, S is module-finite over S. By Corollary B.3.7,
R is universally catenary, so by Theorem 5.1.4, ht(mS) = dimS−dim(S/mS)
as mS is contained in the maximal ideal of S of maximal height. Since S/mS
is the homomorphic image of a polynomial ring over a field in n−1 variables,
it follows that dimS/mS ≤ n − 1. Hence ht(mS) ≥ 2. By Corollary B.3.7
and by Lemma B.3.4, S satisfies the dimension formula, so that ht(mS) ≥ 2.
As S satisfies Serre’s condition (S2), it follows that m

lS contains a regular
sequence of length two. The element rtm is in the field of fractions of S (and
not necessarily in S), and by Proposition 5.2.4, (mlS)(rtm) = (mlr)tmS is
contained in S. Thus by Exercise 4.17, rtm ∈ S, forcing r ∈ (x1, . . . , xn−1)m,
a contradiction.

Corollary 5.4.2 Let R be a locally formally equidimensional Noetherian
ring, and let (x1, . . . , xn) be a parameter ideal, i.e., an ideal with the property
that the height of (x1, . . . , xn) is n. Every associated prime of (x1, . . . , xn)m

has height n.

Proof: By localizing at an associated prime ideal of (x1, . . . , xn)m we may
assume that (R,m) is local and that m is associated to (x1, . . . , xn)m. If the
dimension of R is n, there is nothing to prove. As x1, . . . , xn are parameters,
the dimension of R is at least n. Henceforth we assume that dimR > n and
we will reach a contradiction.

Choose y, xn+1 ∈ R such that m = (x1, . . . , xn)m : y and such that
x1, . . . , xn, xn+1 are parameters. We have that y ∈ (x1, . . . , xn)m : xn+1.
By Theorem 5.4.1, we obtain that y ∈ (x1, . . . , xn)m, a contradiction.

The converse of Ratliff’s Theorem holds as well, and we prove it later in
this section (Theorem 5.4.5).

Corollary 5.4.3 (Ratliff and Rush [231]) Let R be a locally formally equidi-
mensional Noetherian ring, and I = (x1, . . . , xn) a parameter ideal of height
n that contains a non-zerodivisor. For any integer m, define I(m) to be the
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intersection of the minimal primary components of Im. Then for all m, i,

I(m+i) : I(i) ⊆ Im.

Proof: It is enough to check the inclusion after localizing at each associated
prime ideal of Im. So let P be an associated prime of Im. By Theorem 5.4.1,
P is minimal over I. Hence (I(m+i) : I(i))P = Im+iRP : IiRP , which by
Corollary 1.1.8 is contained in ImRP = ImRP .

We now return to the associated primes of powers and of integral closures
of powers of arbitrary ideals, with the goal of proving the converse of Ratliff’s
theorem. We start with a lemma from Katz’s thesis [157].

Lemma 5.4.4 Let R be a Noetherian ring and I an ideal.
(1) Let P ∈ Ass(R/I). Then there exists a minimal prime ideal p ⊆ P such

that P/p is associated to the integral closure of I(R/p).
(2) Let p be a minimal prime ideal, and P a prime ideal minimal over I + p.

Then for all sufficiently large integers n, for any ideal J such that In ⊆
J ⊆ In, P is associated to J .

Proof: Without loss of generality P is the unique maximal ideal of R.
(1) Write P = I : r for some r ∈ R. So r 6∈ I, and by Proposition 1.1.5

there exists a minimal prime ideal p ⊆ P such that r is not in the integral
closure of the image of I in R/p. Hence P/p ⊆ I(R/p) : r 6= R/p, so that P/p
is associated to the integral closure of I(R/p).

(2) Choose k such that P k ⊆ I + p and pk is contained in the p-primary
component of 0. Let x ∈ R \ p annihilate pk. By Exercise 5.15 by possibly

increasing k, x 6∈ Ik. Choose n ≥ k. Then P 2nk ⊆ (I+p)2n ⊆ In+pn ⊆ J+pn.

As x 6∈ Ik, x 6∈ J . But also xP 2nk ⊆ J , so that P is associated to J .

The converse of Ratliff’s Theorem 5.4.1 also holds:

Theorem 5.4.5 (Ratliff [230]) Let R be a Noetherian ring with the property
that for every parameter ideal I and every integer m, Im has no embedded
prime ideals. Then R is locally formally equidimensional.

Proof: Without loss of generality R is a Noetherian local ring with maximal
ideal m. Suppose that R is not formally equidimensional. Then there exists
q ∈ Min R̂ such that j = dim(R̂/q) < dimR. Necessarily j ≥ 1. By the Prime
Avoidance lemma, we may inductively choose elements x1, . . . , xj such that for
each k ∈ {1 . . . , j}, the height of (x1, . . . , xk)R is k and such that the images

of x1, . . . , xk in R̂/q also generate an ideal of height k. Set I = (x1, . . . , xj).

Then mR̂ is minimal over IR̂+q. By Lemma 5.4.4, mR̂ is associated to InR̂ for

all sufficiently large n, as this ideal lies between InR̂ and InR̂. Since R→ R̂
is faithfully flat, then m is associated to In. But then by assumption, m must
be minimal over I, whence ht(m) = j < dimR, which is a contradiction.
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Thus a Noetherian local ring is formally equidimensional if and only if for
every parameter ideal I, the associated primes of all In are all minimal over I.

Theorem 5.4.6 (McAdam [204]) Let (R,m) be a formally equidimensional
Noetherian local ring and I an ideal in R. Then m ∈ Ass(R/In) for some n
if and only if ℓ(I) = dimR.

Proof: Assume that m ∈ Ass(R/In) for some n. By Lemma 5.4.4, there exists
a minimal prime ideal p in R such that if R′ = R/p, then mR′ is associated to
the integral closure of InR′. Let S = R′[IR′t, t−1]. By Proposition 5.3.3 (1),
there exists Q ∈ SpecS such that Q ∩ R′ = mR′ and Q is associated to
t−nS. As R is formally equidimensional, by Lemma B.4.2, R′ is formally
equidimensional, so by Theorem B.5.2, R′ satisfies the dimension formula and
S is locally formally equidimensional. Thus by Theorem 5.4.1, Q has height
1. By the Dimension Formula (Theorem B.5.1), ht(Q) + tr.degκ(mR′)κ(Q)
= ht(mR′) + tr.degR′S, so that tr.degκ(mR′)κ(Q) = ht(mR′) = dimR. But
κ(Q) is a localization of a homomorphic image of FI(R), so that dimR =
tr.degκ(mR′)κ(Q) ≤ dimFI(R) ≤ dimR. Thus ℓ(I) = dimFI(R) = dimR.

Conversely, assume that ℓ(I) = ht(m). Let S = R[It, t−1] and Q ∈ SpecS
such that the image of Q in FI(R) is minimal and dim(S/Q) = dim(FI(R)).
As ℓ(I) = dim(FI(R)), it follows that dim(S/Q) = ht(m). By construction,
Q∩R = m and Q contains t−1. As S has dimension 1 more than R, necessarily
Q has height 1. Thus Q is minimal over t−1S and thus associated to t−nS for
all n. Hence by Proposition 5.3.3 (2), m is associated to In for all large n.

The proof of one direction, in the last paragraph, did not require formal
equidimensionality, which immediately proves the following:

Proposition 5.4.7 (Burch [35]) Let (R,m) be a Noetherian local ring and
I an ideal in R. If ℓ(I) = dimR, then m ∈ Ass(R/In) for all large n.

When (R,m) is a Noetherian formally equidimensional local ring, much
more can be said about the minimal primes of grI(R), by taking advantage of
the fact that the associated graded ring is the extended Rees algebras modulo
a principal ideal.

Proposition 5.4.8 Let (R,m) be a Noetherian formally equidimensional
local ring, and let I be an ideal of R. For every minimal prime ideal P of
grI(R), dim(grI(R)/P ) = dimR.

Proof: We use the isomorphism grI(R)
∼= R[It, t−1]/t−1R[It, t−1]. Since ev-

ery minimal prime ideal of R[It, t−1] comes from a minimal prime ideal of R
as in the introduction to this chapter, we can assume that R is a domain. As
R is formally equidimensional, it is universally catenary by Theorem B.5.1.
Hence R[It, t−1] is catenary, and therefore htP + dim(R[It, t−1]/P ) equals
dimR[It, t−1] = dimR + 1 (observe that P is contained in the maximal
ideal of R[It, t−1] generated by t−1,m, and It, which has height equal to
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the dimension of R[It, t−1]). By Krull’s Height Theorem, htP = 1, showing
dim(R[It, t−1]/P ) = dimR.

5.5. Defining equations of Rees algebras

In this section we prove some basic theorems, used several times in this book,
concerning the equations defining the Rees algebra of an ideal. In particular,
the results apply in the case the ideal is generated by a regular sequence. For
more on Rees algebras and their defining equations, see [307] and [309].

We begin with some discussion. Let I = (x1, . . . , xn) be an ideal. The Rees
algebra R[It] = R[x1t, . . . , xnt] can be written as a homomorphic image of
the polynomial ring R[T1, . . . , Tn] by the map π sending Ti to xit. The kernel
is an ideal A ⊆ R[T1, . . . , Tn].

Our goal in this section is to give cases where we can describe the generators
of A, which we refer to as the defining equations of the Rees algebra. We
also will describe how the equations defining the extended Rees algebra or
affine pieces of the blowup of I relate to the defining ideal of the Rees algebra;
see Propositions 5.5.7 and 5.5.8.

The map π is graded of degree 0, so that the kernel A is generated by
homogeneous polynomials F (T1, . . . , Tn) ∈ R[T1, . . . , Tn] with the property
that F (x1t, . . . , xnt) = 0. Since F is homogeneous, F (x1t, . . . , xnt) = 0 if and
only if F (x1, . . . , xn) = 0. Generators for the homogeneous polynomials of
degree one in A can always be obtained from a presentation of I. Namely,
let Rm → Rn → I → 0 be a presentation of I, where we represent the map
from Rm → Rn by an n × m matrix A. Let T denote the 1 × n matrix of
the variables T1, . . . , Tn, and let L be the ideal generated in R[T1, . . . , Tn] by
the entries of the matrix TA; the entries are linear polynomials in the Ti that
vanish after the substitution Ti → xi. Hence L ⊆ A, and L is exactly the
subideal A1 of A generated by all linear polynomials in A (Exercise 5.23).
The algebra R[T1, . . . , Tn]/A1 is isomorphic to the symmetric algebra of I as
an R-module, and the Rees algebra is particularly easy to analyze in the case
A1 = A. Valla introduced the following definition:

Definition 5.5.1 I is said to be of linear type if A1 = A.

Ideals of linear type are the simplest in terms of the defining equations of
their Rees algebras. We shall see that every regular sequence is of linear type.
More generally, every d-sequence is of linear type.

Definition 5.5.2 Let R be a commutative ring. Set x0 = 0. A sequence of
elements x1, . . . , xn is said to be a d-sequence if one (and hence both) of the
following equivalent conditions hold:
(1) (x0, . . . , xi) : xi+1xj = (x0, . . . , xi) : xj for all 0 ≤ i ≤ n − 1 and for all

j ≥ i+ 1.
(2) ((x0, . . . , xi) : xi+1) ∩ (x1, . . . , xn) = (x1, . . . , xi) for all 0 ≤ i ≤ n− 1.



5.5. Defining equations of Rees algebras 111

The equivalence of these two conditions is left to the reader (Exercise 5.24).
The first condition was introduced in Huneke [137], and the second was intro-
duced in Fiorentini [80]. The second definition is often more useful in practice,
but the first definition is usually easier to check.

Example 5.5.3 Clearly any regular sequence is a d-sequence as well. A
single element x is a d-sequence if and only if 0 : x2 = 0 : x. Let R =
k[x, y, u, v]/(xu − yv) with k an infinite field. The elements x, y form a d-
sequence, but not a regular sequence. In the polynomial ring R = k[x, y, z],
the ideal generated by xy, xz, yz is generated by a d-sequence, namely any
set of three general generators, but no rearrangement of the original three
generators form a d-sequence. See Exercise 5.25 for more examples.

The main theorem of this section states that if I is generated by a d-
sequence, then I is of linear type. This theorem was proved independently
by Huneke [136] and Valla [303]. A more general statement, due to Ragha-
van [227], is given in Theorem 5.5.4.

Let F ∈ R[T1, . . . , Tn]. We define the weight of F to be i if F ∈ (T1, . . . , Ti)
but F /∈ (T1, . . . , Ti−1). We set the weight to be 0 if F = 0.

Theorem 5.5.4 Let R be a ring, x1, . . . , xn a d-sequence in R, and I =
(x1, . . . , xn). Let A ⊆ S = R[T1, . . . , Tn] be the defining ideal of the Rees
algebra of I, and let A1 ⊆ A be the ideal in A generated by all homogeneous
polynomials in A having degree 1. If F (T1, . . . , Tn) is a form in S of degree d
such that F (x1, . . . , xn) ∈ (x1, . . . , xj), then there exists a form G(T1, . . . , Tn)
of degree d and weight at most j such that F −G ∈ A1.

Proof: Use induction on d. Suppose that d = 1. Since F (x1, . . . , xn) ∈
(x1, . . . , xj), we may write F (x1, . . . , xn) =

∑j
i=1 rixi. Set G(T1, . . . , Tn) =∑j

i=1 riTi. Clearly the weight of G is at most j. Since (F−G)(x1, . . . , xn) = 0
and since the degree of F is one, F −G ∈ A1.

Let d > 1, and assume the theorem is true for smaller values of d. Now use
induction on the weight of F . If the weight of F is at most j, set G = F . If
not, write F = TkF1 + F2, where the weight of F1 is k and the weight of F2

is at most k− 1, and both F1 and F2 are homogeneous. Note that deg(F1) =
d − 1. We have that F (x1, . . . , xn) = xkF1(x1, . . . , xn) + F2(x1, . . . , xn) ∈
(x1, . . . , xj), and F2(x1, . . . , xn) ∈ (x1, . . . , xk−1). Hence

F1(x1, . . . , xn) ∈ ((x1, . . . , xk−1) : xk) ∩ I = (x1, . . . , xk−1).

Apply induction to F1; we obtain that there exists a homogeneous polynomial
G1 of degree d− 1 such that the weight of G1 is at most k− 1 and such that
F1 −G1 ∈ A1.

Set G′ = TkG1 + F2. The weight of G′ is at most k − 1. Moreover,
F − G′ = Tk(F1 − G1) ∈ A1. We apply the induction to G′. Notice that
G′(x1, . . . , xn) = F (x1, . . . , xn) ∈ (x1, . . . , xj) and G′ has weight at most
k− 1 and has degree d. By induction there exists a homogeneous polynomial



112 5. Rees algebras

G of degree d and weight at most j such that G − G′ ∈ A1. It follows that
F −G = (F −G′) + (G′ −G) ∈ A1, finishing the proof.

Corollary 5.5.5 Let R be a ring. If x1, . . . , xn is a d-sequence in R, then
the ideal I = (x1, . . . , xn) is of linear type.

Proof: Let A and A1 be as in the theorem above. If F (T1, . . . , Tn) ∈ A and
F is homogeneous of degree d, then since F (x1, . . . , xn) = 0 we can apply
Theorem 5.5.4 with j = 0 to conclude that F ∈ A1.

Corollary 5.5.6 Let R be a ring and x1, . . . , xn be a regular sequence. The
defining ideal of the Rees algebra of (x1, . . . , xn) is generated by the 2 × 2
minors of the matrix (

x1 x2 · · · xn
T1 T2 · · · Tn

)
.

Proof: Since a regular sequence is a d-sequence, by Corollary 5.5.5 the defining
equations of the Rees algebra are linear, coming from a presentation matrix
of (x1, . . . , xn). But the relations on x1 . . . , xn are generated by the Koszul
relations, xixj − xjxi = 0, which translate into the equations xiTj − xjTi in
R[T1, . . . , Tn]; these are exactly the 2× 2 minors of the given matrix.

We can pass from the equations of the Rees algebra to not only the equations
defining the extended Rees algebra, but also the equations of the various affine
pieces of the blowup of the ideal I. The next two propositions detail this
process.

Proposition 5.5.7 Let R be a Noetherian ring, x1, . . . , xn ∈ R, T1, . . . , Tn, y
variables over R. Set S = R[T1, . . . , Tn], and write R[x1t, . . . , xnt] ∼= S/A,
where the isomorphism identifies Ti with xit. Consider the induced surjective
map ϕ : S[y] → R[x1t, . . . , xnt, t

−1] sending y to t−1 and Ti to xit. Then the
kernel of ϕ is equal to AS[y] + (yTi − xi).

Proof: We can make ϕ a graded map of degree 0 between Z-graded rings by
giving y degree −1 and Ti degree 1 for all 1 ≤ i ≤ n. Let T = S[y]/(AS[y] +
(yTi − xi)). T clearly surjects onto R[x1t, . . . , xnt, t

−1]. Notice that T/(y) ∼=
S/(A + (x1, . . . , xn)S) ∼= R[x1t, . . . , xnt, t

−1]/(t−1), as these algebras are all
isomorphic to the associated graded algebra of I. Let K denote the kernel of
the homomorphism of T onto R[x1t, . . . , xnt, t

−1]. Tensor the exact sequence

0 → K → T → R[x1t, . . . , xnt, t
−1] → 0

of T -modules with T/yT . Since the image of y in R[x1t, . . . , xnt, t
−1] is a

regular element (namely t−1), it follows that the sequence

0 → K/yK → T/yT → R[x1t, . . . , xnt, t
−1]/(t−1) → 0

is exact. The right-hand terms are isomorphic, which proves that K = yK.
We claim that K = 0. It suffices to prove that KM = 0 for every maximal
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ideal M of T . If y ∈ M , then Nakayama’s Lemma proves that KM = 0. If
y /∈ M , it suffices to prove that TM ∼= R[x1t, . . . , xnt, t

−1]M . We prove the
stronger statement that T [y−1] ∼= R[x1t, . . . , xnt, t

−1, t] = R[t, t−1] via the
map determined by ϕ. We first claim that AS[y, y−1] ⊆ (yTi − xi)S[y, y

−1].
This follows since if F (T1, . . . , Tn) is homogeneous of degree d and F ∈ A, then
modulo the ideal (yTi−xi)S[y, y−1] = (Ti−y−1xi)S[y, y

−1], F is congruent to
F (y−1x1, . . . , y

−1xn) = y−dF (x1, . . . , xn) = 0. Thus T [y−1] ∼= S[y, y−1]/(Ti−
y−1xi) ∼= R[y, y−1] ∼= R[t−1, t]. Hence K = 0.

Proposition 5.5.8 Let R be a Noetherian ring, x1, . . . , xn ∈ R, T1, . . . , Tn
variables over R. Write R[x1t, . . . , xnt] ∼= R[T1, . . . , Tn]/A, where the isomor-
phism sends Ti to xit. Then there is an isomorphism

R

[
x2
x1
, . . . ,

xn
x1

]
[x1t, (x1t)

−1] ∼= (R[T1, . . . , Tn]/A)[T−1
1 ],

which identifies R[x2

x1
, . . . , xn

x1
] as the component of R[x1t, . . . , xnt, (x1t)

−1] of
degree zero, where by R[x2

x1
, . . . , xn

x1
] we denote the natural image of R together

with xi

x1
inside Rx1

. Moreover, writing R[Y2, . . . , Yn]/J ∼= R[x2

x1
, . . . , xn

x1
],

where the isomorphism sends the variable Yi to
xi

x1
, generators for J can be de-

termined as follows: let F1(T1, . . . , Tn), . . . , Fm(T1, . . . , Tn) be a homogeneous
generating set for A. Set di = degFi, Yi = TiT

−1
1 , and fi(Y2, . . . , Yn) =

T−di
1 Fi. Then J = (f1, . . . , fm).

Proof: Note that (R[T1, . . . , Tn]/A)[T−1
1 ] ∼= R[x1t, . . . , xnt, (x1t)

−1]. This
latter ring is equal to R[x2

x1
, . . . , xn

x1
][x1t, (x1t)

−1]. The subring R[x2

x1
, . . . , xn

x1
]

is exactly the subring of elements of degree 0 in R[x2

x1
, . . . , xn

x1
][x1t, (x1t)

−1].
We first prove that fi ∈ J . We need to prove that fi(

x2

x1
, . . . , xn

x1
) = 0. It

suffices to prove that xdi1 fi(
x2

x1
, . . . , xn

x1
) = 0. However, xdi1 fi(

x2

x1
, . . . , xn

x1
) =

Fi(x1, . . . , xn) = 0.
Now let f ∈ J . Set d = deg f . Define F (T1, . . . , Tn) = T d1 f(

T2

T1
, . . . , Tn

T1
).

Then F (x1, . . . , xn) = xd1f(
x2

x1
, . . . , xn

x1
) = 0, so that F is a homogeneous poly-

nomial in A. By assumption there are homogeneous polynomials G1, . . . , Gm
in R[T1, . . . , Tn] such that F =

∑m
i=1GiFi. By counting degrees, we see that

degGi = d− di. Hence

f(Y2, . . . , Yn) = T−d
1 F (T1, . . . , Tn) =

m∑

i=1

T di−d1 Gi(T1, . . . , Tn)fi(Y2, . . . , Yn)

and then letting gi(Y2, . . . , Yn) = T di−d1 Gi(T1, . . . , Tn) we have that f =∑m
i=1 gifi.

Finally we apply these propositions to the case of a regular sequence:

Corollary 5.5.9 Let R be a Noetherian ring and let x1, . . . , xn be a regular
sequence in R. There are isomorphisms

R[x1t, . . . , xnt, t
−1] ∼= R[T1, . . . , Tn, y]/(yTi − xi),
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which sends Ti to xit and y to t−1, and

R[y2, . . . , yn]/(x1yj − xj) ∼= R
[x2
x1
, . . . ,

xn
x1

]
,

sending yj to
xj

x1
. In particular, R[x2

x1
, . . . , xn

x1
]/(x1) is isomorphic to the poly-

nomial ring (R/(x1, . . . , xn))[y2, . . . , yn] over R/(x1, . . . , xn). In addition, the
associated graded ring of J = (x1, . . . , xn) is a polynomial ring in n variables
over the ring R/J .

Proof: The proof is immediate from Propositions 5.5.7 and 5.5.8 and from
Corollary 5.5.6.

5.6. Blowing up

In this section we summarize some of the main results concerning blowing
up ideals. We refer to [121] for a fuller treatment. There is no doubt that
blowing up is one of the key operations in birational algebraic geometry. While
it often can be replaced by considerations involving Rees algebras, this can
lead to awkward and difficult issues. On the other hand, without knowledge
of resolution of singularities, blowing up loses much of its power. We have
chosen to keep this book largely self-contained, and will not use resolution of
singularities as a tool. But certainly deeper studies of integral closure often
rely both on blowing up and on resolution of singularities.

Definition 5.6.1 Let R = ⊕i≥0Ri be a graded ring, and set R+ = ⊕i>0Ri,
the so-called irrelevant ideal. We define

Proj(R) = {homogeneous primes P |R+ 6⊆ P}.
We give Proj(R) a topological structure by choosing a basis of open sets to
be D+(f) = {P ∈ Proj(R)| f 6∈ P}, where f is a homogeneous element of
positive degree. We define a scheme structure on X = Proj(R) by letting
OX(D+(f)) = [Rf ]0, the degree zero part of the localization of R at f , where
f is homogeneous of positive degree.

We refer the reader to standard books such as [110] or [68] for information
about schemes. Suffice it to say here that the scheme structure on Proj(R)
consists of a collection of rings that paste together in a natural way, e.g.,
if R is generated by R1 over R0 and a1, . . . , an generate R1, then [Rai ]0 =
R0[

a1
ai
, . . . , an

ai
] and Proj(R) consists of these rings pasted along their natural

overlaps.

Definition 5.6.2 Let R be a ring and I an ideal. We give the natural grading
to the Rees algebra, R[It], by setting deg(t) = 1. The blowup of I is by
definition Proj(R[It]), which we denote as BlI(R).

When I = (a1, . . . , an), BlI(R) is covered by Spec(R[ Iai ]), i = 1, . . . , n, a
so-called affine covering of BlI(R).
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We can use this covering to compute the Čech cohomology of BlI(R), which
in turn is the sheaf cohomology. Specifically, set X = BlI(R). The ith
cohomology Hi(X,OX) is the ith cohomology of the complex

0 → ⊕iR
[ I
ai

]
→ ⊕i<jR

[ I2
aiaj

]
→ · · · → R

[ In

a1 · · ·an

]
→ 0,

where the maps are induced from the natural maps coming from degree 0
parts of localizations at products of the elements ai with signs induced from
the Koszul cohomology. The first module ⊕iR[ Iai ] is the 0th component in
the complex.

There is an important exact sequence, discovered by Sancho de Salas [259],
which relates various cohomologies of the blowup with local cohomology. This
sequence was developed further in [190], and used, for example, in [146]
and [145]. Let R = ⊕i≥0Ri be a Noetherian graded ring, let I be an ideal
of R0, and let M = ⊕i∈ZMi be a graded R-module. Set X = Proj(R), E =
X ×Spec(R) Spec(R/I), m = IR+R>0, and let Mn denote the quasi-coherent
sheaf on X associated to the graded R-module M(n) (where M(n)m =
Mm+n). The Sancho de Salas sequence is:

· · · → Hi
m(M) → ⊕n∈ZHi

I(Mn) → ⊕n∈ZHi
E(X,Mn) → Hi+1

m (M) → · · · .
This sequence has been especially useful to study the Cohen–Macaulay prop-
erty of the Rees algebra of an ideal.

5.7. Exercises

5.1 Let I and J be ideals in a Noetherian ring R. Prove that JR[t, t−1]∩
R[It, t−1] = ⊕i∈Z(J ∩ Ii)ti and JR[t, t−1] ∩R[It] = ⊕i∈N(J ∩ Ii)ti.

5.2 Prove or disprove:
(i) For ideals I and J in a Noetherian ring R, the Rees algebra of

the image of I in R/J is R[It]/JR[It].
(ii) For ideals I and J in a Noetherian ring R, the extended Rees

algebra of the image of I in R/J is R[It, t−1]/JR[It, t−1].
5.3 Let R be a Noetherian ring and I, J ideals in R.

(i) Prove that JR[t, t−1] ∩ R[It, t−1] + t−1R[It, t−1] is an ideal in
R[It, t−1] of height at least ht J + 1.

(ii) Prove that if R is local and equidimensional, then JR[t, t−1] ∩
R[It, t−1]+t−1R[It, t−1] is an ideal in R[It, t−1] of height exactly
ht J + 1.

5.4 Let R be a Noetherian ring, I, J ideals in R. Prove that JR[t, t−1] ∩
R[It, t−1] and JR[t, t−1] ∩ R[It] are ideals of height at least ht J .
Prove that if J is a prime ideal, then the two ideals have height ht J
if and only if I 6⊆ J . Formulate a similar statement for heights of
JR[t, t−1] ∩ S, where S is either the integral closure of R[It] or of
R[It, t−1] in R[t, t−1].
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5.5 Prove that for any ideal I in a Noetherian ring R, dim grI(R) =
sup{htP |P ∈ SpecR such that I ⊆ P}.

5.6 Let I be an ideal such that the Rees algebra R[It] is integrally closed
in R[t]. Prove that for any n ∈ N, R[Int] is integrally closed in R[t].

5.7 Let I be an ideal in a Noetherian ring R such that grI(R) is a reduced
ring. Prove that for all n, In is integrally closed. In other words, prove
that I is normal.

5.8 Let I be an ideal in a Noetherian ring R such that grI(R) is a reduced
ring. Prove that R[It] is integrally closed in R[t] and that R[It, t−1]
is integrally closed in R[t, t−1].

5.9 Let I be an ideal in a Noetherian ring R satisfying ∩nIn = 0 such
that grI(R) is reduced, a domain, or respectively an integrally closed
domain. Prove that R has the corresponding property.

5.10 (The blowup of a blowup is a blowup) Let R be a Noetherian domain,
let I be an ideal in R and x a non-zero element in I. Let S = R[ I

x
].

Let J be an ideal in S and y a non-zero element in J . Prove that
there exist an ideal K in R and a non-zero element z ∈ K such that
R[Kz ] = R[ Ix ][

J
y ].

5.11 Let R be a Noetherian ring and I an ideal in R. Prove that there
exists an integer m such that for all n ≥ m, Ass(R/In) = Ass(R/Im).
In other words, for large n, the set of associated primes of the integral
closures of I stabilizes. For another proof, see Corollary 10.2.4.

5.12 Let I = (a1, . . . , an) be an ideal in R, X1, . . . , Xn variables over R,
and ϕ : R[X1, . . . , Xn] → R[It] the R-algebra map with ϕ(Xi) = ait
(as in Section 5.5). Clearly ϕ is graded and surjective. For n ≥ 0, set
An to be the ideal generated by {r ∈ ker(ϕ) | deg r ≤ n}, where the
degree is the (X1, . . . , Xn)-degree.
(i) Prove that A0 ⊆ A1 ⊆ A2 ⊆ · · · , and that ∪nAn = ker(ϕ). The

relation type of I is the least integer n such that An = ker(ϕ).
(ii) The ideal I is said to be of quadratic type if A2 = ker(ϕ). Let

I = (X2, XY, Y 2) ⊆ k[X, Y ] (polynomial ring in variables X
and Y over a field k). Prove that I is of quadratic type and not
of linear type. (In fact, if I is an ideal in a Noetherian local ring,
then for all large n, the relation type of In is two. See [319].)

5.13 Let R be a Noetherian domain and I a non-zero ideal in R. Prove
that the following are equivalent:
(i) The symmetric algebra of I is isomorphic to R[It], i.e., I is of

linear type.
(ii) The symmetric algebra of I is an integral domain.
(iii) The symmetric algebra of I has no R-torsion.

5.14 (Equation of integral dependence) Let R be a Noetherian ring, let I
be an ideal in R, and let x be an element of R. Prove that x ∈ I if
and only if there exist an integer n and elements ri ∈ Ii such that
xn + r1x

n−1 + · · ·+ rn = 0.
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5.15 Let R be a Noetherian ring and I an ideal. Prove that ∩nIn =
∩PP , where P varies over those minimal prime ideals of R for which
I + P 6= R.

5.16 Let R be a Noetherian ring and I an ideal in R containing a non-
zerodivisor such that In = In for infinitely many n. Prove that
In = In for all large n.

5.17 (Katz [159]; Schenzel [262]; Verma [310], [312]) Let R be a Noetherian
ring. For any ideal I and any positive integer n define I(n) to be
the intersection of the minimal components of In. Prove that the
following are equivalent:
(i) R is locally formally equidimensional.
(ii) For every ideal I in R satisfying µ(I) = ht(I), there exists an

integer k such that for all n ∈ N, I(n+k) ⊆ In.
(iii) For every ideal I in R satisfying that µ(I) = ht(I) and for every

n ∈ N>0 there exists k ∈ N>0 such that I(k) ⊆ In.
(iv) For any prime ideal P that is associated to all high powers of

an ideal I but is not minimal over I, and for any prime ideal
q ∈ Ass R̂P , ℓ(IR̂P/q) < dim(R̂P /q).

(v) Let S be the set of prime ideals P containing I that satisfy the

property that for some prime ideal q that is associated to R̂P ,
the quotient IR̂P /q is primary to PR̂P /q. (Such primes are
called essential divisors of I.) Then S is the set of minimal
prime ideals over I.

5.18 (See [205].) Let (R,m) be a Noetherian ring. A sequence x1, . . . , xs in
R is said to be an asymptotic sequence if (x1, . . . , xs) 6= R and if
for all i = 1, . . . , s, xi is not in any associated prime of (x1, . . . , xi)n,
where n is very large.
(i) Prove that this definition does not depend on n.
(ii) Prove that every regular sequence is an asymptotic sequence.
(iii) Prove that x1, . . . , xs is an asymptotic sequence in R if and only

if it is an asymptotic sequence in the m-adic completion of R.
(iv) Prove that the asymptotic sequence x1, . . . , xs cannot be pro-

longed to a strictly longer asymptotic sequence if and only if
m ∈ Ass(R/(x1, . . . , xs)).

(v) Prove that x1, . . . , xs is an asymptotic sequence in R if and only
if for every minimal prime ideal p in R, x1 + p, . . . , xs + p is an
asymptotic sequence in R/p.

5.19 Let (R,m) be a complete local Noetherian domain, and x1, . . . , xs ∈
m. Prove that x1, . . . , xs is an asymptotic sequence if and only if for
all i = 1, . . . , s, ht(x1, . . . , xi) = i.

5.20 (Another characterization of formal equidimensionality.) Prove that a
Noetherian local ring is formally equidimensional if and only if every
system of parameters is an asymptotic sequence.
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5.21 Let (R,m) be a Noetherian local domain of positive dimension. As-
sume that there exists an integer n such that whenever a non-zero
ideal I in R is contained in mn, then m is associated to I. Prove that
the integral closure of R contains a maximal ideal of height 1.

5.22 Let R be a Noetherian domain and I an ideal. Prove that if P ∈
Ass(R/In) for some large n, then there exist a ∈ I and a prime ideal
Q in S = R[ Ia ] such that Q is associated to anS for all large n and
such that Q ∩R = P .

5.23 Let R be a Noetherian ring, I = (x1, . . . , xn) an ideal, and T1, . . . , Tn
variables over R. Define π : R[T1, . . . , Tn] → R[It] to be the R-algebra
homomorphism with π(Ti) = xit. Let A1 be the ideal in R[T1, . . . , Tn]
generated by all homogeneous elements of total (T1, . . . , Tn)-degree 1

that are in the kernel of π. Let Rm
A→Rn → I → 0 be a presentation

of I, i.e., an exact complex, where A is an n×m matrix. If T is the
1×n matrix [T1, . . . , Tn], let L be the ideal in R[T1, . . . , Tn] generated
by the entries of the matrix TA. Prove that A1 = L.

5.24 Prove that the two conditions of Definition 5.5.2 are equivalent.
5.25 Let R be a Noetherian ring, and let P be a prime in R of height g.

Assume that there is a regular sequence of length g in P , that RP is
regular, and that P has g + 1 generators. Prove that P is generated
by a d-sequence.

5.26 Let R be a ring and x1, . . . , xn a d-sequence. Prove that the elements
x1t, . . . , xnt in the Rees algebra R[x1t, . . . , xnt] form a d-sequence.

5.27 Prove that the ideal generated by the 2 × 2 minors of a generic n ×
m matrix over Z is a prime ideal by using Exercises 5.23, 5.26 and
Theorem 5.5.4 repeatedly.

5.28 (Huckaba and Huneke [130, Theorem 3.11]) Let k be a field of charac-
teristic not three, let R = k[x, y, z], and let I = (x4, x(y3+z3), y(y3+
z3), z(y3+z3))+(x, y, z)5. Prove that I is a height three normal ideal,
that grIn(R) is not Cohen–Macaulay for any n ≥ 1, and if X is the
blowup of I, that then X is normal but H2(X,OX) 6= 0. (Hint: use
Exercise 1.17.)
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Valuations

6.1. Valuations

This chapter presents the theory of valuations, which besides being a major
topic in itself, is also an important tool in the study of the integral closure
of ideals. A classic reference for this material is Chapter VI of Zariski and
Samuel’s book [324]. We owe much to their presentation and make no pretense
of covering this material as thoroughly or as well in this book. Zariski’s inter-
est in valuation theory was motivated by resolution of singularities. In [323]
he gave a classification of valuations in a two-dimensional algebraic function
field. He used this to prove local uniformization for surface singularities. See
Cutkosky’s book [54] for a modern treatment. For much more on classical
valuations a reader may consult [74], [247] or [199]. For a history of valua-
tions from its beginning with the 1912 paper of Josef Kürschák see [251]. For
valuation theory from a constructive point of view see for example [208].

In most of this book, the emphasis is on Noetherian rings, but we treat
more general rings in this chapter. A reader may want to read this chapter by
concentrating only on the Noetherian valuation rings, that is, on the valuation
rings with value group Z.

Definition 6.1.1 Let K be a field. A valuation on K (or a K-valuation)
is a group homomorphism v from the multiplicative group K∗ = K \ {0} to a
totally ordered abelian group G (written additively) such that for all x and y
in K,

v(x+ y) ≥ min{v(x), v(y)}.

It follows immediately from the properties of group homomorphisms that
v(1) = 0, and that for all x ∈ K \ {0}, v(x−1) = −v(x).

When R is a domain with field of fractions K and G is a totally ordered
abelian group, then a function v : R \ {0} → G satisfying the properties

v(xy) = v(x) + v(y), v(x+ y) ≥ min{v(x), v(y)}

for all x, y ∈ R can be extended uniquely to a valuation v : K \ {0} → G
by setting v(x

y
) = v(x) − v(y) for any non-zero x, y ∈ R. It is easy to verify

that this is well-defined and yields a valuation on K. For this reason we also
sometimes call such a “partial” function v : R \ {0} → G a valuation.

Sometimes we write v : K → G ∪ {∞} by assigning v(0) = ∞, where
G ∪ {∞} is totally ordered and extends the structure of G via the relations
∞+ g = g +∞ = ∞+∞ = ∞, and g <∞ for all g ∈ G.
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Remark 6.1.2 Let K be a field, x1, . . . , xn ∈ K, and v a K-valuation.
Then v(

∑n
i=1 xi) ≥ min{v(x1), . . . , v(xn)}. If v(xi) are all distinct, then

v(
∑n
i=1 xi) = min{v(xi)}.

The first statement follows from the definition by an easy induction. The
second statement we prove by induction on n. It suffices to prove the equality
in the case n = 2. In this case we relabel x = x1, y = x2. Without loss of
generality we may assume that v(x) > v(y). Suppose that v(x+ y) > v(y) as
well. Then v(y) = v(−y) = v(x− (x+ y)) ≥ min{v(x), v(x+ y)}, which is a
contradiction.

Remark 6.1.3 (This is an example of a Gauss extension.) Let K be a
field and X a variable over K. Any K-valuation v can be extended to K(X)
as follows: whenever a0, . . . , an ∈ K, define w′(a0 + a1X + · · · + anX

n) =
min{v(a0), . . . , v(an)}. This gives a function w′ on K[X ] that satisfies the
properties w′(fg) = w′(f) + w′(g) and w′(f + g) ≥ min{w′(f), w′(g)}. Hence
w′ extends to a valuation w on K(X). In case R is a domain with field of
fractions K such that v is non-negative on R, then w is non-negative on R[X ].

The simplest valuations to define and work with are the so-called monomial
valuations:

Definition 6.1.4 A valuation v on the field of fractions of the polynomial
ring k[X1, . . . , Xd] over a field k is said to be monomial with respect to
X1, . . . , Xd if for any polynomial f , v(f) equals the minimum of all v(Xν) as
Xν varies over all the monomials appearing in f with a non-zero coefficient.

A function v : k[X1, . . . , Xd] \ {0} → G for which v(X1), . . . , v(Xd) are
known, and for which whenever rν is a finite collection of elements of k,
v(
∑
rνX

ν) = min{∑i νiv(Xi)|rν 6= 0}, is well-defined, by uniqueness of the
representation of polynomials. It is left to the reader to show that v is a
valuation and that it extends uniquely to a valuation on k(X1, . . . , Xd). Note
that a monomial valuation v is determined uniquely by v(X1), . . . , v(Xd).

Some particular examples of such valuations are :

Example 6.1.5 Let k be a field, X and Y variables over k, and K =
k(X, Y ). Let v be a monomial valuation on K defined by v(X) = 1, v(Y ) =
1/2. Observe that every element of the subfield k( XY 2 ) has value 0.

Example 6.1.6 Let k be a field, X and Y variables over k, and K =
k(X, Y ). Let v be a monomial valuation on K defined by v(X) =

√
2, v(Y ) =

1. Note that a monomial X iY j , i, j ∈ Z has value at least n if and only if
i
√
2 + j ≥ n. The elements of value 0 are exactly the non-zero elements of k.

Non-monomial valuations exist:

Example 6.1.7 Let R = k[X, Y ], where k is a field and X, Y variables over
k. Let e(X) be an element of Xk[[X ]] that is transcendental over k[X ]. (Note
by Exercise 3.13, k[[X ]] has infinite transcendence degree over k[X ].) Write
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e =
∑
i≥1 eiX

i. Define v : R \ {0} → Z by

f(X, Y ) 7→ max{n | f(X, e(X)) ∈ Xnk[[X ]]}.
Then v is a valuation on R, so that its extension to the field of fractions of R
(also denoted v) is a valuation. However, v is not a monomial valuation with
respect to X, Y . To prove this, let n be the smallest positive integer such that
en 6= 0. Then v(Y ) = n, v(enX

n) = n, and v(Y − enX
n) > n. Thus this v is

not a monomial valuation.
More generally, without the restriction that v be a monomial valuation,

there may be infinitely many valuations on the function field k(X1, . . . , Xn)
with given values for the variables (see Exercise 6.12).

There is a natural way to identify some valuations:

Definition 6.1.8 Let K be a field. We say that valuations v : K∗ → Gv and
w : K∗ → Gw are equivalent if there exists an order-preserving isomorphism
ϕ : image(v) → image(w) such that for all α ∈ K∗, ϕ(v(α)) = w(α).

Observe that a given valuation v : K∗ → G is trivially equivalent to the
natural valuation v : K∗ → image(v). Also, any valuation v : K∗ → Z is
equivalent to 2v : K∗ → Z.

6.2. Value groups and valuation rings

Going hand-in-hand with valuations are valuation rings and value groups:

Definition 6.2.1 Let K be a field and v a K-valuation. Then the image
Γv = v(K∗) of v is a totally ordered abelian group, called the value group
of v.

Definition 6.2.2 Let K be a field. A K-valuation ring, or simply a val-
uation ring or a valuation domain, is an integral domain V whose field
of fractions is K that satisfies the property that for every non-zero element
x ∈ K, either x ∈ V or x−1 ∈ V .

The set of ideals in a valuation domain V is totally ordered by inclusion.
Namely, if I and J are ideals in V and x ∈ I \J , then for each non-zero y ∈ J ,
either xy−1 ∈ V or yx−1 ∈ V . If xy−1 ∈ V then x = (xy−1)y ∈ J , which is
a contradiction. Thus for all y ∈ J , yx−1 ∈ V , so that y = (yx−1)x ∈ I and
hence J ⊆ I.

It follows that a valuation ring V has a unique maximal ideal, which is the
ideal of all non-units: {x ∈ V | x = 0 or x−1 6∈ V }. The maximal ideal is
usually denoted as mV .

One can construct a valuation domain from a valuation: given a valuation
v : K∗ → G, define

Rv = {r ∈ K∗ | v(r) ≥ 0} ∪ {0}.
It is easy to see that Rv is a subring of K with a unique maximal ideal
mv = {r ∈ K∗| v(r) > 0} and is a valuation domain. We call Rv the valuation
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ring corresponding to the valuation v. We denote the residue field of Rv by
κ(v) or by κ(V ) with V = Rv.

If v and w are equivalent valuations, then clearly Rv = Rw.

Proposition 6.2.3 Let V be a valuation domain with field of fractions K.
Let ΓV = K∗/V ∗, where V ∗ ⊆ K∗ are the multiplicative groups of units, and
let v : K∗ → ΓV be the natural group homomorphism. By convention the
operation on ΓV is written as +. Then ΓV is a totally ordered abelian group,
v is a K-valuation, and ΓV is the value group of v.

Proof: As K∗ is abelian under multiplication, so is ΓV . We order ΓV as
follows. Let x, y ∈ K such that the image of x in ΓV is α, and the image of
y in ΓV is β. Then define α ≤ β if yx−1 ∈ V . We leave it to the reader to
prove that this order makes ΓV a totally ordered abelian group whose group
structure is compatible with the order.

Now we prove that v is a K-valuation. Certainly v(xy) equals the image
of x times the image of y, which in additive notation of ΓV is written as
v(x) + v(y). To prove the second property of valuations, observe that either
xy−1 ∈ V or x−1y ∈ V . Assume that xy−1 is in V . Then (x + y)/y ∈ V so
that v(x+ y) ≥ v(y) ≥ min{v(x), v(y)}. The case where x−1y ∈ V is handled
similarly.

As v is surjective, the value group of v is exactly ΓV .

In particular, tracing the argument above shows that if K is a field and v
is a K-valuation, the valuation obtained as in the proposition above from the
valuation ring Rv of v is equivalent to v. Furthermore, if V is a K-valuation
ring and v is the valuation obtained from V as in the proposition above, then
the valuation ring of v is exactly V .

Thus K-valuation rings and equivalence classes of K-valuations are in nat-
ural one-to-one correspondence. In the sequel, if the valuation v corresponds
to a valuation ring V , then the value group of V is also called the value
group of v, and is denoted ΓV or by Γv.

Of special interest are the real-valued valuations. These are characterized
by having the Archimedean property.

Definition 6.2.4 Let Γ be a totally ordered abelian group. We say that Γ is
Archimedean if for any elements g, h ∈ Γ such that g > 0, there exists a
positive integer n such that ng > h.

Theorem 6.2.5 (Hölder) Let Γ be a totally ordered abelian group that is
Archimedean. Then Γ is isomorphic to a subgroup of R.

Proof: For r = n
m

∈ Q with n,m ∈ Z and m > 0, we write ra < b if na < mb.
This does not depend on the representation of r as a quotient of integers.

Let a be a fixed positive element in Γ (i.e., a > 0). For b ∈ Γ positive, set
Sb = {r ∈ Q | ra ≤ b}. Since there is n ∈ N>0 with b < na, n is an upper
bound for Sb. Define ϕ : Γ → R by ϕ(0) = 0, for b > 0, ϕ(b) = sup(Sb), and
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ϕ(−b) = −ϕ(b). To show that ϕ is a homomorphism, it is enough to prove
that ϕ(b + c) = ϕ(b) + ϕ(c) for b, c > 0. Set x = ϕ(b) and y = ϕ(c), and
z = ϕ(b + c). Then x + y ≤ z, since if r, s ∈ Q with r ≤ x and s ≤ y, then
ra ≤ b and sa ≤ c, so (r+ s)a ≤ b+ c, yielding r+ s ≤ z. Next, suppose that
x+ y < z. Then there exist rational numbers r and s such that x < r, y < s
and r + s < z. From these inequalities we see that (r + s)a ≤ b + c but that
ra > b and sa > c. This is impossible. Therefore, x+ y = z, proving that ϕ
is a homomorphism.

We next show that ϕ preserves inequalities, and so it is one-to-one. It is
enough to prove that if b > 0, then ϕ(b) > 0. If b > 0, there is m ∈ N>0 with
a < mb, so 1

m ∈ Sb. Therefore, 0 <
1
m ≤ ϕ(b), as desired.

It is worth remarking that in this embedding, ϕ(a) = 1. The element a can
be chosen to be an arbitrary positive element of Γ.

A special subset of the real-valued valuations are the integer-valued valua-
tions, and they play a major role in the theory of integral closure of ideals in
Noetherian rings (see subsequent sections, especially 6.8, and Chapter 10).

6.3. More properties of valuation rings

In this section we prove some basic properties of valuation rings and passages
between various valuation rings. For example, we prove in Proposition 6.3.1

(was Sect. 6.4)

that valuation domains are integrally closed. We show that intersecting a
valuation ring with a subfield of its field of fractions gives a valuation ring
(Proposition 6.3.7).

Proposition 6.3.1 A valuation domain V is integrally closed.

Proof: Let x be in the field of fractions of V such that xn+ r1x
n−1 + · · ·+ rn =

0 for some ri in V . If x 6∈ V , then x−1 ∈ V , so that 1+r1x
−1+· · ·+rnx−n = 0,

whence 1 is in the ideal x−1V . Hence x−1 is a unit in V , contradicting the
assumption that x 6∈ V .

From the definition it follows that every ring between aK-valuation domain
and K is also a valuation domain. Thus overrings of valuation domains are
special. But also ideals are special:

Lemma 6.3.2 Let V be a valuation domain.
(1) Let I be an ideal of V and let G be a finite generating set of I. Then

there exists z ∈ G such that zV = I. In other words, if v is the valuation
corresponding to V , then {v(i) | i ∈ I \ 0} achieves a minimum on G.

(2) If for some x, y in V , (x, y)V 6= yV , then for all r ∈ V , (x − ry)V =
(x, y)V .

Proof: Proof of (1): By induction it suffices to prove that every two-generated
ideal is principal. So let x, y ∈ V be non-zero elements. Then either xy−1 or
yx−1 is in V , which says that either x ∈ yV or y ∈ xV .
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We already proved (2) for valuations in Remark 6.1.2, and (2) is a restate-
ment for valuation rings.

Thus every finitely generated ideal of a valuation ring is principal.

Lemma 6.3.3 Let R be a ring, I an ideal of R, and V1, . . . , Vn valuation
domains that are R-algebras. Assume that for each j = 1, . . . , n, IVj is a
principal ideal. (This holds, for example, if I is a finitely generated ideal in R
or if all the Vi are Noetherian.)
(1) There exist m ∈ N>0 and x ∈ Im such that for all i, xVi = ImVi.
(2) For i = 1, . . . , n, let mi be the maximal ideal of Vi. Assume that R

contains units u1, . . . , un−1 with the property that modulo each mi ∩ R,
all uj are distinct. Then there exists an element x ∈ I such that for all
i = 1, . . . , n, xVi = IVi.

Proof: The case n = 1 is Lemma 6.3.2. So assume that n > 1.
Proof of (1): for all i = 1, . . . , n, by induction on n there exist a positive

integer mi and an element xi ∈ Imi such that for all j 6= i, xiVj = ImiVj . If
for some i, xiVi = ImiVi, we are done, so assume the contrary. Set m =

∏
mi,

ri = m/mi, x =
∑
j x

r1
1 · · · x̂rjj · · ·xrnn . Then x ∈ Im(n−1) and by Lemma 6.3.2,

xVi = Im(n−1)Vi for all i.
Proof of (2): By induction we may assume that there exist x, y ∈ I such

that for all i < n and all j > 1, xVi = IVi, yVj = IVj . If xVn = IVn, we
are done, so without loss of generality xVn 6= IVn. Similarly, yV1 6= IV1. By
Lemma 6.3.2, for any unit u in R, (x− uy)V1 = IV1 and (x− uy)Vn = IVn.

It remains to find a unit u such that for all i = 2, . . . , n− 1, (x− uy)Vi =
IVi. If (x − uy)Vi 6= IVi, then x − uy ∈ miI. So now using our units, if
x − ujy, x − uky ∈ miI, then (uj − uk)y ∈ miI. By assumption, if j 6= k,
uj − uk is a unit in Vi, so that y ∈ miI. But IVi = yVi, so that for some
r ∈ mi, y = ry, contradicting that Vi is a domain. Thus for each i, there
is at most one uj in R for which x − ujy ∈ miI. As there are n − 1 of the
uj and only n − 2 valuations V2, . . . , Vn−1 to consider, for at least one uj ,
(x− ujy)Vi = IVi for i = 2, . . . , n− 1, and hence also for all i = 1, . . . , n.

It follows that a Noetherian valuation domain is a local principal ideal
domain. Here are some further equivalent formulations:

Proposition 6.3.4 Let (R,m) be a local domain, K its field of fractions,
and R 6= K. Then the following are equivalent:
(1) R is a Noetherian valuation domain.
(2) R is a principal ideal domain.
(3) R is Noetherian and the maximal ideal m is principal.
(4) R is Noetherian, and there is no ring properly between R and K.
(5) R is Noetherian, one-dimensional, and integrally closed.
(6) ∩nmn = 0 and m is principal.
(7) R is a valuation domain with value group isomorphic to Z.
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Proof: (1) implies (2) by Lemma 6.3.2, and the other equivalences of (1)
through (4) are easy. (1) implies (5) has been established in this section. The
implication (5) implies (6) follows by Proposition 4.1.1 and Krull’s Intersection
Theorem. Assume (6). Let x ∈ R such that m = xR. Let I be an arbitrary
non-zero proper ideal in R and let y be a non-zero element in I. By properness
of I there exists r1 ∈ R such that y = r1x. From r1 we construct by induction
finitely many rn ∈ R satisfying y = rnx

n as follows. If rn−1 ∈ m, there exists
rn ∈ R such that y = rnx

n. As ∩imi = 0 and y is non-zero, necessarily for
some n the corresponding rn is not in m. Thus yR = xnR. Let y be an element
in I for which such n is least possible. Then I = xnR = yR is principal, so
(6) implies (2). (2) clearly implies (7). Now assume (7), namely that R is a
valuation domain with value group isomorphic to Z. Let v be the composition
of the maps K∗ → K∗/R∗ ∼= Z. Then there exists x ∈ K such that its image
in Z under v is 1, and so x ∈ R is not a unit. Let I be an arbitrary non-zero
ideal in R. There exists y ∈ I such that v(y) = min{v(i) | i ∈ I} = n ∈ N.
Then v(yx−n) = 0 and v(zx−n) ≥ 0 for all z ∈ I. Thus yx−n is a unit in R
and I = xnR = yR, so R is a principal ideal domain, and (2) holds.

One can immediately deduce the following:

Corollary 6.3.5 A valuation domain V is Noetherian if and only if ΓV is
Z or 0.

There exist one-dimensional valuation domains that are not Noetherian
and thus their value groups are not Z. However, their valuations are still
real-valued:

Lemma 6.3.6 The value group of a one-dimensional valuation ring V is
isomorphic to a subgroup of R.

Proof: Let Γ be the value group of V . We will prove that Γ is Archimedean,
and then apply Theorem 6.2.5. Suppose that Γ contains g, h such that g > 0
and such that for all positive integers n, ng < h. Let x ∈ V have value g and
y ∈ V have value h. Then yV is a non-zero ideal in V whose radical does not
contain x. Hence there exists a prime ideal P containing y but not x, which
contradicts the one-dimensionality of V .

A method of generating valuations, and Noetherian valuations as well, is
via intersections with a subfield of its field of fractions:

Proposition 6.3.7 Let V be a K-valuation domain and F a subfield of K.
(1) The intersection V ∩ F is an F -valuation domain.
(2) If V is Noetherian, then so is V ∩ F .
(3) If F ⊆ K is an algebraic extension, then ΓV ⊗Z Q = ΓV ∩F ⊗Z Q.

Proof: Let x ∈ F ∗. Then x ∈ K∗ so that either x ∈ V or x−1 ∈ V . Thus
either x ∈ V ∩ F or x−1 ∈ V ∩ F , so that V ∩ F is an F -valuation domain.

Certainly ΓV ∩F ⊆ ΓV .
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If V is Noetherian, then by Corollary 6.3.5 ΓV is a subgroup of Z, hence
ΓV ∩F is a subgroup of Z, whence V ∩ F is Noetherian by the same corollary.

Assume thatK/F is algebraic, and let x ∈ K. Let xn+a1x
n−1+· · ·+an = 0

be an equation of algebraic dependence of x over F . Set a0 = 1. Then for
some i, j with 0 ≤ i < j ≤ n, v(aix

n−i) = v(ajx
n−j). Hence (i − j)v(x) =

v(ai)− v(aj) ∈ ΓV ∩F .

6.4. Existence of valuation rings

In this section we prove the existence of many valuation rings. In particular,

(was Sect. 6.3)

we prove that every prime ideal in an integral domain is a contraction of the
maximal ideal of some valuation overring. When the domain is Noetherian,
the valuation overring may be taken to be Noetherian as well.

The following lemma first appeared in Cohen and Seidenberg [43].

Lemma 6.4.1 Let R be a domain with field of fractions K. Let m be a
prime ideal of R. For all x ∈ K∗, either mR[x] 6= R[x] or mR[x−1] 6= R[x−1].

Proof: The hypotheses and conclusion are not affected if we first localize
at the multiplicatively closed set R \ m. Thus we may assume that m is
the unique maximal ideal of R. Suppose that mR[x−1] = R[x−1]. Then
1 = a0 + a1x

−1 + a2x
−2 + · · ·+ anx

−n for some ai ∈ m, hence (1− a0)x
n =

a1x
n−1 + a2x

n−2 + · · · + an. As a0 ∈ m, 1 − a0 is a unit in R, so that x is
integral over R. Thus R[x] is an integral extension of R, and by Lying-Over
(Theorem 2.2.2), mR[x] 6= R[x].

In the proof above, one could avoid the usage of the Lying-Over Theorem
by instead assuming for contradiction that mR[x] = R[x]. Then for some
c0, . . . , cm ∈ mR, 1 = cmx

m + cm−1x
m−1 + · · · + c0. We may assume that

both m and n are chosen to be minimal, and that by possibly switching x and
x−1, n ≤ m. But then substituting xn = (1−a0)−1(a1x

n−1+· · ·+an) into this
equation produces a strictly smaller m, which gives the desired contradiction.

Theorem 6.4.2 (Existence of valuation domains) Let R be an integral do-
main, not necessarily Noetherian, and let P be a non-zero prime ideal in R.
Then there exists a valuation domain V between R and the field of fractions K
of R such that mV ∩R = P .

Proof: By localizing we may assume that R is local with maximal ideal m = P .
Let Σ be the collection of all local rings (S,mS) such that R ⊆ S, mS ⊆ mS ,

and S ⊆ K. The set Σ is not empty as it contains (R,m). We put a partial
order ≤ on Σ: (S,mS) ≤ (S′,mS′) if S ⊆ S′ and mSS

′ ⊆ mS′ . It is easy to
prove that every ascending chain in Σ has an upper bound, so that by Zorn’s
lemma, Σ has a maximal element (V,mV ).

By construction, mV ∩R = m. We claim that V is a valuation domain. Let
x ∈ K. By Lemma 6.4.1, mV stays a proper ideal either in V [x] or in V [x−1].
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Say mV V [x] 6= V [x]. Let M be a maximal ideal in V [x] containing mV V [x].
Set S = V [x]M and mS = MS. Then (S,mS) is an element of Σ, containing
V , so by the choice of V it has to equal V . Hence x ∈ S = V . This proves
that V is a valuation domain whose maximal ideal contracts to m in R.

Moreover, when the starting ring is Noetherian, the valuation may be chosen
to be Noetherian:

Theorem 6.4.3 (Existence of Noetherian valuation domains) Let R be a
Noetherian integral domain and let P be a non-zero prime ideal in R. Then
there exists a Noetherian valuation domain V between R and the field of frac-
tions K of R such that if mV is the maximal ideal of V , then mV ∩R = P .

Proof: By localization we may assume that P is the unique maximal ideal
of R. Let G = grP (R). If every element of P/P 2 ⊆ G is nilpotent, then
clearly the dimension of G is zero. Hence by Proposition 5.1.6, dimR = 0.
As R is a domain, this implies that R is a field, contradicting the assumption
that R has a non-zero prime ideal. Thus not every element of P/P 2 ⊆ G is
nilpotent. Let x ∈ P \ P 2 be such that its image in P/P 2 is not nilpotent
in G.

Set S = R[P
x
]. Since S is a finitely generated R-algebra and R is Noetherian,

S is Noetherian. If xS = S, write

1 = x
n∑

i=0

ai
xi

=
a

xn−1

for some ai ∈ P i, a ∈ Pn. Then xn−1 ∈ Pn, contradicting the choice of x.
Thus xS = PS is a proper ideal in S.

Let Q be a prime ideal in S minimal over xS. By Krull’s Height Theorem
(Theorem B.2.1), dimSQ = 1. Let T be the integral closure of SQ. By Lying-
Over (Theorem 2.2.2), there exists a maximal ideal M in T containing QT .
By the Krull–Akizuki Theorem (Theorem 4.9.2), T is one-dimensional, Noe-
therian, and integrally closed, hence by Proposition 6.3.4, TM is a Noetherian
valuation domain. Set V = TM so that mV =MTM . It follows that Q ⊆ mV ,
so PS = xS ⊆ mV and finally P ⊆ mV , hence mV ∩R = P .

Observe that the proof of the existence of valuation overrings over arbitrary
domains and the proof of the existence of Noetherian valuation overrings over
Noetherian domains are quite different.

6.5. Valuation rings and completion

Proposition 6.5.1 Let V be a valuation ring with maximal ideal m and W
the m-adic completion of V . Then W is a valuation ring.

Proof: Let {an}n≥0 and {bn}n≥0 be two Cauchy sequences (in the m-adic
topology) of elements in V whose product {anbn}n≥0 is zero in W . Then for
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all positive N there exists a real number M such that for all integers n ≥M ,
anbn ∈ m

2N . Thus there exists a finitely generated ideal In in m such that
anbn ∈ I2Nn . As every finitely generated ideal is principal, there exists cn ∈ In
such that anbn ∈ c2Nn V . Then necessarily for each n, either an ∈ cNn V or
bn ∈ cNn V . As {an}n≥0 and {bn}n≥0 are Cauchy sequences, there exists M ′

such that for all integers n ≥ M ′, an − an+1 ∈ m
N and bn − bn+1 ∈ m

N .
Hence if for some n0 ≥ M,M ′, an0

∈ cNn0
V ⊆ m

N , it follows that for all
n ≥ n0, an ∈ m

N . It follows that {an}n≥0 is zero in W . Similarly, if for some
n0 ≥ M,M ′, bn0

∈ cNn0
V ⊆ m

N , then {bn}n≥0 is zero in W . Thus W is a
domain.

Let x be in the field of fractions of W . Write x = {an}n≥0/{bn}n≥0, where
{an}n≥0 and {bn}n≥0 are two Cauchy sequences in V . For each n, either
v(an) ≥ v(bn) or v(an) ≤ v(bn). Thus after choosing subsequences, either
for all n, v(an) ≥ v(bn), or for all n, v(an) ≤ v(bn). Thus either x ∈ W or
1/x ∈W .

In our applications, we will be considering valuation domains V containing
a (Noetherian) domain R with the same field of fractions. In that case, we
call the prime ideal mV ∩R of R the center of V on R.

The following result of Abhyankar (Abhyankar [5, pages 513–514]), here
slightly generalized, enables the passage between a Noetherian local domain
and its completion while preserving some basic properties of valuation over-
rings (a weaker version of this already appeared in Abhyankar and Zariski [9]):

Proposition 6.5.2 Let (R,m) be a Noetherian local domain with field of

fractions K. Let R̂ be the m-adic completion of R, and Q a minimal prime
ideal in R̂ (so that Q ∩ R = 0). Let L be the field of fractions of R̂/Q. For

any real-valued L-valuation centered on m(R̂/Q) the contraction to K gives
a K-valuation centered on m that preserves the value group and the residue
field. No two such L-valuations contract to the same K-valuation. Thus the
contraction of real-valued L-valuations centered on m(R̂/Q) to K-valuations
is a one-to-one map.

Proof: Let w be a real-valued L-valuation, and v its contraction to K∗. Let
V be the K-valuation ring corresponding to v and W the L-valuation ring
corresponding to w. By abuse of notation we write the image of an element
x of R̂ in R̂/Q also as x. Let x be any element of R̂ \ Q. Set t = w(x)

and s = w(m(R̂/Q)). For any integer u > t/s there exists x′ ∈ R such that

x− x′ ∈ m
uR̂. Then w(x) = w(x′ + (x− x′)) = w(x′) = v(x′). Thus w and v

have the same value groups.
Now let x, y ∈ R̂\Q with x/y ∈W . As above, there exist non-zero x′, y′ ∈ R

such that w(x−x′) > w(x) = w(x′) = v(x′), w(y−y′) > w(y) = w(y′) = v(y′),
and

x

y
− x′

y′
=
x− x′

x
· x
y
+
y′ − y

y
· x

′

y′
∈ mW .
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Since x′/y′ ∈ V , this proves that the residue fields of V and W are the same.
Clearly v is uniquely obtained from w, and if a real-valued L-valuation w′

contracts to v, then w′ = w.

With notation as in the proposition, it is not true that every real-valued
K-valuation centered on m extends to a real-valued L-valuation:

Example 6.5.3 Consider Example 6.1.7, this time with R = k[X, Y ](X,Y )

(localization). Let w be an extension of v to k[[X, Y ]]. Then for all positive
integers n,

w(Y −
∑

i≥1

eiX
i) ≥ min{w(Y −

∑

i≥1

eiX
i +
∑

i≥n
eiX

i), w(−
∑

i≥n
eiX

i)}

≥ min{w(Y −
∑

i<n

eiX
i), w(Xn)}

= min{v(Y −
∑

i<n

eiX
i), v(Xn)} ≥ n,

so that w(Y −∑i≥1 eiX
i) cannot be a real number.

However, for Noetherian local rings whose completions are domains, every
valuation centered on the maximal ideal does extend to some valuation on its
completion, it just need not be real-valued:

Proposition 6.5.4 Let R be a Noetherian domain and S a faithfully flat
extension that is a domain. Let K be the field of fractions of R and L the field
of fractions of S. Then any K-valuation that is non-negative on R extends
to an L-valuation that is non-negative on S. In particular, if R is local with
completion a domain (i.e., R is analytically irreducible), then for any valua-
tion domain V between R and K there exists a valuation domain W between
R̂ and L such that W contracts to V .

Proof: Let V be a K-valuation ring with center on a prime ideal m. Let T
be the smallest subring of L containing V and S. Suppose that mV T = T .
Then we can write 1 =

∑n
i=1 aisi for some ai ∈ mV and si ∈ S. Write

ai = bi/c for some b1, . . . , bn, c ∈ R. Then c =
∑n
i=1 bisi ∈ (b1, . . . , bn)S∩R =

(b1, . . . , bn)R, the latter equality by the faithful flatness of S over R. Then
1 ∈ (a1, . . . , an)V ⊆ mV , which is a contradiction. Thus necessarily mV T is a
proper ideal in T . By Theorem 6.4.2, there exists a valuation ringW between
T and L such that mVW 6=W . Hence W ∩K ⊆ V , and as V ⊆ T ⊆ W , then
also W ∩K = V .

Discussion 6.5.5 Let (R,m) be an analytically irreducible local ring with

field of fractions K and completion R̂. Let V be a valuation domain such
that R ⊆ V ⊆ K. The question of when there exists a unique extension of
V to the field of fractions of R̂ is interesting and delicate. In [117], Heinzer

and Sally studied this problem when R̂ is assumed to be integrally closed.
Among their results is the statement that if W is a valuation ring containing
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R̂ and contained in the field of fractions of R̂ such that every non-zero prime
of W lies over either mR̂ or a height one prime of R̂, then W is the unique
extension of V = W ∩ K to a valuation domain birationally dominating R̂.
In [55], Cutkosky and Ghezzi study when there is an immediate extension of

V to a valuation ringW birationally dominating R̂ in the sense that the value
groups and residue fields of V and W are the same. For more on valuations
on an analytically irreducible ring (R,m) and on its m-adic completion, see
Proposition 9.3.5.

The following shows that some extensions of valuations to completions can
be obtained without the assumption that the completion of R be an integral
domain. We leave the straightforward proof to the reader.

Lemma 6.5.6 Let V be a valuation ring and v the corresponding valuation.
Assume that v is real-valued.
(1) Let W be the set of all sequences {an}n≥0 of elements of V satisfying the

property that for each positive number C there exists a positive integer
M such that for all n ≥ M , v(an+1 − an) ≥ C. We define addition and
multiplication on W to be componentwise. Then W is a commutative
ring with 1.

(2) Define two elements {an}n and {bn}n of W to be equivalent if for all
positive numbers C there exists a positive integer M such that for all
n ≥ M , v(an − bn) ≥ C. Then the set of all equivalence classes Ṽ is a
valuation domain containing V whose value group contains Γv and is a
subgroup of R.

(3) Let (R,m) be a Noetherian local domain with field of fractions K such

that R ⊆ V and mV ∩R = m. Then there is a natural map R̂ → Ṽ , and
the maximal ideal of Ṽ contracts to the maximal ideal of R̂.

6.6. Some invariants

There are several invariants one can define for a valuation that give insight
into the structure of the valuation.

Definition 6.6.1 Let V = Rv be a valuation domain corresponding to the
valuation v. The rank of v is defined to be the Krull dimension of V .

The rational rank of v, denoted rat.rk v, is the rank of the value group Γv
of V over Q, i.e., rat.rk v = dimQ(Γv ⊗Z Q).

Suppose that k is a subfield of the residue field κ(v). We define the tran-
scendence degree of v over k, tr.degk(v), to be the transcendence degree
of κ(v) over k.

The valuation and the valuation ring are said to be (generalized) dis-
crete if the value group is isomorphic to Zn with the lexicographic ordering.
Recall that this ordering declares (a1, . . . , an) ∈ Zn greater than or equal to
(b1, . . . , bn) ∈ Zn if and only if the first non-zero entry of (a1−b1, . . . , an−bn)
is positive.
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Proposition 6.6.2 A valuation domain that is not a field is Noetherian if
and only if it is a rank one discrete valuation domain.

Proof: This is rephrasing of Proposition 6.3.4 by using the new notation.

In the literature Noetherian valuation domains are often called DVRs, or
discrete valuation rings, or classical discrete valuation rings. We allow
discrete valuation rings that are not Noetherian.

The rank of the valuation is defined above as the Krull dimension of V .
But the rank of the valuation can also be determined from its value group.
First we need a definition:

Definition 6.6.3 Let Γ be a totally ordered abelian group. A non-empty
subset S of Γ is called a segment if for any s ∈ S, the set {g ∈ Γ | −s ≤ g ≤ s}
is contained in S.

A saturated filtration of segments of the value group of v is the same as the
rank of v:

Proposition 6.6.4 Let Γ be the value group of a valuation v, and let V be
the corresponding valuation ring. Then the following hold:
(1) For any subgroup G of Γ that is a segment (i.e., an isolated, or convex

subgroup), PG = {r ∈ V | for all g ∈ G, v(r) > g} is a prime ideal in V .
(2) For any prime ideal P in V , GP = {±v(s) | s ∈ V \ P} is a subgroup of

Γ that is a segment.
(3) For any prime ideal P in V , P(GP ) = P , and for any subgroup G of Γ

that is a segment, G(PG) = G.
(4) The set of all subgroups of Γ that are segments is totally ordered by in-

clusion.
(5) dimV (= rk v) is the supremum of all integers n for which Γ has n distinct

subgroups that are segments.
(6) If a subgroup G of Γ is a segment, then Γ/G is a totally ordered abelian

group that is isomorphic to the value group of the valuation ring VPG
.

Proof: Let x, y ∈ V \PG. Choose g, h ∈ G with v(x) ≤ g and v(y) ≤ h. Then
v(xy) ≤ g + h, so that xy 6∈ PG. This proves (1).

Let g ∈ Γ such that for some s ∈ V \ P , −v(s) ≤ g ≤ v(s). By possibly
replacing g by −g, without loss of generality g ≥ 0. Let x be in the field of
fractions of V such that g = v(x). Then v(x), v(sx−1) ≥ 0, so that x, sx−1 ∈
V . Hence s ∈ xV , whence x ∈ V \ P . This proves (2).

Observe that P(GP ) = {r ∈ V | v(r) > v(s) for all s ∈ V \ P}. Thus if
x ∈ P(GP ), then v(x) > v(s) for all s ∈ V \ P , whence x is not in V \ P ,
which means that x ∈ P . Conversely, should x ∈ P such that v(x) ≤ v(s)
for some s ∈ V \ P , then s ∈ xV ⊆ P , which is a contradiction. Thus
P ⊆ P(GP ). Similarly, G(PG) = 〈v(s) | s ∈ V \ PG〉 = 〈v(s) | s ∈ V, v(s) ≤
g for some g ∈ G〉, so clearly G ⊆ G(PG). If g ∈ G(PG), then without loss of
generality g = v(s) for some s ∈ V and v(s) ≤ h for some h ∈ G. As G is
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a segment, g = v(s) ∈ G. This proves (3). Since the ideals in a valuation
domain are totally ordered, so are the isolated segments of its value group, so
(4) and (5) follow as well.

To prove (6), we first prove that Γ/G inherits a total order from Γ. Let
h, h′ ∈ Γ represent distinct cosets in Γ/G, and suppose that h < h′. We
claim that for all g ∈ G, h + g < h′. If not, there exists g ∈ G such that
h + g > h′. Hence g > h′ − h > −g. Since G is a segment, it follows
that h′ − h ∈ G, a contradiction. Thus Γ/G inherits a total order from Γ.
Observe that the localization VPG

is a valuation ring with the same field of
fractions, K, as V . We can identify Γ ∼= K∗/V ∗. Under this identification,
we claim that Γ/G ∼= K∗/(VPG

)∗, which will finish the proof of (6). Clearly
Γ ∼= K∗/V ∗ surjects onto K∗/(VPG

)∗, so it suffices to prove that the kernel
of this surjection is exactly G. Let α ∈ (VPG

)∗, and write α = r
s
, where

r, s ∈ V \ PG. Then v(s) is a non-negative element of Γ and there exists an
element g ∈ G such that v(s) < g. Hence v(s) ∈ G since G is a segment.
Similarly, v(y) ∈ G, and since G is a group, v(α) ∈ G. Hence the inverse
image is contained in G. Conversely, let x ∈ K∗ such that v(x) ∈ G. Since
v( 1x ) ∈ G as well, without loss of generality we may assume that x ∈ V . Then
the definition of PG shows that x /∈ PG, which means that 1

x ∈ VPG
. Therefore

x ∈ (VPG
)∗.

The following is now immediate:

Proposition 6.6.5 A totally ordered non-trivial Archimedean abelian group
has rank one.

Now that both the rank and the rational rank of a valuation are expressed
in terms of its value group, we can also compare them:

Proposition 6.6.6 For any valuation v, rk v ≤ rat.rk v.

Proof: We prove more generally that if Γ is a totally ordered abelian group,
then its rank, defined as the length of a saturated chain of subgroups that
are segments, is at most its rational rank, defined as dimQ(Γ ⊗Z Q). By
Proposition 6.6.4, this finishes the proof by setting Γ = Γv.

Let n = rkΓ, and let 0 = G0 (G1 ( · · ·(Gn = Γ be a saturated chain of
subgroups of Γ that are segments. If n is 0 or 1, then clearly rat.rkΓ ≥ n.
If n > 1, by induction, the rank n− 1 of Gn−1 is at most dimQ(Gn−1 ⊗Z Q).
The group Gn/Gn−1 is a totally ordered abelian group that is not zero, so its
rational rank is at least one. Thus rat.rkΓ = rat.rk(Gn−1 ⊕ (Gn/Gn−1)) ≥
n− 1 + 1 = n = rkΓ.

In this book we use primarily rank one Noetherian valuations, however, the
study of arbitrary valuations is intricate and beautiful. We present a noted
result of Abhyankar on (rational) ranks of valuations:

Theorem 6.6.7 (Abhyankar [6]) Let (R,m) be a Noetherian local integral
domain with field of fractions K and residue field k. Let V be a K-valuation
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domain such that R ⊆ V , mV ∩ R = m, and let v be the corresponding
valuation. Set n = dim(R). Then
(1) rat.rk v + tr.degkv ≤ n.
(2) If rat.rk v + tr.degkv = n, then Γv ∼= Zr, where r = rat.rk v, and κ(v) is

finitely generated over k.
(3) If rk(v) + tr.degkv = n, then Γv is discrete.

First we prove a lemma:

Lemma 6.6.8 (Abhyankar [6]) Let F ⊆ K be an inclusion of fields, let w
be a K-valuation, and let v be the restriction of w to F . Then

rat.rkw ≤ rat.rk v + tr.degFK.

Proof: There is nothing to show if the transcendence degree of K over F is
infinite. So assume that tr.degFK < ∞. We use induction on tr.degFK. If
tr.degFK = 0, then by Proposition 6.3.7 (3), rat.rkw = rat.rk v. Now assume
that tr.degFK > 0. If for all elements x ∈ K that are transcendental over F ,
w(x) is up to a positive integer multiple in Γv, then rat.rkw = rat.rk v, and
we are done. So we may assume that for some x ∈ K that is transcendental
over F , no positive integer multiple of w(x) is in Γv. If the lemma holds for
the restrictions of w to the field extensions F ⊆ F (x) and F (x) ⊆ K, then

rat.rkw ≤ rat.rk(w|F (x)) + tr.degF (x)K

≤ rat.rk v + tr.degFF (x) + tr.degF (x)K

= rat.rk v + tr.degFK,

which proves the lemma. Thus by induction it suffices to prove the case
K = F (x). As w(x) is not rationally dependent on Γv, for every f = a0 +
a1x + · · · + anx

n with ai ∈ F , w(f) = min{v(ai) + iw(x) | i = 0, . . . , n} by
Remark 6.1.2. It follows that Γw ⊗Z Q is generated by w(x) and Γv, so that
rat.rkw = rat.rk v + 1 = rat.rk v + tr.degFK.

With this, we can prove Theorem 6.6.7:

Proof of 6.6.7: We use induction on the dimension n of R. If n = 0, then V
is trivial, and (1) follows easily.

If n = 1, then by the Krull–Akizuki Theorem 4.9.2, the integral closure R
of R is Noetherian. As R ⊆ V , if M = mV ∩ R, then RM ⊆ V . But RM

is a Noetherian one-dimensional integrally closed domain, hence a principal
ideal domain, so that by Proposition 6.3.4, V = RM or V = K. The latter
case implies that m = mV ∩ R = 0, so that R = K, which is impossible. So
necessarily V = RM, hence Γv = Z, so that rat.rk v = 1, tr.degkv = 0, so
again (1) follows.

Now let dimR = n > 1. First assume that tr.degkv > 1. Let x ∈ V such
that its image in V/mV is transcendental over k. Set S = R[x]mV ∩R[x]. Then
S is Noetherian local with maximal ideal mS , tr.degκ(mS)v = tr.degkv − 1,
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and by the Dimension Inequality Theorem B.2.5, dimS ≤ dimR− 1. Thus it
suffices to prove (1) with S in place of R, and hence it suffices to prove (1) in
case tr.degkv = 0. More generally, it suffices to prove that rat.rk v ≤ n.

Suppose that v is real-valued. By Lemma 6.5.6, there exists a valuation ṽ
whose value group contains Γv and is contained in R, and furthermore ṽ is
non-negative on R̂, and is positive on the maximal ideal of R̂. Let P be the set
of elements in R̂ on which ṽ is infinite. If we can show that rat.rk(ṽ|

Q(R̂/P )
) ≤

dim(R̂/P ), then it follows that rat.rk v ≤ dim(R̂/P ) ≤ dimR, which would
prove (1). Thus it suffices to prove (1) when v is real-valued, in the case
that R is a complete local domain. By the Cohen Structure Theorem, there
exists a subring S of R that is a power series ring in finitely many variables
over a field or over a complete local principal ideal domain and for which
S ⊆ R is module-finite. The rational ranks of V and of V ∩ Q(S) are the
same by Proposition 6.3.7, and as dimS = dimR, without loss of generality
by replacing R with S we may assume that R is a complete regular local ring.
By Proposition 6.5.2, we may replace R by A[X1, . . . , Xn](X0,X1,...,Xn), where
A is either a field or a local principal ideal domain, X1, . . . , Xn are variables
over A, and X0 generates the maximal ideal of A. If A is a principal ideal
domain, we assume that Xn = 0 (recall that the dimension of R is n). Let
F be the field of fractions of A. By Lemma 6.6.8, rat.rk v ≤ rat.rk(v|F ) + d,
where d is the transcendence degree of the field of fractions of R over F . Since
dimA + d = dimR, and rat.rk(v|F ) ≤ dimA as dimA ≤ 1, we have proved
(1) in the case v is real-valued.

Now we prove (1) in full generality. By the reductions above, without loss of
generality tr.degkv = 0, dimR > 1, and v is not real-valued. By Lemma 6.3.6,
v is not Archimedean. In other words, there exist non-zero x, y ∈ m such that
for all positive integers n, nv(x) < v(y). No power of x can be in yV , so that
there exists a prime ideal Q in V containing y but not x. Thus 0 6= Q(mV .
Let P = Q ∩ R. As x 6∈ Q, P ( m, and as R ⊆ V have the same field of
fractions, P 6= 0. Observe that RP ⊆ VQ and that VQ is a valuation domain.
Let vQ be the corresponding valuation. Since dimRP < dimR, induction
gives that rat.rk(vQ) + tr.degκ(P )κ(Q) ≤ dimRP . Also, we have inclusion
R/P ⊆ V/Q, and V/Q is a valuation ring. Let v∗ be its valuation. By
Lemma 6.6.8,

rat.rk(v∗) ≤ rat.rk(v∗|Q(R/P )) + tr.degκ(P )κ(Q),

and by induction on dimension, rat.rk(v∗|Q(R/P )) ≤ dim(R/P ). Thus

rat.rk(vQ) + rat.rk(v∗) ≤ dimRP + rat.rk(v∗|Q(R/P ))

≤ dimRP + dim(R/P ) ≤ dimR.

As in Proposition 6.6.4, Q corresponds to the subgroup GQ of Γv, and GQ is
the value group of the valuation ring VQ. The quotient group Γv/GQ is the
value group of the valuation ring V/Q. Thus rat.rk v = rat.rk(vQ)+rat.rk(v∗),
which finishes the proof of (1).
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Now assume that rat.rk v + tr.degkv = dimR = n (respectively, that
rk v + tr.degkv = dimR = n). We want to show that κ(v) is finitely gen-
erated over k, and that Γv ≡ Zn (respectively, that Γv is discrete). The same
reduction as for (1) shows that without loss of generality we may assume
that tr.degkv = 0. In case v is real-valued, we may similarly assume that
R = A[X1, . . . , Xd](X0,...,Xd), where A is a field or a discrete valuation ring of
rank one, X0 generates the maximal ideal of A, and X1, . . . , Xd are variables
over A. With F the field of fractions of A, then as before, rat.rk(v|F ) = dimA
and rat.rk v = dimA + d. Thus for some y1, . . . , yd ∈ k[X1, . . . , Xd], Γv ⊗Z Q

is generated by the images of v(y1), . . . , v(yd), and also by v(X0) if A is not a
field. Without loss of generality y1, . . . , yd ∈ (X) \ (X0, X)2 and thus without
loss of generality y1 = X1, . . . , yd = Xd. As Γv is generated by the values
of the polynomials in X0, . . . , Xd, and as all these values are rationally in-
dependent, Γv is generated by v(X0), . . . , v(Xd) and Γv ∼= Zn. In this case,
kv = k. This proves (2) when v is real-valued. If also rk v = dimR, then
necessarily after possibly reordering the Xi, for all i = 0, . . . , d − 1 and all
positive integers m, mv(Xi) > v(Xi+1). This proves that V is discrete so that
(3) holds for real-valued valuations.

Now assume the hypothesis of (2) for arbitrary v. With reductions and no-
tation as in the last paragraph of the proof of (1), rat.rk(vQ) + tr.degκ(P )κ(Q)
= dimRP , rat.rk(v

∗) = dim(R/P ) + tr.degκ(P )κ(Q), and tr.degkv = 0. By

induction, the value group ΓQ of vQ is isomorphic to ZhtP and its residue
field κ(Q) is finitely generated over κ(P ). Thus there exist x1, . . . , xs ∈
mV /Q that are transcendental over κ(P ) and such that κ(Q) is algebraic
over κ(P )(x1, . . . , xs). Let R′ be the ring (R/P )[x1, . . . , xs] localized at
the contraction of mV /Q. Then R′ is a Noetherian local ring of dimen-
sion dim(R/P ) + s such that κ(Q) is finite over Q(R′). There exist finitely
many elements y1, . . . , yr ∈ κ(Q) that are integral over R′ and such that
κ(Q) = Q(R′)(y1, . . . , yr). Let R′′ be the localization of R′[y1, . . . , yr] at the
contraction of mV /Q. Then R′′ is a Noetherian local domain of dimension
at most dimR′ = dim(R/P ) + s′ whose field of fractions is κ(Q). By (1),
rat.rk(v∗) ≤ dim(R′′) ≤ dim(R/P ) + s = dim(R/P ) + tr.degκ(P )κ(Q) =
rat.rk(v∗), so that equality holds throughout. Thus by induction on dimen-

sion, the value group of v∗ is isomorphic to Zdim(R′′), and the residue field of
v∗ is finitely generated over the residue field of R′′. As the latter is finitely
generated over k, then the residue field of v∗ is finitely generated over k. But
the residue field of v∗ is kv. Thus, Γv ∼= ΓvQ ⊕ Γv∗ , which is isomorphic to
the direct sum of htP + dim(R/P ) + tr.degκ(P )κ(Q) copies of Z. But the
rational rank of v is dimR (under the assumption tr.degkv = 0), so that Γv
is isomorphic to a direct sum of dimR copies of Z. This proves (2). A similar
argument proves that rk v + tr.degkv = dimR implies that Γv is discrete.
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6.7. Examples of valuations

We analyze basic examples of valuations in light of the definitions from the
previous section.

Example 6.7.1 (Cf. Example 6.1.5.) Let k be a field, X and Y variables
over k, and K = k(X, Y ). Let v be a monomial valuation on K defined by
v(X) = 1, v(Y ) = 1/2. The valuation ring Rv is the localization of k[Y, XY 2 ]
at the prime ideal generated by Y . The residue field of the valuation ring of
v is the field k( XY 2 ); hence tr.degkv = 1. The maximal ideal of the valuation
ring is generated by Y . For each positive integer n, the set of all elements r
of R = k[X, Y ] satisfying v(r) ≥ n is the ideal (v) = (X, Y 2)n. This example
is a discrete rank one valuation, with a Noetherian valuation ring. Of course,
the value group is isomorphic to Z, but is literally Z · (1/2).

Notice that we could alter this valuation by letting v(X) = 2, v(Y ) = 1. In
this case the valuation ring does not change, nor does any essential property of
the valuation, although the value group is now Z. In fact, the two valuations
(the original and the scaled one) are equivalent (see Definition 6.1.8).

Example 6.7.2 (Cf. Example 6.1.6.) Let k be a field, let X and Y be
variables over k, and let K = k(X, Y ). Let v be the monomial valuation
on K defined by v(X) =

√
2, v(Y ) = 1. In this case the value group is

Γ = {a + b
√
2 | a, b ∈ Z}, so that the rational rank of v is 2. However, the

associated valuation ring is not discrete. Namely, the value group, though
isomorphic to the abelian group Z2, is not isomorphic to the totally ordered
abelian group Z2 under the lexicographic ordering. By Proposition 6.6.5, the
rank of Γ is one. Thus by Proposition 6.6.4, the maximal ideal is the only
non-zero prime ideal in the valuation ring V of v. Here is also an easy direct
proof: let P be a non-zero prime ideal in V . Let z be an arbitrary non-
unit in V . Write v(z) = a0 + b0

√
2 for some non-zero (a0, b0) ∈ Z2. Let

r ∈ P \ {0}. Write v(r) = a + b
√
2 for some non-zero (a, b) ∈ Z2. Let n be

a sufficiently large integer such that nv(z) − v(r) ≥ 0. Let s ∈ V such that
v(s) = nv(z)− v(r) ≥ 0. Then rs has value nv(z) = v(zn), which forces rs to
be a unit multiple of zn. As P is a prime ideal and rs ∈ P , then z ∈ P . This
proves that there is only one non-zero prime ideal in V . Thus V has rank one.
The ideal of all elements r of R = k[X, Y ] satisfying v(r) ≥ n is generated by
all monomials X iY j , i, j ∈ Z such that i

√
2 + j ≥ n.

Example 6.7.3 (Cf. Example 6.1.7.) Let R = k[X, Y ], where k is a field and
X, Y variables over k. Let e be an element of Xk[[X ]] that is transcendental
over k[X ] (it exists by Exercise 3.13). Write e(X) =

∑
i≥1 eiX

i. Define
v : R \ {0} → Z by f(X, Y ) 7→ max{n | f(X, e(X)) ∈ Xnk[[X ]]}. In other
words, we embed k[X, Y ] in k[[X ]], which is a valuation ring, and v is the
restriction of the valuation of k[[X ]] to R. Thus v is a valuation. The value
group of this valuation is Z, so that its associated valuation ring is Noetherian.
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As the value group is Z, clearly the rational rank of the valuation is 1, and by
Proposition 6.3.4, the rank is 1. From k = κ((X, Y )R) ⊆ κ(v) ⊆ κ(Xk[[X ]]) =
k we deduce that tr.degk(v) = 0.

Example 6.7.4 Let R = k[X, Y, Z], where k is a field and X, Y, Z are
variables over k. Let e(X) be an element of Xk[[X ]] that is transcendental
over k[X ] (it exists by Exercise 3.13). Every non-zero g ∈ R can be written
as g = Zrf(X, Y, Z) for some f(X, Y, 0) 6= 0. We define v : R 7→ Z2 by
v(g) = (r, sup{n | f(X, e(X), 0) ∈ Xnk[[X ]]}). Under the lexicographic order
on Z2, this extends to a valuation on k(X, Y, Z). The value group is Z2, and
v is not a monomial valuation.

Example 6.7.5 Let k be a field and t a variable over k. Let V be the set
of all generalized power series of the form

∑∞
n=0 ant

en , where all an are in k
and where {en}n is a strictly increasing sequence of rational numbers such
that lim en = ∞. The elements of V can be added and multiplied in a natural
way, which makes V into a commutative domain with identity. By using the
identity 1

1−x =
∑∞
n=0 x

n it is easy to prove that an element of V is a unit if

and only if it is of the form
∑∞
n=0 ant

en with a0 6= 0. Every element of V can
then be written uniquely as some rational power of t times a unit, which gives
that V is a valuation domain, with valuation v reading off the exponent of t.

Example 6.7.6 Let k = R, X and Y variables over R, V and v as in
the previous example, and the map k[X, Y ] → V sends X to t and Y to∑∞
n=2 t

en , with en = 1 + 1
2 + · · · + 1

n . For any subset S of Q and for any
n ∈ N, let nS = {s1 + · · · + sn : si ∈ S}. Set S1 = T1 = {en : n ≥ 2},
and for n ≥ 2, set Tn = nSn−1 and Sn = Tn \ {min{Tn}}. The elements
of Sn and Tn are (some) sums of n! elements in S1. By induction on n
and k = 2, . . . , n, Tn excludes exactly those n!-sums for which (i − 1)((i +
1)(i + 2) · · ·n) summands are ei for i = 2, . . . , k − 1 and for which strictly
more than (k − 1)((k + 1)(k + 2) · · ·n) summands are ek. The minimum

element of Tn is
∑n−1
k=2(k − 1)((k + 1)(k + 2) · · ·n)ek + nen, and min(Sn) =∑n−1

k=2(k−1)((k+1)(k+2) · · ·n)ek+(n−1)en+en+1, which equals an integer
cn plus 1

n+1
. Now set f0 = X , f1 = Y . If fn−1 ∈ k[X, Y ] has the image in V

a power series in t with positive coefficients and with exponents exactly the
elements of Sn−1, then v(f

n
n−1) is the integer ncn−1 + 1, and for some c ∈ k,

fn = fnn−1−cXncn−1+1 ∈ k[X, Y ] maps to a power series in t whose exponents
are exactly the elements of Sn. Thus v(fn) = minSn = cn + 1

n+1 . Hence for

all n ∈ N, fn/X
cn has v-value 1

n+1
, whence the value group of v contains Q,

and thus equals Q. (See also [324], Chapter VI, Section 15, Example 3.)
Valuations also arise from the order function whose special cases were al-

ready used in this chapter, say in Examples 6.1.7 and 6.5.3:

Definition 6.7.7 Let I be an ideal in a ring R. The function ordI : R →
Z≥0 ∪ {∞} defined by ordI(r) = sup{m | r ∈ Im} is called the order of I.
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We next prove that under some conditions on I, ordI is a valuation. It is
then called the I-adic valuation.

Theorem 6.7.8 Let R be a Noetherian ring with an ideal I such that
∩n≥0I

n = 0. Then the associated graded ring grI(R) is an integral domain if
and only if the order function ordI yields a discrete valuation of rank one.

Proof: First assume that grI(R) is an integral domain. Then R is an integral
domain, see Exercise 5.9. It suffices to prove that ordI satisfies the properties
ordI(xy) = ordI(x)+ ordI(y) and ordI(x+ y) ≥ min{ordI(x), ordI(y)} for all
x, y ∈ R. Let ordI(x) = m and ordI(y) = n. Then x ∈ Im and y ∈ In, so that
x + y ∈ Imin{m,n}, which proves the second property. Certainly xy ∈ Im+n.
The associated element x∗ of x in grI(R) lies in the component of degree m
(namely is the element x + Im+1 ∈ Im/Im+1) and the associated element
y∗ of y in grI(R) lies in the component of degree n. As grI(R) is an integral
domain, x∗y∗ = xy+Im+n+1 ∈ Im+n/Im+n+1 is a non-zero element in grI(R)
of degree m+ n. Thus xy is not in Im+n+1. This proves the first property.

Now assume that ordI is a discrete valuation of rank one. To prove that
grI(R) is an integral domain it is enough to prove that the product of non-zero
homogeneous elements is non-zero. Let x ∈ Im \ Im+1, y ∈ In \ In+1. Then
ordI(xy) = ordI(x) + ordI(y) = m + n, so that xy ∈ Im+n \ Im+n+1. This
proves that grI(R) is an integral domain.

Theorem 6.7.9 Let R be a regular ring and m a maximal ideal. Assume
that m is not zero. Then the order function relative to m is a discrete valuation
of rank one and the residue field of the corresponding valuation ring is purely
transcendental over R/m of transcendence degree dimR − 1. Explicitly, the
m-adic valuation ring equals (R[m

x
])(x) for any x ∈ m \m2.

Proof: We may localize at m to assume that R is local with maximal ideal m.
The associated graded ring of a maximal ideal in a regular ring, being a
polynomial ring, is an integrally closed Noetherian domain. By Theorem 6.7.8
the order function induces a rank one discrete valuation. Let d = dimR
and m = (x1, . . . , xd). Set S = R[ xi

x1
| i = 2, . . . , d]. By Corollary 5.5.9,

S ∼= R[Y2, . . . , Yd]/(x1Y2 − x2, . . . , x1Yd − xd). After inverting x1, S is clearly
regular, and if a prime ideal P in S contains x1, then SP is regular. Thus
S is a regular ring, whence integrally closed. The ideal Q = x1S is a prime
ideal, and gives a valuation ring V = SQ. Let the corresponding valuation
be v. For any f ∈ R, let r = ordm(f). Then f ∈ m

r ⊆ m
rS = xr1S, so that

v(f) ≥ r. If v(f) ≥ r + 1, then f ∈ xr+1
1 SQ ∩ R = xr+1

1 S ∩ R = m
r+1S ∩ R.

It is straightforward to compute that this intersection is m
r+1, which is a

contradiction. Thus v agrees with the order valuation of m. The residue field
of v is k(Y2, . . . , Yd), proving the rest of the claims.

The theorem above provides a rich source of valuations. For example, let R
be a Noetherian integral domain with field of fractions K. For every regular
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local ring S such that R ⊆ S ⊆ K, the order valuation associated to S is a
discrete rank one valuation that is non-negative on R. The set of all such S
is plentiful; we can take any finitely generated R-subalgebra of K, take its
integral closure, and take the associated localizations at height one primes of
the integral closure. We explore this topic in more detail in later chapters.

It is worth noting that whenever the order function of a localization RP
gives a valuation v, then the set of all elements in the ring whose v-value is
at least n equals P (n), the nth symbolic power of P . This observation allows
one to study the growth of symbolic powers in the context of valuations. This
has been done for example by Spivakovsky [277]; Cutkosky [52]; and Ein,
Lazarsfeld and Smith [66].

6.8. Valuations and the integral closure of ideals

We prove in this section that valuations determine the integral closures of
ideals and integral domains. We also prove that the integral closure of ideals
in Noetherian rings is determined by the Noetherian valuation domains.

We need some preliminary results, such as that every ideal in a valuation
domain is integrally closed. If the ideal is principal, this follows easily from
Propositions 1.5.2 and 6.3.1, but here is a more general result:

Proposition 6.8.1 Let R be an integral domain with field of fractions K.
Let I be an ideal in R and let V be a valuation ring between R and K. Then
IV = IV = IV .

Proof: As I ⊆ I, it follows that IV ⊆ IV , and by persistence of integral
closure, IV ⊆ IV . Now let r ∈ IV . Let rn+a1r

n−1+ · · ·+an−1r+an = 0 be
an equation of integral dependence of r over IV , with each ai ∈ IiV . There
is a finitely generated ideal J contained in I such that ai ∈ J iV , i = 1, . . . , n.
Thus by Lemma 6.3.2 there exists j ∈ J such that JV = jV , and so r satisfies
an equation of integral dependence of degree n over jV . By Proposition 1.5.2,
r ∈ jV = JV ⊆ IV , which proves that IV ⊆ IV .

Furthermore, valuations determine the integral closure of ideals:

Proposition 6.8.2 Let R be an integral domain, not necessarily Noetherian,
and let I be an ideal in R. Then

I =
⋂

V

IV ∩R,

where V varies over all valuation domains of the field of fractions K of R
that contain R. When R is Noetherian, V may be taken to vary only over all
discrete valuation domains of rank one.

Proof: By Proposition 6.8.1, I ⊆ ⋂V IV ∩R =
⋂
V IV ∩R. To prove the other

inclusion, let r be a non-zero element of
⋂
V IV ∩R. Let S be the ring R[ Ir ],

i.e., the ring generated over R by the elements x
r , x ∈ I. Note that R and S
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have the same field of fractions. Thus by the choice of r, for all valuation
rings V between S and K, r ∈ IV . Hence for each such V , the ideal I

r
S of S

extends to the unit ideal in V . By Theorems 6.4.2 and 6.4.3, it follows that
I
r
S = S. Thus we can write 1 =

∑n
i=1

ai
ri

for some ai in I
i. Multiplying this

equation through by rn yields an equation of integral dependence of r over I
of degree n, so that r is integral over I.

Combining the result above and Proposition 1.1.5 yields:

Theorem 6.8.3 (Valuative criterion) Let R be a ring, I be an ideal in R,
and r ∈ R. The following are equivalent:
(1) r ∈ I,
(2) for all P ∈ Min(R) and for all valuation rings V between R/P and its

field of fractions κ(P ), r ∈ IV .
In case R is Noetherian, the conditions above are equivalent to:
(3) for all P ∈ Min(R) and for all rank one discrete valuation rings V between

R/P and κ(P ), r ∈ IV .

In the Noetherian case one can be even more selective with the discrete
valuations that determine the integral closures of ideals:

Proposition 6.8.4 Let R be a Noetherian domain and I an ideal in R.
Then the integral closure I of I equals ∩V IV ∩R, where V varies over those
discrete valuation rings of rank one between R and its field of fractions for
which the maximal ideal of V contracts to a maximal ideal of R.

Proof: By Proposition 1.1.4, for all maximal ideals m of R, IRm = IRm. As
I = ∩mIRm ∩ R, where m varies over the maximal ideals of R, it suffices to
prove that the proposition holds for the ideal IRm in Rm. Thus without loss
of generality R is a Noetherian local ring with maximal ideal m.

Let r be a non-zero element of the intersection ∩V IV ∩ R. Set S = R[ Ir ].

If Q = mS + I
rS is a proper ideal in S, by Theorem 6.4.3 there exists a

discrete valuation ring V of rank one between S and the field of fractions K
whose maximal ideal mV contains Q. Thus mV ∩ R = m, so by assumption,
r ∈ IV . But also IS ⊆ rS, so that rV = IV and I

r
V = V , contradicting

the properness of Q. Necessarily mS + I
rS = S. We can write 1 =

∑n
i=0

ai
ri ,

with a0 ∈ m, and for i = 1, . . . , n, ai ∈ Ii. Hence rn =
∑n

i=0 air
n−i, and thus

rn(1− a0) =
∑n
i=1 air

n−i. As 1− a0 is a unit, this equation can be rewritten
as an equation of integral dependence of r over I, so that r ∈ I.

Valuations enable easy proofs of some ideal inclusions. We give three ex-
amples below.

Corollary 6.8.5 Let (R,m) be a Noetherian local ring and I an ideal in R.
Then I = ∩nI +mn.

Proof: Clearly I ⊆ ∩nI +mn. By Theorem 6.8.3 we may assume that R is
an integral domain. By Proposition 6.8.4, I = ∩V IV ∩ R, where V varies
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over all discrete valuations V of rank one between R and its field of fractions
whose maximal ideals contain m. Let r ∈ R \ I. There exists a valuation V as
above such that r is not in IV . As m is contained in the maximal ideal of V ,
there exists an integer n such that r 6∈ (I +m

n)V since IV = ∩n(I + m
n)V .

Thus by Proposition 6.8.4, r 6∈ I +mn.

Corollary 6.8.6 For any ideals I and J in a ring, I · J ⊆ IJ .

Proof: A proof appears in Remark 1.3.2 (4). Here is a proof using valuations:
Let r ∈ I, s ∈ J . For any P ∈ MinR and any κ(P ) valuation ring V containing
R/P , by Theorem 6.8.3, r ∈ IV and s ∈ JV . Hence rs ∈ IJV , whence since
P and V were arbitrary, by Theorem 6.8.3 again, rs ∈ IJ .

Corollary 6.8.7 Let R be an integral domain, and I and J ideals in R with
I = (a1, . . . , ad) 6= 0. Then for any n ∈ N, JIn : In = ∩i(JIn : ani ) = J .

Proof: Certainly JIn : In ⊆ ∩i(JIn : ani ). Let r ∈ ∩i(JIn : ani ). Let V be a
discrete valuation ring of rank one between R and its field of fractions. There
exists i such that IV = aiV . By the assumption on r, ani rV ⊆ JInV , so that
ani rV ⊆ JInV = Jani V , whence r ∈ JV . By Proposition 6.8.2, r ∈ J . The
other inclusion is by Corollary 6.8.6.

A consequence of this corollary is the following important proposition.

Proposition 6.8.8 Let I be an ideal in a Noetherian ring R. Then for all
n ≥ 1, Ass(R/In) ⊆ Ass(R/In+1).

Proof: Let P ∈ Ass(R/In). To prove that P ∈ Ass(R/In+1) we may localize
at P and thus assume that P is the unique maximal ideal of R. If the height
of P is zero, the conclusion follows at once, so we may assume that the height
of P is positive. Write P = In : x for some x ∈ R. Then P ⊆ In+1 : Ix.
If Ix is not contained in In+1, then P is associated to In+1. Assume that
Ix ⊆ In+1. We will reach a contradiction by proving that x ∈ In. Using
Proposition 1.1.5 it suffices to prove that for every minimal prime ideal Q of
R, x′ ∈ (I ′)n, where by I ′ and x′ we denote the images of I and x in R/Q.
Fix a minimal prime ideal Q. If I ⊆ Q, then since P has positive height and
Px ⊆ In, it follows that x ∈ Q as well, proving that x′ ∈ (I ′)n = 0. If I is
not contained in Q, then after reducing modulo Q and using Corollary 6.8.7,
x′ ∈ (I ′)n+1 : I ′ ⊆ (I ′)n.

Expressions about the integral closure of ideals involving valuation rings
can also be translated into expressions involving valuations.

Definition 6.8.9 Let R be a domain, and v a valuation on its field of frac-
tions. By the usual convention, v(0) = ∞. For every non-empty subset S
of R, whenever the set {v(x) |x ∈ S} has a minimum, we define v(S) to be
that minimum. In particular, if S = I is a non-zero ideal in R,

v(I) = min{v(x) |x ∈ I}.
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In particular, when I is an ideal of R, v(I) is defined whenever I is finitely
generated, or when every subset of Γ consisting of elements greater than 0 has
a minimum element. In particular, v(I) is defined if v is a discrete valuation
of rank one.

It is straightforward to prove that whenever v(I) is defined, so is v(In) for
every positive integer n, and furthermore v(In) = nv(I).

The following is a valuation analog of Proposition 6.8.1.

Proposition 6.8.10 Let R be an integral domain with field of fractions K,
v a valuation on K that is non-negative on R, and I an ideal in R such that
v(I) is defined (see definition above). Then v(I) = v(I).

Proof: As I ⊆ I, v(I) ≥ v(I). For any r ∈ I, rn+a1r
n−1+· · ·+an−1r+an = 0

for some integer n and some ai ∈ Ii. Then

nv(r) = v(rn) ≥ min{v(airn−i) | i = 1, . . . , n}
≥ min{iv(I) + (n− i)v(r) | i = 1, . . . , n}.

By cancelling, for some i > 0, iv(r) ≥ iv(I). Hence v(r) ≥ v(I), and thus
v(I) is defined and v(I) ≥ v(I).

Corollary 6.8.11 Assume that R is Noetherian, I an ideal in R and r ∈ R.
Then r ∈ I if and only if there exists an integer n such that for all integers
m > n, rm ∈ Im−n.

Proof: Suppose that r ∈ I. Then I ⊆ I + (r) is a reduction, so that for
some integer n, I(I + (r))n = (I + (r))n+1. Thus for all m > n, (I + (r))m =
Im−n(I + (r))n ⊆ Im−n, whence rm ∈ Im−n.

Now assume that there exists n such that for all m > n, rm ∈ Im−n. Then
for all P ∈ MinR, rm ∈ Im−n(R/P ). Let v be any κ(P )-valuation that is non-
negative on R/P , and is discrete and Noetherian. Then v(rm) ≥ v(Im−n), or
v(r) ≥ m−n

m v(I) for all m > n. As v is Z-valued, it follows that v(r) ≥ v(I).

As P and v were arbitrary, by Theorem 6.8.3, r ∈ I.

Compare the following corollary with Exercise 1.5. The next corollary is
inspired by the definition of tight closure and is quite important. Recall that
Ro is the set of elements in R that are not in any minimal prime of R.

Corollary 6.8.12 Let R be a Noetherian ring and I an ideal in R. An
element r is in I if and only if there is an element c ∈ Ro such that for
infinitely many integers m ≥ 0, crm ∈ Im. When this occurs, there exists an
element c′ ∈ Ro such that c′rn ∈ In for all large n.

Proof: First assume that r ∈ I. By the previous corollary, r ∈ I if and
only if there exists an integer n such that for all m ≥ n, rm ∈ Im−n. Let
P1, . . . , Pl be the minimal primes of R. By relabeling them if necessary we may
assume that I ⊆ P1 ∩ · · · ∩ Pk, and I is not in Pi for k + 1 ≤ i ≤ l. Choose
d ∈ In \ (Pk+1 ∪ · · · ∪ Pl), and choose e ∈ ∩k+1≤i≤lPi with e /∈ ∪1≤i≤kPi
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such that for some fixed N , e(P1 ∩ · · · ∩ Pk)N = 0. (If k = l, take e = 1.)
Set c′ = d + e. We claim that for all m ≥ N + n, c′rm ∈ Im. Since d ∈ In,
drm ∈ InIm−n ⊆ Im. Moreover, erm ∈ eIn−m ⊆ eIN ⊆ e(P1∩· · ·∩Pk)N = 0.
This proves our claim. Finally note that c′ ∈ Ro by the choice of d and e.

Conversely, assume that crm ∈ Im for infinitely many m ≥ 0. Let P be an
arbitrary minimal prime of R, and let V be a Noetherian valuation domain of
rank one lying between R/P and its field of fractions. For infinitely many m,
crm ∈ ImV and cV 6= 0. Letting v be the corresponding valuation, this says
that v(c) ≥ m(v(I)− v(r)) for infinitely many m, so necessarily v(I) ≤ v(r).
In other words, r ∈ IV . As this holds for all such V , by Theorem 6.8.3 it
follows that r ∈ I.

With I = (x1, . . . , xn), it need not be the case that for every i, In : xmi =
In−m. However, if the xi form a system of parameters in a locally formally
equidimensional ring, this does hold:

Corollary 6.8.13 Let R be a locally formally equidimensional Noetherian
ring, and let (x1, . . . , xn) be a parameter ideal. For all m ≥ 1 and i = 1, . . . , n,

(x1, . . . , xi)m : xi = (x1, . . . , xi)m−1.

Proof: Certainly (x1, . . . , xi)
m−1 ⊆ (x1, . . . , xi)m : xi. We proved on page 7

that (x1, . . . , xi)m : xi is integrally closed, so it also contains (x1, . . . , xi)m−1.
This proves one inclusion. Now let r ∈ (x1, . . . , xi)m : xi. By Corollary 6.8.12,
there exists an element c ∈ Ro such that for all large k,

c(rxi)
k ∈ (x1, . . . , xi)

mk ⊆ xki (x1, . . . , xi)
mk−k + (x1, . . . , xi−1)

mk−k.

Let u ∈ (x1, . . . , xi)
mk−k and v ∈ (x1, . . . , xi−1)

mk−k such that c(rxi)
k =

xki u+ v. In this case, xki (cr
k − u) = v, so that crk − u ∈ (x1, . . . , xi−1)

mk−k :

xki ⊆ (x1, . . . , xi−1)mk−k by Theorem 5.4.1. It follows that for all large k,

crk ∈ (x1, . . . , xi)mk−k. An application of Corollary 6.8.12 then gives that
r ∈ (x1, . . . , xi)m−1.

Just as the integral closure of an ideal is determined by passage to valua-
tion domains, so is the integral closure of an integral domain determined by
intersecting valuation domains:

Proposition 6.8.14 Let R be an integral domain. Then the integral closure
of the ring R equals ∩V V , where V varies over all the valuation domains
between R and its field of fractions. If R is Noetherian, all the V may be
taken to be Noetherian.

Proof: Certainly the integral closure of R is contained in each V . Now let x
be a non-zero element in ∩V V . Write x = a/b for some a, b ∈ R. If a is
not integral over (b), then by the Proposition 6.8.4, there exists a valuation
domain (Noetherian if R is Noetherian) such that a 6∈ bV . Hence x = a/b 6∈ V ,
contradicting the assumption. So a ∈ (b). Thus there exists an equation of
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integral dependence an + r1ba
n−1 + · · ·+ rnb

n = 0 for some ri ∈ R. Division
through by bn produces an equation of integral dependence of x = a/b over R.
So ∩V V equals the integral closure of the ring R.

6.9. The asymptotic Samuel function

Another numerical characterization of integral dependence is via the order
function, using the valuative criterion:

Corollary 6.9.1 Let R be a Noetherian ring, I an ideal in R, r ∈ R \ {0},
c ∈ N. Then r ∈ Ic if and only if lim supm→∞

ordI(r
m)

m ≥ c.

Proof: Without loss of generality c > 0. First assume that r ∈ Ic. By Re-
mark 1.2.3 there exists an integer n such that for all m ≥ n, rm ∈ (Ic)m−n+1.
Thus ordI(r

m) ≥ c(m− n+ 1) and

lim sup
ordI(r

m)

m
≥ lim sup

c(m− n+ 1)

m
= c.

Conversely, assume that lim sup ordI(r
m)

m ≥ c. For arbitrary positive k, this
means that for infinitely many m, ordI(r

m) ≥ cm − m
k . Let P be a minimal

prime ideal in R and let V be any rank one discrete valuation ring between
R/P and κ(P ). Let v be its corresponding valuation. Then for infinitely
many m, rm ∈ I⌊cm−m

k
⌋, whence mv(r) ≥ ⌊cm− m

k
⌋v(I) > (cm− m

k
−1)v(I),

so that v(r) > (c− 1
k − 1

m )v(I). Since this holds for infinitely many positive
integers m for each positive k, it follows that v(r) ≥ cv(I) for all v. By the
Valuative criterion (Theorem 6.8.3), r ∈ Ic.

In the corollary above, lim sup can be replaced by lim, by the following:

Lemma 6.9.2 (Rees [233]) Let I be an ideal in a Noetherian ring R. For
any x ∈ R,

lim
n→∞

ordI(x
n)

n

exists.

Proof: Let u = lim supn→∞
ordI(x

n)
n

(possibly ∞). Let N be an arbitrary

number strictly smaller than u. Choose n0 ∈ N>0 such that ordI(x
n0 )

n0
> N .

Let n be an arbitrary positive integer. Write n = qn0 + r for some q, r ∈ N

with r < n0. Since clearly for all i, j ∈ N>0, ordI(x
i+j) ≥ ordI(x

i)+ordI(x
j),

it follows that

ordI(x
n)

n
=

ordI(x
qn0+r)

qn0 + r
≥ q

ordI(x
n0)

qn0 + r
+

ordI(x
r)

qn0 + r

≥ qn0

qn0 + r

ordI(x
n0)

n0
≥ qn0

qn0 + r
N ≥ qn0

n0(q + 1)
N.

Thus lim inf ordI(x
n)/n ≥ N . Since this holds for all N , the limit exists.
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Definition 6.9.3 For an ideal I in a ring R, the function vI : R → R≥0 ∪
{∞} defined by vI(x) = limn→∞

ordI(x
n)

n , is called the asymptotic Samuel
function.

We prove with Rees valuations in Chapter 10 that the range of vI is a
subset of Q≥0 ∪ {∞}.

6.10. Exercises

6.1 Prove that for a field k and a totally ordered abelian group Γ, the
function k[Γ] \ {0} → Γ defined as

∑
g kgg 7→ min{g : kg 6= 0} is

a (partial) valuation whose value group is Γ and whose residue field
is k.

6.2 Suppose that the value group Γ of a valuation v is finitely gener-
ated. Prove that rk v = rat.rk v if and only if the value group of v is
isomorphic to Zrk v ordered lexicographically.

6.3 Prove that any ring between a valuation domain V and its field of
fractions is a localization of V .

6.4 Prove that the radical of a proper ideal in a valuation domain is a
prime ideal.

6.5 Let (R,m) be a local domain that is not a field. Prove that R is a
Noetherian valuation domain if and only if R is a discrete valuation
domain of rank 1.

6.6 LetK be a field, V aK-valuation ring, and S the set of allK-valuation
rings that contain V . Prove that S is totally ordered (by inclusion).
Is the set of all K-valuation rings totally ordered?

6.7 Let R be an integral domain and v a valuation on the field of fractions
of R. Let Γ be the value group of v, and γ ∈ Γ, and assume that for
all r ∈ R \ {0}, v(r) ≥ 0. Let Iγ = {r ∈ R | v(r) ≥ γ}. Prove that Iγ
is integrally closed in R.

6.8 Let R be a local integral domain with field of fractions K and infinite
residue field. Let v1, . . . , vn be discrete K-valuations of rank one such
that vi(r) ≥ 0 for all r ∈ R \ {0}. Let I be an ideal in R. Prove that
there exists x ∈ I such that for all i = 1, . . . , n, vi(x) = vi(I).

6.9 Let R be a regular ring. Prove that for any non-minimal prime ideal P
in R there exists a natural discrete valuation vP of rank one satisfying
the property that for any x ∈ R, vP (x) = n if and only if x ∈
PnRP \ Pn+1RP .

6.10 Let Γ be a subgroup of Q and let R be a polynomial ring in two
variables over a field. Prove that Γ is the value group of a valuation
on R that is non-negative on R.

6.11 Let k be a field, X1, . . . , Xd variables over k, and R = k[[X1, . . . , Xd]].
Prove that the valuation ring of the (X1, . . . , Xd)-adic valuation on R
is k(X2

X1
, . . . , Xd

X1
)[[X1]].



146 6. Valuations

6.12 Let R = k[X, Y, Z], polynomial ring in variables X , Y , and Z over a
field k. The ring V = k(X+Y

Xn , Z
X
)[X ](X) is a discrete valuation domain

between R and its field of fractions. Let v be the corresponding
valuation. Prove that v(X) = v(Y ) = v(Z) = 1 and v(X + Y ) = n.
(Hint: cf. Example 6.7.6.)

6.13 Let k be a field, X1, . . . , Xd variables over k and R the polynomial
ring k[X1, . . . , Xd]. Assume that d ≥ 3. Let n be a positive integer.
Prove that there exists a discrete valuation v of rank one on the field
of fractions of R that is non-negative on R and such that v(X1) =
· · · = v(Xd) = 1 and v(X1 +X2) = v(X2 +X3) = n.

6.14 Let R be a Noetherian ring and I an ideal in R.
(i) Prove that I has a primary decomposition all of whose primary

components are integrally closed.
(ii) Find an ideal I such that I = ∩ni=1qi is a primary decomposition,

but I 6= ∩ni=1qi.
6.15 Let V be a valuation domain containing a field, and t a variable

over V . Prove that V [[t]] is integrally closed if and only if V is of
rank one. (Cf. Exercise 2.23.)

6.16 Let R be a principal ideal domain and K its field of fractions. Prove
that the only valuation rings in K containing R are the rings of the
form R(p), where p is a prime element in R.

6.17 Let R be an integral domain with field of fractions K. Prove that the
following are equivalent:
(i) R is integrally closed.
(ii) R is an intersection of K-valuation domains.
(iii) R is an intersection of K-valuation domains V such that mV ∩R

is a maximal ideal in R and such that V/mV is algebraic over
R/(mV ∩R).

6.18 Let (R,m) be a local integrally closed domain with field of fractions
K, x ∈ K∗ such that x−1 is not in R. Assume that x satisfies a
polynomial with coefficients in R and that one of these coefficients is
a unit. Prove that x ∈ R.

6.19 (Nagata [215, (11.10), (11.11)]) Let K be a field and let V1, . . . , Vn be
K-valuation rings such that for all i 6= j, Vi 6⊆ Vj . Set R to be the
ring ∩iVi.
(i) Prove that for any x ∈ K there exists an integer m such that

(1 + x+ x2 + · · ·+ xm)−1 and x(1 + x+ x2 + · · ·+ xm)−1 both
belong to R.

(ii) Prove that for each i = 1, . . . , n, the localization of R at mVi

equals Vi.
(iii) Prove that {mV1

∩R, . . . ,mVn
∩R} is the set of all the maximal

ideals of R.
(iv) If V1, . . . , Vn are all Noetherian, prove that R is a principal ideal

domain.
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6.20 Let K be a field. Two K-valuation domains V and W are said to be
independent if the smallest subring of K containing V and W is K.
(i) Prove that distinct discrete K-valuation rings are independent.
(ii) (Approximation of valuations) Let v1, . . . , vn be K-valuations

with respective value groups Γ1, . . . ,Γn. Assume that the valu-
ation domains of the vi are pairwise independent. Let γi ∈ Γi
and xi ∈ K, i = 1, . . . , n. Then there exists x ∈ K such that for
all i = 1, . . . , n, vi(x− xi) = γi.

(iii) Let v1, . . . , vn distinct discrete valuations of rank one defined on
K. Let k1, . . . , kn be arbitrary integers and x1, . . . , xn arbitrary
non-zero elements of K. Prove that there exists x ∈ K such
that for all i = 1, . . . , n, vi(xi − x) = ki.

6.21 (Nagata [215, (11.4)]) Let K be a field, V a K-valuation domain, and
W a (V/mV )-valuation domain. Prove that U = {x ∈ V |x + mV ∈
W} is a K-valuation domain such that UmV

= V and U/mV = W .
Moreover, prove that if U is a discrete valuation ring of rank n andW
is a discrete valuation ring of rank m, then V is a discrete valuation
ring of rank m+ n.

The construction in the previous exercise is related to the “D + M” con-
struction in Gilmer [92, Appendix 2], in which it is assumed that V/mV is a
contained in V . More on this construction is in the exercise below.

6.22 (Gilmer [92, Appendix 2, page 560]) Let V be a valuation ring with
field of fractions K, V 6= K. Suppose that V is of the form L +M ,
where L is a field andM is the maximal ideal of V . Let D be a proper
subring of L, and let R = D +M .
(i) Prove that if X is a variable over L, then L[[X ]] and L[X ](X)

are valuation domains of the form L+M .
(ii) Prove that M is the conductor of R in V .
(iii) Prove that V is the complete integral closure of R.
(iv) Prove that if D is the integral closure of D in L, then D+M is

the integral closure of R in K.
(v) Prove that every ideal in R containing M is of the form I +M ,

where I is an ideal ofD. Prove that I is maximal/prime/primary
if and only if I +M is maximal/prime/primary. A generating
set of I in D is also a generating set of I +M in R.

(vi) Prove that dimR = dimD + dimV .
(vii) Prove that R is a valuation ring if and only if D is a valuation

ring.
(viii) Prove that R is Noetherian if and only if V is Noetherian, D is

a field, and [L : D] <∞.
6.23 (Nagata [215, (11.9)]) Let R be an integral domain with field of frac-

tions K. Let P0 ⊆ P1 ⊆ · · · ⊆ Pn be a chain of prime ideals in R.
Prove that there exists a K-valuation domain V with prime ideals
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Q0 ⊆ Q1 ⊆ · · · ⊆ Qn such that for each i = 1, . . . , n, Qi ∩ R = Pi.
(Hint: Use Theorem 6.4.2, induction, and Exercise 6.21.)

6.24 ([324, Corollary of Theorem 10 on p. 21]) Let K be a field and
(R1,m1) ⊆ (R2,m2) ⊆ · · · a sequence of integrally closed domains
with field of fractions K, such that for all n = 2, 3, . . . , mn ∩Rn−1 =
mn−1. Set R = ∪nRn.
(i) Prove that R is an integrally closed domain with field of fractions

K, maximal ideal m = ∪nmn and residue field ∪n(Rn/mn).
(ii) Assume that R is not a valuation ring. Prove that there are

infinitely many K-valuations v such that for each n, v has center
mn on Rn, and that there is at least one such valuation for
which the residue field has positive transcendence degree over
each Rn/mn. (Hint: use Exercise 6.18.)

6.25 Let (R,m) be a Noetherian regular local ring and I an integrally
closed m-primary ideal. Prove that there exists an integrally closed
m-primary ideal J contained in I such that I/J ∼= R/m. (This was
first proved by Lipman [193] and Noh [216] in dimension two. Wata-
nabe [321] proved that if (R,m) is an excellent normal ring with R/m
algebraically closed, then every integrally closed m-primary ideal I
has an adjacent integrally closed ideal J as above. A monomial ideal
version is proved in Crispin Quiñonez [49].)

6.26 Let k be a field, Xij for i = 1, . . . , m and j = 1, . . . , n variables over
k. Set R = k[Xij | i, j]. Let M be the m×n matrix whose entry (i, j)
is Xij . For any r ≤ min{m,n} let Ir(M) be the ideal in R generated
by the r × r minors of M . It is well known that Ir(M) is a prime
ideal.
(i) Let vr be the valuation on the field of fractions of R associated

to the prime ideal Ir(M) as in Exercise 6.9. Let x be any s× s
minor of M . Prove that vr(x) = max{s− r + 1, 0}.

(ii) Let u1, . . . , uk and v1, . . . , vl be two non-increasing sequences of
positive integers, with all ui, vj ≤ min{m,n}. For any integer u
let û denote an arbitrary u × u minor of M . Prove that for all
r, vr(û1 · · · ûk) ≤ vr(v̂1 · · · v̂l) if and only if for all i = 1, . . . , r,∑i
j=1 uj ≤

∑i
j=1 vj .

(iii) Prove that every Ir(M) is a contraction of an ideal in a valuation
overring. Show by example that not every power of Ir(M) is a
contraction of an ideal in a valuation overring.

6.27 Construct a non-Noetherian valuation domain.
6.28 Let R be a Cohen–Macaulay integral domain, x, y ∈ R such that

ht(x, y) = 2. Prove that there exists a discrete valuation domain V of
rank one between R and its field of fractions such that xV = yV 6= V .

6.29 Let (V,m) be a valuation domain. Prove that either m is principal or
that m = m

2.
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Derivations

7.1. Analytic approach

Let Y be a subset of Cn, typically open and connected. Recall that a function
f : Y → C is called analytic, (complex-)differentiable, or holomorphic
(any and all of the three names) if f is complex-differentiable at every point
of Y.

The set of all holomorphic functions on Y forms a commutative associative
ring O with identity under pointwise addition and multiplication.

First we consider the case Y = Cn. Let OCn be the ring of holomorphic
functions on Cn. Every holomorphic function on Cn can be written locally as
a convergent power series in n variables X1, . . . , Xn with coefficients in C.

What maximal ideals does OCn have? For any point (α1, . . . , αn) ∈ Cn,
(X1 − α1, . . . , Xn − αn)OCn is the ideal in OCn of all holomorphic functions
vanishing at (α1, . . . , αn). Clearly it is a maximal ideal in OCn . However,
OCn contains also other maximal ideals that are not of this form, and OCn is
not Noetherian. For example, with n = 1 and X = X1, the ideal I generated
by all cos(2−nX), n = 1, 2, . . . , is not finitely generated. Furthermore, I is
not contained in any prime ideal of the form X−α, with α a complex number.

At localizations at maximal ideals corresponding to points, OCn is Noe-
therian:

Lemma 7.1.1 Locally at each maximal ideal of holomorphic functions van-
ishing at a point, OCn is Noetherian.

Proof: Let R be the ring of holomorphic functions on Cn. Every element of R
can be written locally as a convergent power series in n variables X1, . . . , Xn

with coefficients in C. It suffices to prove that the RM is Noetherian, where
M = (X1, . . . , Xn).

Let I be a non-zero ideal in RM . We will prove that I is finitely gener-
ated. It suffices to prove that I is finitely generated after applying a ring
automorphism. Clearly after a homogeneous linear change of variables I con-
tains a power series f such that the lowest degree term appearing in f has
degree m and that Xm

n appears in f with a non-zero complex coefficient.
By the Weierstrass Preparation Theorem, I contains an element of the form
f = Xm

n + f1X
m−1
n + · · ·+ fm, with f1, . . . , fm holomorphic functions in vari-

ables X1, . . . , Xn−1. Hence an argument similar to the proof of the Hilbert’s
Basis Theorem shows that I is finitely generated. Namely, any element g in
I ∩R can be written as g = rf + h, where r ∈ R and h is a polynomial in Xn
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of degree at most m− 1 and with coefficients being holomorphic functions in
X1, . . . , Xn−1. Let Sk be the set of elements in I ∩ R of Xn-degree at most
k, and let Jk be the ideal generated by the coefficients of Xk

n in elements of
Sk. By induction on n, for each k = 1, . . . , m, Jk is finitely generated in the
localized OCn−1 . Let Ik = (hk1, . . . , hklk)R, where hkj ∈ Sk, such that Jk
is generated by the coefficients of Xk

n in hk1, . . . , hklkR. The claim is that
I = (f, hkj | k, j)RM . Certainly I contains f and all the hkj . For the other in-
clusion it suffices to prove that I ∩R ⊆ (f, hkj | k, j)RM . Let g ∈ I ∩R. Write
g = rf + h as above. If h = 0, we are done. Otherwise let k = degXn

(h), so
that h ∈ Sk \Sk−1. Then the leading coefficient of h is in the ideal Jk, so after
subtracting an appropriate linear combination of the hkj , h is either 0 or an
element of Sk−1. By repeating this, we see that g is a linear combination of
f and the hkj .

This ring structure makes the pair (Cn,OCn) into a locally ringed space.
A subset D of Cn is closed if and only if D is the common zero set of a subset
I of all holomorphic functions on OCn .

Similarly, if U ⊆ Cn is the polydisc {|zi| < 1 | i = 1, . . . , n}, then the ring
OU of all holomorphic functions on U is a locally ringed space.

The following is a more general result:

Definition 7.1.2 ([110, page 438]) A complex analytic space is a topolog-
ical space Y together with a sheaf of rings OY, that can be covered by open sets
Ui, such that for each i, there exist an integer n and holomorphic functions
f1, . . . , fq on U = {|zi| < 1 | i = 1, . . . , n} ⊆ Cn, such that OUi

is isomorphic,
as a locally ringed space, to the sheaf OU/(f1, . . . , fq).

When the underlying space Y is the unit disc in C, the structure sheaf
is locally a convergent power series ring in one variable, which is a discrete
valuation ring of rank one. Furthermore, every discrete valuation ring that
arises as a localization of a complex analytic variety (the set of common
solutions of several equations involving analytic functions) is isomorphic to
a ringed space of the unit disc. The general valuative criterion of integrality
as in Theorem 6.8.3 or Proposition 6.8.4 has an analog for complex analytic
spaces (see also Lejeune-Jalabert and Teissier [184]):

Theorem 7.1.3 (Valuative criterion for complex analytic spaces) Let I be a
coherent sheaf of ideals on a complex space Y, and h ∈ Γ(Y,OY). Let D be the
unit disc in C. Then h ∈ Γ(Y, I) if and only if for every morphism ϕ : D → Y,
h ◦ ϕ ∈ Γ(D,ϕ−1I).

A consequence of this analytic criterion is the following:

Corollary 7.1.4 Let R be the convergent power series C{X1, . . . , Xn} in n
variables X1, . . . , Xn over C, and f ∈ R such that f(0) = 0. Then

f ∈
(
X1

∂f

∂X1
, . . . , Xn

∂f

∂Xn

)
.
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In Lemma 7.1.1 we proved that C{X1, . . . , Xn} is a local ring with maximal
ideal (X1, . . . , Xn). It is clearly of dimension n, and thus a regular local ring.

Proof: Let D be the unit disc in C. Let ϕ : D → Cn be a morphism (of
locally ringed spaces). Assume that the origin 0 in Cn is ϕ(d) for some d ∈ D.
There is a corresponding map of rings ϕ# : OCn → OD, with the induced
map of local rings (OCn)0 = R → (OD)d. But (OD)d ∼= C{t}, a convergent
power series ring in one variable t over C. Thus by the valuative criterion it
suffices to prove that for any local map ψ : R→ C{t},

ψ(f) ∈ ψ

(
X1

∂f

∂X1
, . . . , Xn

∂f

∂Xn

)
C{t}.

Note that for any element g ∈ R with g(0) = 0, ψ(g)C{t} = tdψ(g)
dt

C{t}. This
clearly holds if g = 0, so we assume that g is non-zero. Then ψ(g) = tmu for
some unit u ∈ C{t}. By assumption that g(0) = 0, m > 0. Then

ψ(g)C{t} = t · tm−1C{t} = t · tm−1

(
mu+ t

du

dt

)
C{t}

= t · d(t
mu)

dt
C{t} = t · dψ(g)

dt
C{t}.

By the chain rule,

ψ(f) ∈ t
dψ(f)

dt
C{t} = t

(
n∑

i=1

∂f

∂Xi
(ψ(X1), . . . , ψ(Xn))

dψ(Xi)

dt

)
C{t}

⊆
n∑

i=1

(
ψ

(
∂f

∂Xi

)
t
dψ(Xi)

dt
C{t}

)

=
n∑

i=1

ψ

(
∂f

∂Xi

)
ψ(Xi)C{t} =

n∑

i=1

ψ

(
Xi

∂f

∂Xi

)
C{t},

which proves the corollary.

An analogous result with essentially the same proof holds for power series
rings as well, but for this we have to use some results from future sections
and chapters. We state and prove it here for completeness.

Theorem 7.1.5 Let k be a field of characteristic zero, X1, . . . , Xn variables
over k, and R = k[[X1, . . . , Xn]], the power series ring. Let f ∈ R be a
non-unit (its constant coefficient is zero). With ∂f

∂Xi
being defined formally,

f ∈
(
X1

∂f

∂X1
, . . . , Xn

∂f

∂Xn

)
.

Proof: We use the valuative criterion from Proposition 6.8.4. It suffices to
prove that for any Noetherian valuation ring V containing R and with the
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same field of fractions, f ∈ (X1
∂f
∂X1

, . . . , Xn
∂f
∂Xn

)V . By Proposition 1.6.2, it

suffices to show that f ∈ (X1
∂f
∂X1

, . . . , Xn
∂f
∂Xn

)V̂ , where V̂ is the completion
of V in the topology defined by the maximal ideal. By Cohen’s Structure
Theorem, V̂ = L[[t]] for some field L of characteristic zero and some indeter-

minate t over L. Under the inclusion map ϕ : R → V̂ , X1, . . . , Xn map to
non-units. In other words, for each i = 1, . . . , n, there exist a positive integer
ni and a unit ui in V̂ such that ϕ(Xi) = uit

ni . By the chain rule,

dϕ(f)

dt
=

n∑

i=1

ϕ

(
∂f

∂Xi

)
·
(
dϕ(Xi)

dt

)
.

As V̂ is a valuation domain, there exists i such that dϕ(f)
dt

is a multiple of

ϕ( ∂f
∂Xi

) · (dϕ(Xi)
dt

). But up to multiplication by a unit in V̂ , ϕ(f) equals tdϕ(f)
dt

,

so that ϕ(f) is a V̂ -multiple of t · ϕ( ∂f
∂Xi

) · (dϕ(Xi)
dt

), whence a V̂ -multiple of

ϕ( ∂f
∂Xi

)ϕ(Xi). This proves the theorem.

Note that Corollary 7.1.4 and Theorem 7.1.5 prove that in a convergent
power series ring over C and in a power series ring over an arbitrary field of
characteristic zero,

f ∈ (X1, . . . , Xn)

(
∂f

∂X1
, . . . ,

∂f

∂Xn

)
.

However, it is an open question whether

f ∈ (X1, . . . , Xn)

(
∂f

∂X1
, . . . ,

∂f

∂Xn

)
.

A special case is when f is homogeneous in X1, . . . , Xn of degree d. It is
easy to verify in this case that

d · f =

n∑

i=1

Xi
∂f

∂Xi
. (7.1.6)

This is called Euler’s formula. In particular, f ∈ ( ∂f
∂X1

, . . . , ∂f
∂Xn

) whenever
f is homogeneous.

A similar formula holds if f is quasi-homogeneous, that is, if it is possi-
ble to assign degrees to the variables to make f homogeneous. Remarkably,
Saito [255] proved that whenever (0, . . . , 0) is an isolated critical point of f ,
f ∈ ( ∂f

∂X1
, . . . , ∂f

∂Xn
) if and only if after a biholomorphic change of coordinates,

f is quasi-homogeneous.
We quote another criterion for integral dependence for complex analytic

spaces (see Lejeune-Jalabert and Teissier [184] or Lipman and Teissier [195]):

Theorem 7.1.7 Assume that the subspace of X defined by I is nowhere dense
in a neighborhood of some point x ∈ X. Set R = OX,x and I = Ix ⊆ R. Let



7.2. Derivations and differentials 153

(f1,x, . . . , fm,x) be generators for I, where the fi generate Γ(U, I) for some
open neighborhood U of x. Then given h ∈ Γ(U,OX), hx ∈ I if and only if
there exists a neighborhood U ′ ⊆ U of x and a real constant C > 0 such that
for every y ∈ U ′,

|h(y)| ≤ C · sup{|fi(y)| | i = 1, . . . , m}.

7.2. Derivations and differentials

In this section we prove a result due to Hübl [133] that shows the close con-
nection between the module of differentials and the integral closure of ideals.

Definition 7.2.1 Let k be a commutative ring and let R be a k-algebra and
M an R-module. A k-derivation D : R→M is a k-linear map from R to M
satisfying D(ab) = aD(b)+bD(a) for all a, b ∈ R. The set of all k-derivations
from R to M is denoted Derk(R,M).

The fact that D is k-linear forces D(a) = 0 if a ∈ R is the image of an
element of k.

Definition 7.2.2 Let k be a commutative ring and let R be a k-algebra. A
universally finite module of differentials with a universally finite

derivation is a finite R-module Ω̃1
R/k and a k-derivation d = dR/k : R →

Ω̃1
R/k with the following universal property: if M is a finite R-module and

D : R → M is a k-derivation, then there exists a unique R-homomorphism

f : Ω̃1
R/k →M such that D = f ◦ d.

See [180] for a detailed treatment of this definition and for the following
remarks.

Many rings do not have a universally finite derivation. But the following
rings do:
(1) R is essentially of finite type over k.
(2) k is a field with a valuation and R is an analytic k-algebra, i.e., R is

module-finite over a ring of convergent power series over k.
(3) k is a field, R is complete, and the residue field of R is a finitely generated

field extension of k.
Assume that (R,m) is a local domain with a universally finite derivation.

Let K be the field of fractions of R. By (Ω1
R/k)

∗ we denote Ω̃1
R/k modulo its

torsion submodule, and by d∗ the composite map obtained by composing dR/k

with the natural surjection of Ω̃1
R/k onto (Ω1

R/k)
∗. The following proposition

is proved in [133]:

Proposition 7.2.3 Let (R,m) be a local domain with a universally finite
derivation. Let K be the field of fractions of R. Then (Ω1

R/k)
∗ is an m-adically

separated and torsion-free R-module and d∗ is a k-derivation. Furthermore, if
M is an m-adically separated and torsion-free R-module and D : R→M is a
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k-derivation, then there exists a unique R-homomorphism f : (Ω1
R/k)

∗ → M
such that D is the composite of f and d∗. There is a canonical isomorphism

HomR((Ω
1
R/k)

∗,M) → Derk(R,M)

taking f to f ◦ d∗.
Theorem 7.2.4 Let k be a field of characteristic 0 and let (R,m) be a local
domain that is a k-algebra such that the derivation d∗ : R → (Ω1

R/k)
∗ exists.

Let I and J be two proper ideals of R. Assume that

d∗(I) ⊆ Rd∗(J) + I(Ω1
R/k)

∗.

Then I ⊆ J .

Proof: By Proposition 6.8.4 it suffices to prove that if K is the quotient
field of R and V is a rank one discrete valuation ring of K containing R
such that the maximal ideal of V contracts to the maximal ideal of R, then
IV ⊆ JV . It suffices to prove this containment after completing V . By the
Cohen Structure Theorem, the completion of V is isomorphic to L[[t]] for some
field L containing k. We define a derivation δ : R → L[[t]] by first taking the
injection of R into V and V into L[[t]], then taking partial derivatives with
respect to t. As L[[t]] is m-adically separated and a torsion-free R-module,
there exists an R-homomorphism f : (Ω1

R/k)
∗ → L[[t]] such that δ = f ◦ d∗.

Hence

δ(I) = f(d∗(I)) ⊆ f(Rd∗(J) + I(Ω1
R/k)

∗) ⊆ δ(J)L[[t]] + IL[[t]].

Since IL[[t]] is a proper ideal, we have that δ(I)L[[t]] is not contained in
IL[[t]]. Hence we must have that δ(I)L[[t]] ⊆ δ(J)L[[t]], which implies that
IL[[t]] ⊆ JL[[t]] as needed.

Corollary 7.2.5 Let k be a field of characteristic 0 and let (R,m) be a local
domain that is a k-algebra such that the derivation defined above, d∗ : R →
(Ω1

R/k)
∗, exists. Let r ∈ m such that d∗(r) ∈ J(Ω1

R/k)
∗. Then r ∈ J .

Proof: Apply the above theorem to the ideal I = (J, r). We have that
d∗(I) = d∗(J +Rr) ⊆ Rd∗(J) +Rd∗(r) + r(Ω1

R/k)
∗ ⊆ Rd∗(J) + I(Ω1

R/k)
∗.

The next corollary is one of the most important and non-trivial ways in
which integral closure arises.

Corollary 7.2.6 Let k be a field of characteristic 0, and let R = k[[t1, . . . , tn]]
be a formal power series over k. If f ∈ R is not a unit, then f is integral over
the ideal generated by its partial derivatives (partial derivatives are defined
formally).

Proof: Under the conditions of this corollary, the universally finite module of
differentials is a free R-module on generators dt1, . . . , dtn, and this is torsion

free. The universally finite derivation d = d∗ : R −→ Ω̃1
R/k = (Ω1

R/k)
∗ is given
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by d∗(f) =
∑

i
∂f
∂ti
dti. The corollary above applies directly with J the ideal

generated by the partial derivatives of f .

In positive characteristic this corollary does not hold. For example, in
characteristic p, let f = xp. The partial derivative of f with respect to x is
0, and f is not integral over 0.

7.3. Exercises

7.1 Set R = C[X1, . . . , Xn], and let f ∈ R such that f(0) = 0. Let
I = ( ∂f

∂X1
, . . . , ∂f

∂Xn
)R. Recall from Corollary 7.1.4, that f is contained

in the integral closure of IC[[X1, . . . , Xn]]. Is f ∈ IR? Try f =
X4

1 −X2
1X

3
2 −X2

1X
5
2 +X8

2 .
7.2 Let R = k[[x1, . . . , xn]] be a power series ring over a field k. Let P be

a prime ideal, and let f ∈ P (m). Prove that for all i, ∂f
∂Xi

∈ P (m−1).
7.3 Let R = k[[x1, . . . , xn]] be a power series ring over a field k of char-

acteristic 0. Assume that for each f ∈ m = (x1, . . . , xn), f is in m

times the integral closure of the Jacobian ideal ( ∂f
∂X1

, . . . , ∂f
∂Xn

). Prove

that for every prime ideal P in R, P (2) ⊆ mP . (Without the assump-
tion on the Jacobian ideals the conclusion of this exercise is an open
problem, first raised by Eisenbud and Mazur in [71]. For other work,
see [132].)
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Reductions

The study of reductions started with the influential paper [217] of Northcott
and Rees, published in 1954. Northcott and Rees defined minimal reductions,
analytic spread, analytically independent elements, proved existence theorem,
and connected these ideas with multiplicity.

Recall from Definition 1.2.1 that for an ideal I, a subideal J of I is said
to be a reduction of I if there exists a non-negative integer n such that
JIn = In+1. Reductions always exist as every ideal is its own reduction. A
connection between reductions and the integral closure of ideals was proved
in Proposition 1.2.5: if I is finitely generated, then J is a reduction of I if and
only if I ⊆ J . In this chapter we explore further the theory of reductions.

Of particular interest are minimal reductions, that is, reductions that are
minimal with respect to inclusion. Their existence and properties are proved
in Section 8.3. When the residue field is infinite, the existence of minimal
reductions of an ideal I is intricately connected to graded Noether normal-
izations of the fiber cone of I, which we discuss in Sections 8.2 and 8.3. In
Section 8.4 we explain the standard procedure of reducing to the case of infi-
nite residue field and show some applications. In Section 8.5 we develop the
theory of superficial elements, which can be used to prove the existence of
(minimal) reductions. Most of the results of this chapter are over Noetherian
local rings, but in Section 8.7 we present some results for non-local rings as
well. Section 8.8 presents a theorem of J. Sally regarding the behavior of
analytic spread under certain maps between regular local rings.

8.1. Basic properties and examples

Proposition 8.1.1 Let R be a ring, J ⊆ I ideals. Consider the conditions:
(1) J is a reduction of I.
(2) W−1J is a reduction of W−1I for every multiplicatively closed subset W

of R.
(3) JP is a reduction of IP for every prime ideal P of R.
(4) JM is a reduction of IM for every maximal ideal M of R.
Then (1) ⇒ (2) ⇒ (3) ⇒ (4). If R is Noetherian, in addition (4) implies (1).

Proof: (1) implies (2) because the condition JIn = In+1 localizes. (2) triv-
ially implies (3) and (3) trivially implies (4). Now assume (4) and that R is
Noetherian. Observe that (J : I) ⊆ (JI : I2) ⊆ (JI2 : I3) ⊆ (JI3 : I4) ⊆ · · ·.
As R is Noetherian, this chain stabilizes, i.e., there exists an integer l such
that for all n ≥ l, JIn : In+1 = JI l : I l+1. Equality is preserved after local-
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ization at every maximal ideal. By assumption (4), for each maximal ideal
M , for all large n, JIn : In+1 is not contained in M , so that JI l : I l+1 is
not contained in M . Hence JI l : I l+1 = R, so that JI l = I l+1 and J is a
reduction of I.

Without the Noetherian assumption (4) need not imply (1):

Example 8.1.2 Let k be a field, X1, Y1, Z1, X2, Y2, Z2, . . . variables over k,
and S = k[X1, Y1, Z1, X2, Y2, Z2, . . .]. Set

J = (X1 · · ·XiY
i
i , X1 · · ·XiZ

i
i | i ≥ 1)S,

I = J + (X1 · · ·XiYiZ
i−1
i | i ≥ 1)S,

and for i ≥ 1, set Mi = (Y1, . . . , Yi−1, Z1, . . . , Zi−1, Xi)S. Let W be the mul-
tiplicatively closed subset of S consisting of elements that are not in any Mi.
It is straightforward to see that a prime ideal P containing J either con-
tains some variable Xi, in which case it contains some Mj , or it contains
M = (Y , Z). If P is in addition disjoint from W , then necessarily P equals
some Mj or M . Set

K =
∞∑

i=1

X1 · · ·Xi+2(Y
i
i − Y i+1

i+1 , Z
i
i − Zi+1

i+1 , Yi+1Z
i
i+1 − Y i+1

i+1 ).

Then K ⊆M , K ⊆Mi for all i, and

JMi
= (Xi, Y1, Y

2
2 , . . . , Y

i−1
i−1 , Z1, Z

2
2 , . . . , Z

i−1
i−1 )Mi

,

KMi
= (Xi, Y1 − Y 2

2 , Y
2
2 − Y 3

3 , . . . , Y
i−3
i−3 − Y i−2

i−2 ,

Z1 − Z2
2 , Z

2
2 − Z3

3 , . . . , Z
i−3
i−3 − Zi−2

i−2 ,

Y1 − Y1, Y2Z2 − Y 2
2 , Y3Z

2
3 − Y 3

3 , . . . , Yi−2Z
i−3
i−2 − Y i−2

i−2 )Mi
.

With R = W−1(S/K), JRMi
= (Y1, Z1, Y

i−1
i−1 , Z

i−1
i−1 )RMi

,

IRMi
= (Y1, Z1, Y

i−1
i−1 , Z

i−1
i−1 , Yi−1Z

i−2
i−1 )RMi

,

and JI lRMi
= I l+1RMi

with l ≥ i−2. Similarly, JRM = IRM = (Y1, Z1)RM .
Thus JR ⊆ IR is locally a reduction. However, J ⊆ I is not a reduction, for
otherwise if JI l = I l+1 for some l, the same still holds after localization
at Ml+3, which is false. (Compare with Exercise 1.8.)

Reductions remain reductions under ring homomorphisms:

Lemma 8.1.3 Let R → S be a ring homomorphism and J ⊆ I ideals in R.
(1) If J is a reduction of I, then JS is a reduction of IS.
(2) If S is faithfully flat over R and JS is a reduction of IS, then J is a

reduction of I.

Proof: The first part is clear. If JS is a reduction of IS, then there exists
an integer n such that (JS)(InS) = In+1S. By faithful flatness, In+1 =
In+1S ∩R = JInS ∩R = JIn, which proves the second part.
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In particular, reductions are preserved under localization, as already proved
in Proposition 8.1.1. Also, reductions are preserved under passage to quotient
rings, with the following partial converse which follows easily from Proposi-
tion 1.1.5:

Lemma 8.1.4 Let R be a Noetherian ring, J ⊆ I ideals in R. Then J ⊆ I
is a reduction if and only if for every minimal prime ideal P of R, J(R/P ) ⊆
I(R/P ) is a reduction.

The Noetherian assumption above is non-trivial: if k is a field, X1, X2, . . .
are variables over k and R = k[X]/(X1, X

2
2 , X

3
3 , . . .), then 0 ⊆ (X) is not a

reduction even though it is a reduction modulo the one minimal prime ideal.

Proposition 8.1.5 Let J = (a1, . . . , ak) ⊆ I be ideals in a ring R.
(1) If J is a reduction of I, then for any positive integer m, (am1 , . . . , a

m
k )

and Jm are reductions of Im.
(2) If for some positive integer m, (am1 , . . . , a

m
k ) or J

m is a reduction of Im,
then J is a reduction of I.

Proof: (1) Choose n such that JIn = In+1. Then for all m ≥ 1, JmIn =
In+m, and multiplying the last equation through by Imn−n gives Jm(Im)n =
(Im)n+1. Thus Jm is a reduction of Im.

We claim that for every positive integer m,

(am1 , . . . , a
m
k )(a1, . . . , ak)

(k−1)(m−1) = (a1, . . . , ak)
(m−1)k+1. (8.1.6)

It suffices to prove J (m−1)k+1 ⊆ (am1 , . . . , a
m
k )(a1, . . . , ak)

(k−1)(m−1). Observe
that J (m−1)k+1 is generated by elements of the form an1

1 · · ·ank

k , with each ni
a non-negative integer and

∑
ni = (m − 1)k + 1. If ni < m for all i, then

(m− 1)k + 1 =
∑
ni ≤ (m− 1)k, which is a contradiction. Thus necessarily

ni ≥ m for at least one i, which proves the claim.
The claim implies that (am1 , . . . , a

m
k ) is a reduction of Jm. By transitivity

(Proposition 1.2.4) then also (am1 , . . . , a
m
k ) is a reduction of Im.

(2) If either (am1 , . . . , a
m
k ) or Jm is a reduction of Im, then by Proposi-

tion 1.2.4, Jm is a reduction of Im. Thus there exists an integer n such that
Jm(Im)n = (Im)n+1. Hence Imn+m ⊆ JImn+m−1 ⊆ Imn+m, and equality
holds throughout. Thus J is a reduction of I.

Examples of reductions can also be built via sums and products of ideals:

Proposition 8.1.7 Let R be a ring, J1, J2, I1, I2 ideals in R, such that J1 is
a reduction of I1 and J2 is a reduction of I2. Then
(1) J1 + J2 is a reduction of I1 + I2, and
(2) J1 · J2 is a reduction of I1 · I2.
Proof: We may choose n such that J1I

n
1 = In+1

1 and J2I
n
2 = In+1

2 . Then

(I1 + I2)
2n+1 ⊆ In+1

1 (I1 + I2)
n + In+1

2 (I1 + I2)
n

= J1I
n
1 (I1 + I2)

n + J2I
n
2 (I1 + I2)

n

⊆ (J1 + J2)(I1 + I2)
2n ⊆ (I1 + I2)

2n+1,
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so that equality holds throughout and J1 + J2 is a reduction of I1 + I2. Part
(2) follows even more easily: by assumption (I1I2)

n+1 = J1J2I
n
1 I

n
2 , which

immediately implies that J1J2 is a reduction of I1I2.

There are more ways to generate reductions via the Jacobson radical:

Lemma 8.1.8 Let R be a Noetherian ring, m be its Jacobson radical (i.e.,
the intersection of all the maximal ideals), J, J ′ ⊆ I ideals, and L any ideal
contained in mI. If J + L = J ′ + L, then J is a reduction of I if and only if
J ′ is a reduction of I.

Proof: Suppose that J is a reduction of I. Then there exists an integer n
such that JIn = In+1. Thus In+1 = JIn ⊆ (J + L)In ⊆ (J ′ + mI)In, so
that by Nakayama’s Lemma In+1 ⊆ J ′In, whence In+1 = J ′In, and J ′ is a
reduction of I. The rest is easy.

The integral closure of a homogeneous ideal is homogeneous, but not every
reduction of a homogeneous ideal is homogeneous:

Example 8.1.9 Consider the ideal I = (X3, XY, Y 4) in the polynomial
ring k[X, Y ]. Then (XY,X3 + Y 4) is easily seen to be a reduction of I and
is not homogeneous under the usual grading. Furthermore, no 2-generated
reduction of I is homogeneous: in any reduction J , if JIn = In+1, by degree
considerations XY appears as a term in one of the generators of J . If J
is to be homogeneous, necessarily XY is one of the two generators of J up
to scalar multiple. Without loss of generality the other generator is a linear
combination ofX3 and Y 4 with coefficients in the ring. Again by degree count,
X3 appears with a unit coefficient in the generator, so that by homogeneity
the second generator should be X3 (up to scalar multiple). But (XY,X3) is
not a reduction of I as for all n ≥ 0, (Y 4)n+1 6∈ (XY,X3)In.

The set of minimal prime ideals of a reduction ideal is independent of the
reduction:

Lemma 8.1.10 Let J ⊆ I be a reduction. Then
√
J =

√
I, Min(R/I) =

Min(R/J), and ht J = ht I.

Proof: This follows easily from J ⊆ I and JIn = In+1 for some n.

However, Ass(R/I) need not equal Ass(R/J), see Exercises 1.21, 1.22, or
the following:

Example 8.1.11 Let R be the polynomial ring k[X, Y, Z] in three variables
X, Y and Z over a field k. Let J = (X3, Y 3, XY 2Z) ⊆ I = (X3, Y 3, XY 2,
X2Y (Z − 1)). Then both JI2 and I3 equal

(X9, X8Y (Z − 1), X7Y 2, X6Y 3, X5Y 4, X4Y 5, X3Y 6, X2Y 7, XY 8, Y 9),

so that J is a reduction of I. Note that Ass(R/J) = {(X, Y ), (X, Y, Z)} and
Ass(R/I) = {(X, Y ), (X, Y, Z−1)}, so that no inclusion relations hold among
the two sets.
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8.2. Connections with Rees algebras

Theorem 8.2.1 Let J ⊆ I be ideals in a Noetherian ring R. Then J is a
reduction of I if and only if R[It] is module-finite over R[Jt].

Proof: Assume that J is a reduction of I. There exists an integer n such that
JIn = In+1, and for all k ≥ 1, JkIn = In+k. It follows that (R[It])k+n =
Intn(R[Jt])k. For i = 0, . . . , n, let si1, . . . , siki be the generators of the R-
module Ii. Then R[It] =

∑
sijt

iR[Jt], so that R[It] is a finitely generated
module over R[Jt].

Conversely, assume that R[It] is a module-finite over R[Jt]. Both of these
rings are N-graded, so there exist finitely many homogeneous elements that
generate R[It] as an R[Jt]-module. Let n be the largest degree of one of

these generators. Then In+1tn+1 = (R[It])n+1 =
∑n+1
i=1 (J

iti)(In+1−itn+1−i)
= JIntn+1, so that In+1 = JIn, and J is a reduction of I.

The proof above shows the following:

Corollary 8.2.2 The minimum integer n such that JIn = In+1 is the
largest degree of an element in a minimal homogeneous generating set of the
ring R[It] over the subring R[Jt].

Definition 8.2.3 Let J be a reduction of I. The reduction number of
I with respect to J is the minimum integer n such that JIn = In+1. It is
denoted by rJ (I). The (absolute) reduction number of I equals

min{rJ(I) |J a minimal reduction of I}.
The reason that J ⊆ I from Example 8.1.9 is not globally a reduction even

if it is a reduction locally is that there is no bound on the local reduction
numbers.

We show next that over a Noetherian local ring (R,m), the reduction num-
ber of I can also be determined via the fiber cone

FI(R) =
R[It]

mR[It]
∼= R

m
⊕ I

mI
⊕ I2

mI2
⊕ I3

mI3
⊕ · · · .

Proposition 8.2.4 Let n be a positive integer, (R,m) a Noetherian local
ring, J, I ideals in R, J ⊆ In, and B the subalgebra of FIn(R) generated over
R/m by (J+mIn)/mIn. Then J ⊆ In is a reduction if and only if B ⊆ FI(R)
is module-finite. (Yes, FI(R), not FIn(R).)

If either condition holds, the reduction number of In with respect to J is
the largest degree of an element in a homogeneous minimal generating set of
FIn over B.

Proof: The last part follows from Corollary 8.2.2 by using Nakayama’s Lemma.
It is easy to show that FI is module-finite over FIn . Thus it suffices to

prove the case n = 1.
First assume that J ⊆ I is a reduction. By Theorem 8.2.1, R[Jt] ⊆ R[It] is
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a module-finite extension. Hence R[Jt]/(mR[It]∩R[Jt]) ⊆ FI(R) is a module-
finite extension. But R[Jt]/(mR[It] ∩ R[Jt]) is canonically isomorphic to B,
which proves that B ⊆ FI is module-finite.

Now assume that B ⊆ FI is module-finite. Let the homogeneous generators
of FI as a B-module be in degrees d or smaller. Then Id+1/mId+1 ⊆ ((J +
mI)/mI)(Id/mId). Thus Id+1 ⊆ JId+mId+1, so that by Nakayama’s Lemma
J is a reduction of I.

As the analytic spread ℓ(I) of I is the dimension of FI , this proves:

Corollary 8.2.5 Let R be a Noetherian local ring and J ⊆ I a reduction.
Then the minimal number µ(J) of generators of J is at least ℓ(I).

If R is a Noetherian local ring and I an ideal, the graded ring grI(R)
contains the information on the (minimal) reductions of I, their reduction
number, and on the analytic spread of I. Ooishi in [222] generalized this
to other graded rings and ideals to obtain a theory of reductions of graded
rings. He also used this theory to study the properties of graded modules, in
particular pseudo-flat modules.

8.3. Minimal reductions

In Noetherian rings, in general there is no descending chain condition and
thus there may not be a reduction of an ideal that is minimal with respect
to inclusion (cf. Exercise 8.10). However, in Noetherian local rings, minimal
reductions do exist, see Theorem 8.3.5 and Proposition 8.3.7.

Definition 8.3.1 A reduction J of I is called minimal if no ideal strictly
contained in J is a reduction of I. An ideal that has no reduction other than
itself is called basic.

Here is an illustrative example:

Example 8.3.2 Let R = Z/2Z[[X, Y ]]/(XY (X+Y )), where X, Y are vari-
ables over Z/2Z. Let I = m = (X, Y )R. We claim that I is basic. Suppose
that this is not the case. Then there exists a reduction J properly con-
tained in I. By Lemma 8.1.8, there exists an ideal J ′ generated by linear
forms such that J + I2 = J ′ + I2. As J is properly contained in I, so is
J ′, so that necessarily J ′ is generated by at most one linear form. This
ring has only three linear forms: X , Y , and X + Y . By change of variables
(and symmetry) we may assume that J ′ = (X)R. However, XR is not a
reduction of I as Y n+1 6∈ XIn for all n (in other words, at least if n ≥ 3,
Y n+1 6∈ (Xn+1, XY n, Y n+1, XY (X+Y ))(Z/2Z)[[X, Y ]]). Thus I cannot have
any proper reductions, so it is basic.

If in the example above we enlarge Z/2Z to a field k containing a unit u
other than 1, then J = (X + uY ) is a minimal reduction of I:

JI2 = (X + uY )(X, Y )2 + (XY (X + Y ))

= (X3 + uX2Y,X2Y + uXY 2, XY 2 + uY 3) + (XY (X + Y ))
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= (X3 + u2XY 2, XY 2(1 + u), XY 2 + uY 3) + (XY (X + Y ))

= (X3, XY 2, Y 3) + (XY (X + Y )) = I3.

In particular, when k has many units u, the ideal I has many minimal (1-
generated) reductions.

Proposition 8.3.3 Let (R,m) be a Noetherian local ring and J a minimal
reduction of I. Then the following hold.
(1) J ∩mI = mJ .
(2) For any ideal K such that J ⊆ K ⊆ I, every minimal generating set of

J can be extended to a minimal generating set of K.

Proof: Set L = J ∩ mI. Let t be an integer such that J/L ∼= (R/m)t,
so that J = (x1, . . . , xt) + L for some x1, . . . , xt ∈ J . By Lemma 8.1.8,
(x1, . . . , xt) is also a reduction of I, which by the minimality of J implies that
J = (x1, . . . , xt). Thus t is the minimal number of generators of J , implying
that L ⊆ mJ , which proves (1).

In particular, J ∩ mK = mJ . Thus {x1, . . . , xt} form part of a minimal
generating set of K, which proves (2).

The assumption about minimality in the last proposition is necessary, as can
be seen by Example 8.1.11 after passing to the localization k[X, Y, Z](X,Y,Z),
or by the following:

Example 8.3.4 Let k be a field, X a variable, and R = k[X2, X3]/(X5, X6).
Set I = m = (X2, X3)R and J = (X3, X4)R. Then J ⊆ I and J is a reduction
of I as JI2 = I3 = 0. However, mI = (X4, X5)R = X4R, J ∩ mI = X4R,
and mJ = 0.

In general there is no unique minimal reduction of an ideal (see second part
of Example 8.3.2), but minimal reductions exist in Noetherian local rings:

Theorem 8.3.5 Let (R,m) be a Noetherian local ring. If J is a reduction
of I, then there exists at least one ideal K in J such that K is a minimal

(was Theorem
8.3.6)

reduction of I.

Proof: Let Σ be the set of all reductionsK of I contained in J . Since J ∈ Σ, Σ
is not empty. Since R is Noetherian, I

mI
is a finite dimensional (R/m)-vector

space, so there exists K ∈ Σ such that K+mI
mI

is smallest under inclusion.
Let the vector space dimension of this be n, and let k1, . . . , kn ∈ K be the
preimages of a basis of K+mI

mI in K. Set K0 = (k1, . . . , kn). By Lemma 8.1.8,
K0 is a reduction of I. By possibly renaming, without loss of generality
K = K0.

Both K
mK

and K+mI
mI

are n-dimensional (R/m)-vector spaces, so that the

canonical surjection K
mK

→ K
K∩mI

∼= K+mI
mI

is an isomorphism. This implies
that K ∩mI = mK.

We claim that K is a minimal reduction of I contained in J . It remains to
prove minimality. If L ⊆ K is a reduction of I, then by the minimality of K
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in Σ, K + mI = L + mI. Thus K ⊆ (L + mI) ∩ K = L + (mI ∩K), which
by the previous paragraph means that K ⊆ L + mK. Hence by Nakayama’s
Lemma, K = L. Thus K is a minimal reduction of I.

The theorem gives that whenever K1 ⊇ K2 ⊇ K3 · · · are all reductions of I,
then

⋂
nKn is also a reduction of I. However, without the local assumption

this property may fail, see Exercise 8.10.
By Corollary 8.2.5, every reduction of I, and so every minimal reduction

of I, has at least ℓ(I) generators. There are minimal reductions with strictly
more generators, as in Example 8.3.2, but the reductions with exactly ℓ(I)
generators are all minimal with further good properties:

Corollary 8.3.6 Let (R,m) be a Noetherian local ring and J ⊆ I a reduction
such that µ(J) = ℓ(I). Then(was 8.3.5)

(1) J is a minimal reduction of I.
(2) FJ is canonically isomorphic to the subalgebra of FI generated over R/m

by (J +mI)/mI, and is isomorphic to a polynomial ring in ℓ(I) variables
over R/m.

(3) For all positive integers k, Jk ∩mIk = mJk.

Proof: Let B be the subalgebra of FI generated over R/m by (J + mI)/mI.
By Proposition 8.2.4, FI is module-finite over B so that dimB = dimFI =
ℓ(I). As J is generated by ℓ(I) elements, necessarily B is isomorphic to a
polynomial ring over R/m. There is a natural surjective graded map FJ → B.
As FJ is generated over R/m by ℓ(J) elements, this surjective map onto a
polynomial ring has to be an isomorphism. In particular for each k, the kernel
of Jk/mJk → (Jk + mIk)/mIk is zero, or in other words, Jk ∩ mIk = mJk.
If K ⊆ J and K is a minimal reduction of I (it exists by Theorem 8.3.5),
then by Proposition 8.3.3, a minimal generating set of K can be extended to
a minimal generating set of J . But by Corollary 8.2.5, µ(K) ≥ ℓ(I) = µ(J),
so that K = J , whence J is a minimal reduction of I.

Example 8.3.2 shows that the number of generators of a minimal reduction
depends on the cardinality of the residue field. That example also indicates
that when the cardinality of the set of units is large enough, ideals generally
have more reductions. In fact, when the residue field is infinite, there exist
minimal reductions whose minimal generating sets have cardinality equal to
the analytic spread of the ideal:

Proposition 8.3.7 Let (R,m) be a Noetherian local ring with infinite residue
field, I an ideal, and l = ℓ(I), the analytic spread of I. Then every minimal
reduction of I is minimally generated by exactly l elements. In particular,
every reduction of I contains a reduction generated by l elements.

Proof: By assumption, l = dim(FI). Let J be a reduction of I (possibly
J = I). Let B be the subalgebra of FI generated over R/m by (J +mI)/mI.
Proposition 8.2.4, B ⊆ FI is a module-finite extension. By the Noether
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Normalization Theorem (Theorem 4.2.3), there exist a1, . . . , al ∈ B1 = (J +
mI)/mI such that A = k[a1, . . . , al] is a polynomial subring of B and such that
B is a module-finite extension of A. Hence FI is module-finite over A. Let ai ∈
J be such that its image in (J +mI)/mI is ai. Set K = (a1, . . . , al)R. Then
K ⊆ J . By Proposition 8.2.4, K is a reduction of I, and by Corollary 8.3.6,
K is a minimal reduction of I. Thus every minimal reduction is generated by
exactly l elements.

This shows that the fiber cone of I and its dimension are useful for finding
(minimal) reductions of I. But even without the assumption on the infinite
cardinality of the residue field, the number ℓ(I) plays a role in reductions:

Proposition 8.3.8 Let (R,m) be a Noetherian local ring and I an ideal.
Then there exists an integer n such that In has a minimal reduction generated
by ℓ(I) elements.

Proof: By the graded version of the Noether Normalization Theorem (see
Theorem 4.2.3), there exist an integer n and elements a1, . . . , al ∈ (FI)n =
In/mIn such that A = k[a1, . . . , al] is a polynomial subring of FI and such
that FI is a module-finite extension of A. Let ai ∈ In be such that its image in
In/mIn is ai. Set J = (a1, . . . , al)R. Using Proposition 8.2.4, J is a reduction
of In and by Corollary 8.3.6, J is a minimal reduction of In.

We revisit Example 8.3.2, with R = k[[X, Y ]]/(XY (X + Y )), I = (X, Y )R.
The fiber cone of I is k[X, Y ]/(XY (X + Y )), which has Krull dimension 1.
Under the assumption that k has more than one unit, we found a 1-generated
minimal reduction of I, and under the assumption that k has exactly one unit,
we proved that I has no 1-generated minimal reductions. By the proposition
above, some power of I has a one-generated reduction. In fact, one can easily
verify that X2 +XY + Y 2 generates a minimal reduction of I2.

Corollary 8.3.9 Let (R,m) be a Noetherian local ring and I an ideal. Then
dimR ≥ ℓ(I) ≥ ht I.

Proof: The first inequality holds by Proposition 5.1.6. By Proposition 8.3.8
there exists a positive integer n such that In has a minimal reduction J
generated by ℓ(I) elements. Then ht J ≤ ℓ(I). But by Lemma 8.1.10, ht I =
ht In = ht J .

Even though monomial ideals need not have minimal monomial reductions
(see Example 8.1.9), still, the geometry of monomial ideals carries some in-
formation. For example, Bivià-Ausina [17] proved that the analytic spread
of a monomial ideal (over the complex numbers, and of more general New-
ton non-degenerate ideals) can be computed from its Newton polyhedron.
Explicitly, the minimal number of generators of a minimal reduction of a
monomial ideal is one more than the maximum dimension of a compact face
of its Newton polytope. Crispin Quiñonez [49, Corollary 6.2.9] proved that a
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monomial ideal in a power series ring in two variables over a field has a min-
imal reduction with the following pattern: arrange the monomial generators
in the order of increasing exponents in one of the variables (and decreasing
in the other), let a be the sum of every other monomial in this arrangement,
and let b be the sum of the remaining monomials. Then (a, b) is a minimal
reduction of the ideal.

8.4. Reducing to infinite residue fields

In the previous section we proved stronger existence results for reductions
under the extra condition that the residue field of the ambient Noetherian
local ring is infinite. Many good properties of reductions still hold without the
infinite residue field assumption, but often proofs reduce to the infinite residue
case. We give some examples of the passage to infinite residue fields in this
section. Further examples are in Proposition 10.4.9 regarding Rees valuations,
in Chapter 11 on multiplicities, in Lemma 14.4.7 regarding simplicity, in the
proof of Theorem 18.5.2 regarding adjoints, etc.

Here is a general construction for this purpose: for a Noetherian local ring
(R,m), let X be a variable over R. Set S = R[X ]mR[X]. Then R ⊆ S is a
faithfully flat extension of Noetherian local rings of the same Krull dimension.
The residue field S/mS of S contains the residue field R/m of R. In fact,
S
mS

∼=
( R[X]
mR[X]

)
mR[X]

, which is the field of fractions of (R/m)[X ] and thus an

infinite field.

Definition 8.4.1 Let R(X) denote R[X ]mR[X], where X is a variable over R.

As R(X) is faithfully flat over R, the following are easy to prove:

Lemma 8.4.2 Let J, I be ideals in a Noetherian local ring (R,m). Then
(1) J ⊆ I if and only if JR(X) ⊆ IR(X).
(2) ht(I) = ht(IR(X)). In particular, dimR = dimR(X), and I is m-

primary if and only if IR(X) is mR(X)-primary.
(3) J ⊆ I is a reduction if and only if JR(X) ⊆ IR(X) is a reduction.
(4) µ(I) = µ(IR(X)), ℓ(I) = ℓ(IR(X)).
(5) R is regular (resp. Cohen–Macaulay) if and only if R(X) is regular (resp.

Cohen–Macaulay).
(6) If I is m-primary, λ(R/I) = λ(R(X)/IR(X)). (Thus the Hilbert–Samuel

functions of I and IR(X) are the same; see Chapter 11.)
(7) I is generated by a regular sequence if and only if IR(X) is generated by

a regular sequence.
(8) If I = q1 ∩ · · · ∩ qk is a (minimal) primary decomposition, then IR(X)

= q1R(X) ∩ · · · ∩ qkR(X) is a (minimal) primary decomposition.
(9) IR[X ] = IR[X ] and thus IR(X) = IR(X). In particular, I is integrally

closed if and only if IR[X ] is integrally closed, which holds if and only if
IR(X) is integrally closed.
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Proof: We only prove (9). By faithful flatness, I = IR[X ] ∩ R, so I is
integrally closed if IR[X ] is. Similarly, IR[X ] is integrally closed if IR(X) is.
To prove the rest we can replace I by I, and assume that I is integrally closed.
It suffices to prove that IR[X ] is integrally closed. Let s ∈ IR[X ]. Under the
N-grading deg(X) = 1 and deg(R) = 0, IR[X ] is a homogeneous ideal, so by
Corollary 5.2.3, IR[X ] is also homogeneous. Thus each graded component of s
is in IR[X ]. Thus it suffices to prove that if r ∈ R, m ∈ N and rXm ∈ IR[X ],
then rXm ∈ IR[X ]. Write (rXm)n + a1(rX

m)n−1 + · · · + an = 0 for some
ai ∈ IiR[X ]. Let biX

im be the part of ai of degree im. Then bi ∈ Ii and
(rXm)n+b1X

m(rXm)n−1+ · · ·+bnXmn = 0 yields rn+b1r
n−1+ · · ·+bn = 0,

whence r ∈ I = I, and rXm ∈ IR[X ].

We reprove Corollary 8.3.9 by using R(X):

Corollary 8.4.3 Let (R,m) be a Noetherian local ring. Then for every ideal
I of R, ht(I) ≤ ℓ(I) ≤ dim(R). Also, ℓ(I) is bounded above by µ(I), the
minimal cardinality of a generating set of I.

Proof: The invariants ht , ℓ, dim , and µ remain unchanged under passage from
R to R(X) and I to IR(X), so without loss of generality we may assume that
the residue field of R is infinite. By Proposition 5.1.6, ℓ(I) ≤ dim(R). As FI
is generated over the field R/m by I/mI, it follows that the dimension ℓ(I)
of FI is at most the number µ(I) of generators of I/mI. It remains to prove
that ht(I) ≤ ℓ(I). By Proposition 8.3.7 there exists a minimal reduction J of
I generated by exactly ℓ(I) elements. Hence ht(I) = ht(J) ≤ µ(J) = ℓ(I).

Proposition 8.4.4 Let (R,m) be a Noetherian local ring, and I and J ideals
in R. If ℓ(I) + ℓ(J) > 0, then ℓ(IJ) < ℓ(I) + ℓ(J).

Proof: Without loss of generality we may pass to a Noetherian local ring
with infinite residue field. We may also replace I and J by their respective
minimal reductions. Thus we may assume that I and J are basic ideals. Now
the proposition follows immediately from Corollary 1.7.6.

8.5. Superficial elements

Definition 8.5.1 Let R be a ring, I an ideal, and M an R-module. We say
that x ∈ I is a superficial element of I with respect to M if there exists
c ∈ N such that for all n ≥ c, (In+1M :M x)∩IcM = InM . If x is superficial
with respect to R, we simply say that x is a superficial element of I.

For any x ∈ I and n ≥ c, InM is contained in (In+1M :M x) ∩ IcM . It is
the other inclusion that makes superficial elements special.

Remark 8.5.2 Let R be a ring, I an ideal, x ∈ I, and M an R-module.
Assume that x is a superficial element of I with respect to M . Then for all
m ≥ 1, xm is a superficial element of Im with respect to M .
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Proof: There exists an integer c such that for all n ≥ c, (In+1M :M x)∩IcM =
InM . We claim that for all n ≥ c, (Im(n+1)M :M xm) ∩ IcmM = ImnM ,
proving the remark. Let r ∈ (Im(n+1)M :M xm) ∩ IcmM . A straightforward
induction onm−i proves that for all 0 ≤ i ≤ m, rxi ∈ Im(n+1)−m+iM . When
i = 0, we have established the claim.

Clearly the superficial property of an element is preserved under localiza-
tion. Superficial elements that are non-zerodivisors behave better:

Lemma 8.5.3 A element x ∈ I that is a non-zerodivisor on M is a super-
ficial element of I with respect to M if and only if for all sufficiently large
integers n, InM :M x = In−1M .

Proof: The condition InM :M x = In−1M for all sufficiently large n clearly
implies that x is superficial, say by taking c = 0. Now assume that x is
superficial. By the Artin–Rees Lemma there exists an integer k such that for
all n ≥ k, InM ∩ xM = In−k(IkM ∩ xM) ⊆ xIn−kM . As InM ∩ xM =
x(InM :M x) and as x is a non-zerodivisor on M , it follows that InM :M x ⊆
In−kM . Let n ≥ k + c. Then InM :M x = (InM :M x) ∩ IcM = In−1M by
the assumption on superficiality, which proves the lemma.

The following is a partial converse:

Lemma 8.5.4 Let R be a Noetherian ring, I an ideal in R, and M a finitely
generated R-module. Assume that ∩n(InM) = 0 and that I contains an
element that is a non-zerodivisor on M . Then every superficial element of I
with respect to M is a non-zerodivisor on M .

Proof: Let x be a superficial element of I. Let c be an integer such that for
all integers n ≥ c, (In+1M :M x) ∩ IcM = InM . Then (0 :M x)Ic ⊆ InM
for all n. Thus (0 :M x)Ic = 0, so that as I contains a non-zerodivisor on M ,
0 :M x = 0.

Lemma 8.5.5 Let R be a Noetherian ring, M a finitely generated R-module,
I an ideal in R, and x ∈ R. Assume that either x is a non-zerodivisor on M
or that for some ideal J , I ⊆

√
J , ∩nJnM = 0, and that x ∈ R is a superficial

element for J with respect to M . Then there exists e ∈ N such that for all
n ≥ e,

InM :M x ⊆ (0 :M x) + In−eM, and (0 :M x) ∩ IeM = 0.

If x is superficial for I, then for all sufficiently large n, InM :M x = (0 :M
x) + In−1M .

Proof: By the Artin–Rees Lemma, there exists k ≥ 0 such that for all n ≥ k,
InM ∩ xM ⊆ xIn−kM . In particular, InM :M x ⊆ (0 :M x) + In−kM .

In case x is a non-zerodivisor on M , (0 :M x) = 0, which shows that
InM :M x ⊆ In−kM , thus proving the displayed inclusions in case x is a
non-zerodivisor on M .
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If instead x is superficial for J with respect toM and if Im ⊆ J , let c be such
that for all n ≥ c, (JnM :M x) ∩ JcM = Jn−1M . Set e = cm + k. From the
first paragraph we conclude that for all n ≥ e, InM :M x ⊆ (0 :M x)+In−eM .
Also,

(0 :M x) ∩ IeM ⊆
⋂

n

(JnM :M x) ∩ JcM ⊆
⋂

n

Jn−1M = 0,

which finishes the proof of the displayed inclusions. If in addition I = J , i.e.,
if x is superficial for I, then for n ≥ e+ c,

InM :M x = ((0 :M x) + IcM) ∩ (InM :M x)

= (0 :M x) + IcM ∩ (InM :M x)

= (0 :M x) + In−1M.

Superficial elements do not always exist:

Example 8.5.6 (Cf. Example 8.3.2.) Let R = (Z/2Z)[[X, Y ]]/(XY (X+Y )),
where X, Y are variables over Z/2Z. Let I = (X, Y )R. Then I has no
superficial element. For otherwise let r be a superficial element. As I is not
nilpotent, by Exercise 8.3, necessarily r 6∈ (X, Y )2R, so that the degree 1 part
of r is non-zero. By symmetry and a possible linear change of variables, we
may assume that the degree one part of r is X . We may write r = aX + bY 2

for some a, b ∈ Z/2Z[X, Y ]. For all n > max{2, c}, Y n−2(X + Y )r ∈ In+1,
Y n−2(X + Y ) ∈ Ic \ In, contradicting the superficiality assumption. Thus I
has no superficial element.

As is the case for reductions, stronger existence results hold when R is a
local ring with infinite residue field:

Proposition 8.5.7 Let R be a Noetherian ring, I an ideal, and M a finitely
generated R-module. Then
(1) There exists an integer m such that Im has a superficial element x with

respect to M , and even better, there exists an integer c such that for all
n ≥ m+ c, (InM :M x) ∩ IcM = In−mM .

(2) If R has infinite residue fields, then m above can be taken to be 1.
(3) If (R,m) is a Noetherian local ring with infinite residue field, then every

ideal I has a superficial element with respect to M . Furthermore in this
case, there exists a non-empty Zariski-open subset U of I/mI such that
whenever r ∈ I with image in I/mI in U , then r is superficial for I with
respect to M .

Proof: The module grI(M) = (M/IM)⊕(IM/I2M)⊕(I2M/I3M)⊕· · · over
the Noetherian ring grI(R) is finitely generated. Let 0 = N1 ∩ · · · ∩Nr be a
primary decomposition of the zero submodule in grI(M). For i = 1, . . . , r, set
Pi to be the radical of (Ni :grI(R) grI(M)). Each Pi is a prime ideal. Without
loss of generality P1, . . . , Ps contain all elements of grI(R) of positive degree,
and Ps+1, . . . , Pr do not. There exists an integer c such that N1, . . . , Ns all
contain IcM/Ic+1M .
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By Prime Avoidance there exists a homogeneous element h of positive de-
gree in grI(R) that is not contained in any Pi for i > s. Say h = x+ Im+1 for
some x ∈ Im. If R has infinite residue fields, then by Theorem A.1.2, m may
be taken to be 1.

Since n ≥ m+ c, it follows that In−mM ⊆ (InM :M x) ∩ IcM . By way of
contradiction suppose that n ≥ m+ c and y ∈ (InM :M x) ∩ IcM \ In−mM .
Let k be the largest integer such that y ∈ IkM . Then c ≤ k < n − m. In
grI(M), (x + Im+1) · (y + Ik+1M) = 0. Thus by the choice of x + Im+1,
y+ Ik+1M ∈ Ns+1 ∩ · · · ∩Nr. By the choice of c, y+ Ik+1M ∈ N1 ∩ · · · ∩Ns,
so that y + Ik+1M = 0, which contradicts the choice of k. This proves (1)
and (2).

Now assume that in addition R is a Noetherian local ring with maximal
ideal m and infinite residue field R/m. By Nakayama’s Lemma, the images of
Ps+1, . . . , Pr in I/mI are proper (R/m)-vector subspaces of I/mI. As R/m is
infinite, the Zariski-open subset of I/mI avoiding all these proper subspaces
is not empty.

An easy corollary is the following:

Lemma 8.5.8 Let I be an ideal in a Noetherian ring R such that the asso-
ciated graded ring grI(R) has a non-zerodivisor of positive degree. Then for
all large integers n, In+1 : I = In.

Proof: Let x and m be as in part (1) of Proposition 8.5.7. As in that proof,
we may further assume that h = x + Im+1 avoids all the associated primes
of grI(R) and that c = 0. Certainly In ⊆ In+1 : I, and if y ∈ In+1 : I, then
yx ∈ yIm = yIIm−1 ⊆ In+m, so that y ∈ (In+m : x) = In.

Superficial elements of an ideal I exist even if we require further properties:

Corollary 8.5.9 Let (R,m) be a Noetherian local ring with infinite residue
field. Let I be an ideal of R and P1, . . . , Pr ideals in R not containing I. Then
for any finitely generated R-module M there exists a superficial element for I
with respect to M that is not contained in any Pi.

In particular, if I contains a non-zerodivisor on M , then there exists a
superficial element of I with respect to M that is a non-zerodivisor on M .

Proof: By Proposition 8.5.7, there exists a non-empty Zariski-open subset U
of I/mI such that whenever x ∈ I and x+mI ∈ U , then x is superficial for I
with respect to M .

Let Wi = ((Pi ∩ I) + mI)/mI, a vector subspace of I/mI. By assumption
Pi does not contain I, so that by Nakayama’s Lemma (Pi ∩ I) +mI does not
contain I, whence Wi is a proper vector subspace of I/mI.

Let U ′ = U ∩(I/mI \(W1∪· · ·∪Wr)). Then U
′ is a non-empty Zariski-open

subset of I/mI. As it is a subset of U , it follows that whenever x ∈ I with
x+mI ∈ U ′, then x is superficial for I. Furthermore, by construction of U ′,
whenever x+mI ∈ U ′, then x is not in Pi for all i.
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The last statement is immediate from Lemma 8.5.4.

Definition 8.5.10 A sequence x1, . . . , xs ∈ I is said to be a superficial
sequence for I with respect to M if for all i = 1, . . . , s, the image of xi
in I/(x1, . . . , xi−1) is a superficial element of I/(x1, . . . , xi−1) with respect to
M/(x1, . . . , xi−1)M .

We proved that every ideal in a Noetherian local ring with an infinite residue
field contains a superficial element. Thus every superficial sequence can be
continued to a longer superficial sequence.

Lemma 8.5.11 Let x1, . . . , xs be a superficial sequence for I with respect
to M . Then for all n sufficiently large,

InM ∩ (x1, . . . , xs)M = (x1, . . . , xs)I
n−1M.

Proof: We proceed by induction on s. First assume that s = 1. By assumption
there exists an integer c such that for all n ≥ c, (In+1M :M x1)∩IcM = InM .
By the Artin–Rees lemma there exists an integer l such that for all n ≥ l,
InM ∩ x1M ⊆ x1I

n−lM . Let n > c + l, and y ∈ InM ∩ x1M . Write
y = x1a = x1b for some a ∈ InM :M x1 and some b ∈ In−lM ⊆ IcM . Then
a − b ∈ (0 :M x1) ⊆ (InM :M x1), so that b = a − (a − b) ∈ InM :M x1.
This proves that InM ∩ x1M ⊆ x1((I

nM :M x1) ∩ IcM), whence by the
superficiality of x1, I

nM ∩x1M ⊆ x1I
n−1M . Thus InM ∩x1M = x1I

n−1M .
Now assume that s > 1. By induction there exists an integer k such that

for all n ≥ k,

InM ∩ (x1, . . . , xs−1)M = (x1, . . . , xs−1)I
n−1M.

By the case s = 1, there exists an integer c such that for all n ≥ c,

(InM + (x1, . . . , xs−1)M) ∩ (x1, . . . , xs)M = (x1, . . . , xs−1)M + xsI
n−1M.

Hence for all n ≥ k + c,

InM ∩ (x1, . . . , xs)M ⊆ InM ∩
(
(x1, . . . , xs−1)M + xsI

n−1M
)

= InM ∩ (x1, . . . , xs−1)M + xsI
n−1M

= (x1, . . . , xs)I
n−1M.

The power of superficial sequences lies in the power of non-empty Zariski-
open sets: the intersection of any two such sets is not empty and still Zariski-
open, which means that further conditions of Zariski-open nature can be im-
posed freely. Here is one such example:

Lemma 8.5.12 Let k be an infinite field and m,n ∈ N. Let V be a non-
empty Zariski-open subset of km, U a non-empty Zariski-open subset of km+n,
and a ∈ kn and b ∈ km such that (b, a) ∈ U . Then {u ∈ V | (u, a) ∈ U} is a
non-empty Zariski-open subset of km.

Proof: Let I ⊆ k[X1, . . . , Xm] be an ideal such that v ∈ V if and only if
there exists F ∈ I such that F (v) 6= 0. Similarly, let J ⊆ k[X1, . . . , Xm+n]
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be such that u ∈ U if and only if there exists F ∈ J such that F (u) 6= 0. Set
K = (F (X1, . . . , Xm, a) |F ∈ J). As there exists F ∈ J such that F (b, a) 6= 0,
it follows that K is a non-zero ideal in k[X1, . . . , Xm]. But

{u ∈ V | (u, a) ∈ U} = {u ∈ km | there exists G ∈ IK such that G(u) 6= 0}.
As IK is non-zero, this Zariski-open set is not empty.

8.6. Superficial sequences and reductions

We have seen that whenever J ⊆ I is a reduction, then modulo any ideal K,
J(R/K) ⊆ I(R/K) is a reduction, but the converse fails in general. However,
if K ⊆ J is generated by a superficial sequence for I, the converse holds:

Proposition 8.6.1 Let R be a Noetherian ring, J ⊆ I ideals in R, and let
x1, . . . , xs be a superficial sequence for I contained in J . Set K = (x1, . . . , xs).
If J(R/K) ⊆ I(R/K) is a reduction, so is J ⊆ I.

Proof: Choose a positive integer n such that In+1(R/K) = JIn(R/K). Then
In+1 ⊆ (JIn + K) ∩ In+1 = JIn + (K ∩ In+1), so by the lemma above, for
all n sufficiently large, JIn + (K ∩ In+1) ⊆ JIn +KIn = JIn. Thus for all
n sufficiently large, In+1 = JIn.

Lemma 8.5.11 has a somewhat remarkable corollary when applied to the
associated graded module of I and M .

Corollary 8.6.2 Let R be a Noetherian ring, I an ideal, and M a finitely
generated R-module. Assume that x ∈ I is superficial for I with respect to M .
Set grI(M) = ⊕i≥0(I

iM/Ii+1M). For all n sufficiently large,

[grI(M)/x∗grI(M)]n = [grI(M)]n,

where I = I/(x), M =M/xM , and x∗ is the image of x in I/I2 ⊆ grI(R).

Proof: The degree n part of grI(M)/x∗grI(M) is InM/(xIn−1M + In+1M),
which clearly surjects onto the degree n piece of grI(M), which is isomorphic
to InM/(In+1M + (xM ∩ InM)). The kernel of this surjection is isomorphic
in degree n to (In+1M +(xM ∩InM))/(xIn−1M +In+1M). For large n, this
kernel is 0 by Lemma 8.5.11.

This corollary is called a “miracle” in [22], the point being that for an
element r to be superficial the multiplication map by r∗ on grI(M) needs to
be injective in high degrees, while the corollary says that this injectivity is
enough to give the “correct” cokernel in high degrees.

There is a natural upper bound on the length of the shortest superficial
sequence for I that generates a reduction of I:

Theorem 8.6.3 Let (R,m) be a Noetherian local ring with infinite residue
field and I an ideal of R. There exists a superficial sequence (x1, . . . , xl) for
I of length l = ℓ(I) such that (x1, . . . , xl) is a minimal reduction of I.
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Proof: If ℓ(I) = 0, then I is nilpotent, so the empty superficial sequence
generates the zero ideal, which is the minimal reduction of I.

Now assume that ℓ(I) > 0. By Proposition 8.5.7 there exists a non-empty
Zariski-open subset U of I/mI such that whenever x ∈ I with x + mI ∈ U ,
then x is superficial for I. As FI is generated over R/m by elements of I/mI,
and as FI has positive dimension, it follows that no minimal prime ideal of FI
contains all of I/mI. Thus as R/m is infinite, there exists an element x1+mI
in U that avoids all the minimal prime ideals of FI .

Set J = I/(x1) in R/(x1). Since FJ is a homomorphic image of FI/x1F1,
so that ℓ(J) = dimFJ ≤ dim(FI/x1F1) = dimFI − 1 = ℓ(I) − 1. It follows
by induction that there exists a superficial sequence x2 + (x1), . . . , xl + (x1)
of J with l = ℓ(J) that generates a reduction of J . For all n sufficiently large,
In+1 ⊆ (x2, . . . , xl)I

n + x1R, so that In+1 ⊆ x1R ∩ In+1 + (x2, . . . , xl)I
n.

Hence by Lemma 8.5.11, for all n sufficiently large, In+1 ⊆ (x1, x2, . . . , xl)I
n.

Thus (x1, . . . , xl) is a reduction of I and by construction l ≤ ℓ(I), whence by
Proposition 8.3.7, l = ℓ(I).

Discussion 8.6.4 The theorem above together with Lemma 8.5.11 have an
important consequence, used by J. Sally in [257]. We leave the proof of the
following theorem as an exercise (Exercise 8.25):

Theorem 8.6.5 (Sally’s machine) Let (R,m) be a Noetherian local ring, and
let I be an ideal of R. Let (x1, . . . , xn) ⊆ I be a minimal reduction of I
generated by a superficial sequence of length n. Fix r ≤ n, and set J =
(x1, . . . , xr). Then

depth(grI(R)) ≥ r + 1 if and only if depth(grI/J (R/J)) ≥ 1.

This “machine” has been used with great effectiveness to study Hilbert co-
efficients and the depth of Rees algebras by a number of researchers, especially
by the Genova school. See [103], [73], [131], [151], [154], [252], [253], [254],
[318], and their references.

Theorem 8.6.3, together with Proposition 8.5.7, shows that one can succes-
sively find sufficiently generic elements x1, . . . , xℓ(I) in I, that is, elements in
some Zariski-open subsets of I/mI, such that (x1, . . . , xℓ(I)) is a reduction of
I. But one can also find such sufficiently general elements all at once:

Theorem 8.6.6 (Northcott and Rees [217], Trung [300]) Let (R,m) be a
Noetherian local ring with infinite residue field and I an ideal of analytic
spread at most l. There exists a non-empty Zariski-open subset U of (I/mI)l

such that whenever x1, . . . , xl ∈ I with (x1 + mI, . . . , xl + mI) ∈ U , then
(x1, . . . , xl) is a reduction of I.

Furthermore, if there exists a reduction of I with reduction number n, then
there exists a non-empty Zariski-open subset U of (I/mI)l such that whenever
x1, . . . , xl ∈ I with (x1+mI, . . . , xl+mI) ∈ U , then (x1, . . . , xl) is a reduction
of I with reduction number at most n.
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Proof: Let I = (a1, . . . , am). Let X1, . . . , Xm be variables over R/m let
A = (R/m)[X1, . . . , Xm], and let ϕ : A → FI be the ring homomorphism
sending Xi to ai + mI. Then ϕ is a graded homomorphism and its kernel is
a homogeneous ideal.

For any (uij) ∈ Rml, set xi =
∑m
j=1 uijaj , J = (x1, . . . , xl)R, and set JX

to be the ideal (
∑m
j=1 u1jXj, . . . ,

∑m
j=1 uljXj)A, where uij is the image of uij

in R/m. Let Ja be the image of JX in FI .

Claim: J is a reduction of I if and only if (X1, . . . , Xm)A =
√

ker(ϕ) + JX .
Namely, if J is a reduction of I, then for a large integer N , IN+1 = JIN , so
that in FI , (FI)+ =

√
Ja. The preimages in A show that (X1, . . . , Xm)A =√

ker(ϕ) + JX . Now assume that (X1, . . . , Xm)A =
√
ker(ϕ) + JX . Let

N ∈ N such that (X1, . . . , Xm)
N+1 ⊆ ker(ϕ) + JX . Then by homogeneity,

(X1, . . . , Xm)
N+1 ⊆ ker(ϕ)+JX(X1, . . . , Xm)

N . By passing to the homomor-
phic image of this inclusion under ϕ, and then by lifting to R, we get that
IN+1 ⊆ JIN +mIN+1, so that by Nakayama’s Lemma, J is a reduction of I.
This proves the claim.

For each n ≥ 1, let Vn be the (R/m)-vector space in A whose basis consists
of all monomials of degree n and let Bn be the vector subspace generated by
(ker(ϕ)+JX)∩An. Let vn = dimVn, bn = dimBn. Fix a generating set of Bn
of bn elements. Write each of the generators of Bn as a linear combination in
the monomials. The coefficients are polynomials in the uij of degree at most
one. LetKn be the ideal in A generated by all the vn×vn minors of the bn×vn
matrix obtained from the coefficients. If bn < vn, then Kn is automatically
zero. However, by the existence of minimal reductions in local rings over an
infinite residue field there exists (uij) such that the corresponding ideal J
is a reduction of I. This means that for some n, Kn is not a trivially zero
ideal. Set U = {(uij) ∈ Vn |Kn(uij) 6= 0}. Then U is a Zariski-open subset
of (I/mI)l and by construction for every (uij) ∈ U , the corresponding J is a
reduction of I with reduction number at most n.

This proves that any ℓ(I) “sufficiently generic” elements of I form a minimal
reduction of I.

The proof above shows even more:

Corollary 8.6.7 Let (R,m) be a Noetherian local ring. Then for every
ideal I in R there exists an integer N such that the reduction number of any
reduction of I is at most N .

Proof: By the methods as in Section 8.4, without loss of generality we may
assume that R has an infinite residue field. Let J be an arbitrary reduc-
tion of I. Let K ⊆ J be a minimal reduction of I. Then µ(K) = ℓ(I) by
Proposition 8.3.7. Clearly the reduction number of K is an upper bound
on the reduction number of J , so it suffices to prove that there is an up-
per bound on the reduction numbers of minimal reductions. Let n = rK(I).
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The proof of Theorem 8.6.6 shows that there exists a non-empty Zariski-
open subset Un of (I/mI)l such that whenever (x1, . . . , xl) ∈ I l such that
(x1 + mI, . . . , xl + mI) ∈ Un, then (x1, . . . , xl) is a reduction of I with re-
duction number at most n. Then

⋃
i Ui gives an open cover of the subset of

(I/mI)l that yields all the reductions of I. But (I/mI)l is a finite-dimensional
vector space, so there exists N ∈ N such that UN contains all the Ui. Hence
N is an upper bound on all the reduction numbers.

An upper bound on ℓ(I) and also on reduction numbers can be obtained
via the following:

Theorem 8.6.8 (Eakin and Sathaye [65]) Let (R,m) be a Noetherian local
ring with infinite residue field, and let I be an ideal in R. Suppose that there
exist integers n and r such that In can be generated by strictly fewer than

(
n+r
r

)

elements. Then there exist y1, . . . , yr ∈ I such that (y1, . . . , yr)I
n−1 = In. In

particular, (y1, . . . , yr) is a reduction of I. In fact, any “sufficiently generic”
y1, . . . , yr ∈ I form a reduction of I.

Proof: The last statement follows from Theorem 8.6.6.
The interpretation for r = 0 is trivial: by assumption then In = 0, so

indeed I has a reduction generated by zero elements. The result for n = 1 is
immediate. Thus we may assume that r > 0 and that n > 1. If there exists a
counterexample to the theorem, we may choose a counterexample in which r
is minimal and n is minimal for this r. Thus any generating set of In−1 has
at least

(
n−1+r

r

)
elements.

Suppose that there exists y ∈ I \ mI such that (yIn−1 + mIn)/mIn is an
(R/m)-vector space of rank at least

(
n−1+r

r

)
. If r = 1, then by assumption In

is generated by at most n elements, so that by Nakayama’s Lemma, yIn−1 =
In, and we are done. Thus in this case we may assume that r > 1. Now
pass to R′ = R/(yIn−1 + mIn). Then as

(
n+r−1
r−1

)
+
(
n+r−1

r

)
=
(
n+r
r

)
, it

follows that InR′ is generated by strictly fewer than
(
n+r−1
r−1

)
elements. By

induction on r, there exist y2, . . . , yr ∈ I such that (y2, . . . , yr)I
n−1R′ = InR′.

Hence In ⊆ (y2, . . . , yr)I
n−1+yIn−1+mIn, which after applying Nakayama’s

Lemma finishes the proof of this case.
Now assume that for all y ∈ I \mI, (yIn−1+mIn)/mIn is an (R/m)-vector

space of rank less than
(
n−1+r

r

)
. Set R′ = R/(mIn : y). Then In−1R′ is

generated by fewer than
(
n−1+r

r

)
elements. By induction on n there exist

y1, . . . , yr ∈ I such that (y1, . . . , yr)I
n−2R′ = In−1R′. By Theorem 8.6.6,

there exists a non-empty Zariski-open subset U of (I/mI)r such that whenever
(y1 + mI, . . . , yr + mI) ∈ U , then (y1, . . . , yr)R

′ is a reduction of R′ with
reduction number at most n − 2. Let I = (x1, . . . , xs), with each xi ∈ I \
mI. Then by construction for each xi there exists a non-empty Zariski-open
subset Ui of (I/mI)

r such that whenever (y1 + mI, . . . , yr + mI) ∈ Ui, then
the ideal (y1, . . . , yr)(R/(mI

n : xi)) is a reduction of I(R/(mIn : xi)) with
reduction number at most n − 2. Let U = ∩iUi. Choose y1, . . . , yr ∈ I
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such that (y1 + mI, . . . , yr + mI) ∈ U . Then for all i = 1, . . . , s, In−1 ⊆
(y1, . . . , yr)I

n−2 + (mIn : xi), so that xiI
n−1 ⊆ (y1, . . . , yr)I

n−1 + mIn. It
follows that In ⊆ (y1, . . . , yr)I

n−1+mIn, which by Nakayama’s Lemma proves
the theorem.

Caviglia [37] gave an alternate proof that is perhaps more natural, but
requires different background. Namely, Caviglia’s proof is based on Green’s
hyperplane restriction theorem, which we state here without proof:

Theorem 8.6.9 (Green’s hyperplane restriction theorem [99]) Let R be a
standard graded algebra over an infinite field K and let L be a generic linear
form in R. Set S = R/(L). Then for all positive integers d,

dimKSd ≤ (dimRd)〈d〉.

(This is the Macaulay representation of numbers, Definition A.5.2.)

Using Green’s hyperplane restriction theorem, an alternate proof of Theo-
rem 8.6.8 is as follows:
Alternate proof of Theorem 8.6.8: (Caviglia [37]) The fiber cone FI is a stan-
dard graded (R/m)-algebra such that dimR/m(FI)n ≤

(
n+r
r

)
− 1 =

(
n+r−1
n

)
+(

n+r−2
n−1

)
+ · · ·+

(
r
1

)
. Let h1, . . . , hr be generic elements in (FI)1. By Green’s

hyperplane restriction theorem (Theorem 8.6.9) and by induction,

dimR/m

(
FI

(h1, . . . , hr)

)
n
≤
(
n− 1

n

)
+

(
n− 2

n− 1

)
+ · · ·+

(
0

1

)
= 0.

Hence In ⊆ (h1, . . . , hr)I
n−1 + mIn, so that by Nakayama’s Lemma, In ⊆

(h1, . . . , hr)I
n−1.

8.7. Non-local rings

In the previous sections we mainly used reductions in local rings. But there
are also nice results in non-local rings. Lyubeznik [198] proved that every ideal
in a polynomial ring in n variables over an infinite field has an n-generated
reduction. This result is stronger than saying that every ideal in a polynomial
ring in n variables is up to radical generated by at most n elements. Over
Noetherian local rings, the result is known by Proposition 8.3.8 and Corol-
lary 8.3.9. The method of proof is very different for polynomial rings, how-
ever. Katz generalized Lyubeznik’s existence results and we present Katz’s
version. For both Lyubeznik’s and Katz’s result one needs a result of Mohan
Kumar [178], which we use without proof.

First we need a proposition:

Proposition 8.7.1 Let R be a d-dimensional Noetherian ring and I an ideal
contained in the Jacobson radical m of R. Then
(1) Some power of I has a d-generated reduction.
(2) If R has infinite residue fields, then I has a d-generated reduction.
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Proof: If d = 0, then I is nilpotent, so 0 is a reduction of I (and of any power
of I). Now assume that d > 0. If I consists of zerodivisors, let L = ∪n(0 : In).
Say L = 0 : I l. Then I(R/L) contains non-zerodivisors. If the proposition
holds for I(R/L), then for some positive integer m, there exists a d-generated
ideal J in R contained in Im such that J(R/L) ⊆ Im(R/L) is a reduction.
Thus for some integer n, Im(n+1) ⊆ JImn + L, so that Im(n+1)+l ⊆ JImn+l.
Hence we may assume that I contains non-zerodivisors. As I is contained in
the Jacobson radical of R, necessarily ∩nIn = 0. Thus by Lemma 8.5.4, every
superficial element of I is a non-zerodivisor.

By Proposition 8.5.7, some power Im of I contains a superficial element
x, and if R has infinite residue fields, then m can be taken to be 1. By
induction on d, some power of Im(R/(x)) has a (d− 1) generated reduction,
say ImlR/(x) has a (d−1) generated reduction, withml = 1 if the residue field
is infinite. It follows that ImlR/(xl) also has a (d − 1) generated reduction.
By Remark 8.5.2, xl is superficial for Iml since x is superficial for Im. By
Proposition 8.6.1, Iml has a d-generated reduction. If the residue field is
infinite, ml = 1.

Here are some facts that we will use below. Part (3) is a difficult result due
to Mohan Kumar, and we provide no proof here.

Lemma 8.7.2 Let R be a Noetherian ring R. Let I be an ideal, and W the
multiplicatively closed set {1− i | i ∈ I}. Then
(1) µ(W−1I) = µ(I/I2) ≥ µ(I) − 1. In fact, if I = (x1, . . . , xd) + I2, then

there exists x ∈ I such that for all n, I = (x1, . . . , xd, x
n).

(2) If µ(I/I2) = d > dimR, then µ(I) = d.
(3) (Mohan Kumar [178, proof of Theorem 2]; we provide no proof) If R =

A[X ] is a reduced polynomial ring of dimension d, I an ideal in R of
positive height such that I/I2 is generated by at most d elements, then I
is generated by the same number of elements.

Proof: The first equality in (1) follows by the Nakayama’s Lemma: W−1I is in
the Jacobson radical ofW−1R. Let d = µ(I/I2). Let x1, . . . , xd ∈ I such that
W−1I =W−1(x1, . . . , xd). Let x ∈ I such that (1− x)I ⊆ (x1, . . . , xd). Then
I = (x1, . . . , xd, x), so that I has at most d + 1 generators. Furthermore,
as (1 − xn−1)x ∈ (x1, . . . , xd), it follows that x ∈ (x1, . . . , xd, x

n), whence
I = (x1, . . . , xd, x

n). This proves (1).
If in addition d > dimR, then by prime avoidance x1, . . . , xd may be chosen

such that the radical of (x1, . . . , xd) equals
√
I. Thus for some large n, xn ∈

(x1, . . . , xd), whence by (1), I = (x1, . . . , xd).

Katz generalized Lyubeznik’s result as follows:

Theorem 8.7.3 (Katz [163]) Let R be a Noetherian ring and I an ideal
in R. Let d be the maximum of the heights of maximal ideals containing I
and suppose that d <∞. Then
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(1) Some power of I has a (d+ 1)-generated reduction.
(2) If R has infinite residue fields, then I has a (d+ 1)-generated reduction.
(3) If R = A[X ] is a polynomial ring and d = dimR, then d may be taken in

place of d+ 1 in (1) and (2).

Proof: Without loss of generality I is a proper ideal. Let W = {1− i | i ∈ I}.
Then W is a multiplicatively closed subset of R that does not contain zero,
W−1R is a d-dimensional Noetherian ring, and W−1I is in the Jacobson
radical of W−1R. By Proposition 8.7.1 there exists a d-generated ideal J
contained in a power Im of I (m = 1 if R has infinite residue fields) such
that W−1J is a reduction of W−1Im. Let K = W−1J ∩ R. For some i ∈ I,
(1 − i)K ⊆ J ⊆ Im. It follows that (1 − im)K ⊆ Im, so that K ⊆ Im.
Let n be such that W−1Im(n+1) = W−1JImn = W−1KImn. Then for some
s = 1 − i′ ∈ W , sIm(n+1) ⊆ KImn ⊆ K, so that Im(n+1) ⊆ K. Since
(1−i′)Im(n+1) ⊆ KImn, we obtain that for all N , (1−(i′)N )Im(n+1) ⊆ KImn,
so that Im(n+1) ⊆ KImn + IN for all N . Since IN ⊆ KImn for N ≫ 0, we
see that K is a reduction of Im. As

√
K =

√
I, then W−1R = T−1R, where

T = {1− k | k ∈ K}. The number of generators of T−1K is at most d, and by
Lemma 8.7.2, K has at most d+ 1 generators. This proves (1) and (2).

Now let R = A[X ] be a polynomial ring of dimension d. By Lemma 8.7.2,
the assumption µ(T−1K) ≤ d implies that µ(K/K2) ≤ d. If µ(K/K2) < d,
then again by Lemma 8.7.2, µ(K) ≤ d. So we may assume that µ(K/K2) = d.
If K is nilpotent, so is I, and every power of I has a 0-generated reduction.

It remains to prove (3) in the case µ(K/K2) = d andK is not nilpotent. Let
L be the intersection of the height zero prime ideals that do not contain K.
Clearly µ((K + L)/(K2 + L)) ≤ d. If µ((K + L)/(K2 + L)) < d, then by
Lemma 8.7.2 (1), µ((K + L)/L) ≤ d, and if µ((K + L)/(K2 + L)) = d,
then by Lemma 8.7.2 (2) and (3), µ((K + L)/L) ≤ d. Thus in any case,
µ((K + L)/L) ≤ d. It follows that there exists a d-generated ideal K ′ ⊆ K
such that K ′ + L = K + L. Thus K = K ′ + L ∩K. But L ∩K is nilpotent,
so that K ′ is a reduction of K, which is a reduction of Im.

8.8. Sally’s theorem on extensions

In Chapter 14 on two-dimensional regular local rings we prove that blowups
along a divisorial valuation (a “good” Noetherian valuation) eventually pro-
duce a two-dimensional regular local ring whose order valuation is the original
valuation.

A related statement (in arbitrary dimension) proved by Judith Sally in [256]
is the topic of this section.

Theorem 8.8.1 Let (R,m)((S, n) be an extension of d-dimensional regular
local rings with the same field of fractions. Then the analytic spread ℓ(mS) of
mS is strictly smaller than d.
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As in Theorem 6.7.9, to a regular local ring (R,m) we associate its order
valuation. We need a general lemma for the proof.

Lemma 8.8.2 Let (R,m) ⊆ (S, n) be d-dimensional local rings with the
same field of fractions K. Assume that (R,m) is regular and ℓ(mS) = d. Let
(V,mV ) be the valuation ring of the order valuation of R. Then:
(1) (S, n) ⊆ (V,mV ),
(2) S/n = R/m, and
(3) n

k ∩R = m
k for all k.

Proof: We begin by proving that (1) implies (2). By the Dimension Inequality
Theorem B.2.5 (note: S need not be finitely generated over R), dimR +
tr.degKK ≥ dimS + tr.degR/m(S/n). Hence S/n is algebraic over R/m.
Then R/m ⊆ S/n ⊆ V/mV = κ(V ), and by Theorem 6.7.9, κ(V ) is purely
transcendental over R/m, proving that R/m = S/n.

Next observe that (1) implies (3), as m
k ⊆ n

k ∩ R ⊆ m
k
V ∩ R = m

k, the
latter equality holding since V is the order valuation of R.

It remains to prove (1). Write m = (x1, . . . , xd). By definition, the analytic

spread of mS is the dimension of the fiber ring S[x1t,...,xdt]
n·S[x1t,...,xdt]

. By assumption

this dimension is d, forcing this quotient ring to be isomorphic to a polynomial
ring over S/n in d variables. In particular, nS[mt] is prime ideal. Since

ht(nS[mt]) + dim( S[x1t,...,xdt]
n·S[x1t,...,xdt]

) ≤ dimS[mt] = d+ 1, it follows that nS[mt] is

prime ideal of height 1.
Recall that by Theorem 6.7.9 (V,mV ) = R[ m

x1
](x1). As R[ m

x1
] ⊆ S[ m

x1
],

and as nS[mt] is a height one prime ideal, we obtain that nS[mt]x1t is a
height one prime ideal. Then nS[ mx1

] is also a height one prime ideal, and

V = R[ mx1
]
mR[ m

x1
] ⊆ S[ mx1

]
nS[m

x1
], implying that V is this latter ring. Clearly

then n is contracted from the maximal ideal of V , which proves (1).

Proof of Theorem 8.8.1: For contradiction assume that ℓ(mS) = d. Write
m = (x1, . . . , xd). We claim that mS = n. It suffices to prove that dimS/n((m+
n
2)/n2) = d. Suppose that dimS/n(m+ n

2)/n2 < d. Then there is a relation,∑d
i=1 λixi ∈ n

2, where λi are either units in S or are zero. By Lemma 8.8.2,
R/m = S/n, so we can write λi = αi + si where αi are units (or zero) in R,

and si ∈ n. Then
∑d
i=1 αixi ∈ R ∩ n

2 = m
2, using Lemma 8.8.2, which is a

contradiction. Thus mS = n.
Next we prove that S ⊆ R̂. Let s ∈ S with s ∈ n

e \ n
e+1. Write s =

f(x1, . . . , xd) for some homogeneous polynomial f(T1, . . . , Td) in S[T1, . . . , Td]
of degree e with at least one coefficient a unit in S. Write f =

∑
ν sνx

ν , where
ν = (ν1, . . . , νd) is a multi-index with ν1+ · · ·+νd = e and all νi ≥ 0. Define a
polynomial g(T1, . . . , Td) ∈ R[T1, . . . , Td] as follows: g(T1, . . . , Td) =

∑
ν rνx

ν ,
where rν = 0 if sν ∈ n and rν is a unit in R congruent to sν modulo n if sν /∈ n.
Set re = g(x1, . . . , xd). Then s − re ∈ n

e+1. We replace s by s − re and
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continue. This gives a Cauchy sequence of elements of R converging to s and
gives the embedding of S into R̂. Then S ⊆ R̂∩Q(R) = R (see Exercise 8.1),
which proves the theorem.

8.9. Exercises

8.1 Let R be a local Noetherian domain. Prove that R̂ ∩Q(R) = R.
8.2 Let (R,m) be a Noetherian local ring, I an ideal and X an inde-

terminate over R. Prove that the reduction number of I equals the
reduction number of IR[X ]mR[X].

8.3 Assume that an ideal I has all of its powers distinct. (For example,
assume that I is a non-nilpotent ideal in a Noetherian local ring.)
Prove that if r is superficial for I, then r 6∈ I2.

8.4 Prove that any element of a nilpotent ideal I is superficial for I.
8.5 Let r be a superficial element for I. Prove that for any integer l, the

image of r in R/(0 : I l) is superficial for the image of I in R/(0 : I l).
8.6 Give an example of a Noetherian local ring (R,m), an ideal I and an

element r ∈ I such that r is superficial for I and r ∈ mI.
8.7 Let (R,m) be a Noetherian local ring with infinite residue field and

I an ideal in R. Prove that there exist a non-empty Zariski-open
subset U of I/mI and an integer l such that whenever r ∈ I with
image in I/mI in U , and i ≥ 1, then ri is superficial for Ii with
(In : ri) ∩ I l = In−i for all n ≥ i+ l.

8.8 Let R be a Noetherian ring and I an ideal. Prove that there exists
an integer l such that for all n ≥ l, In has a superficial element.

8.9 Let R be an N-graded integral domain and J ⊆ I homogeneous ideals.
If J is a reduction of I, then the smallest n ∈ N such that I contains
a non-zero element of degree n equals the smallest n ∈ N such that J
contains a non-zero element of degree n.

8.10 Let X, Y, Z be variables over a field k and let R = k[X, Y, Z]. Let I
be the ideal (X5Z, Y 5(Z − 1), X3Y 2Z,X2Y 3(Z − 1)) in R. For each
l ∈ N>0, set Jl = (X5Z − Y 5(Z − 1), X3Y 2Zl, X2Y 3(Z − 1)l). Prove
that each Jl is a reduction of I, but that ∩lJl is not a reduction of I.

8.11 Let (R,m) be a Noetherian local ring and I an m-primary ideal.
(i) Prove that there exists an integer n such that In has a reduction

generated by a system of parameters.
(ii) Prove that if R/m is infinite, then I has a reduction generated

by a system of parameters.
8.12 Give an example of ideals I and J in a Noetherian ring R showing

that
√
J =

√
I and J ⊆ I do not imply that J is a reduction of I.

Prove that if I is a nilpotent ideal, then any ideal contained in I is
its reduction.
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8.13 Let R be a Noetherian local ring and I an ideal with ht I = µ(I).
Prove that I is basic.

8.14 Let J1, J2, I1 and I2 be ideals in a Noetherian ring R. Prove or dis-
prove: if J1 is a reduction of I1 and J2 is a reduction of I2, then J1∩J2
is a reduction of I1 ∩ I2.

8.15 Prove that if J ⊆ I is a reduction in a Noetherian local ring, then
ℓ(J) = ℓ(I).

8.16 Give examples of ideals J ⊆ I in a Noetherian local ring R such that
(i) ℓ(J) > ℓ(I),
(ii) ℓ(J) < ℓ(I).

8.17 Let (R,m) be a Noetherian local domain and I a non-zero ideal. Let
P be a prime ideal of R. Prove that ℓ(I) ≥ ℓ(IRP ).

8.18 Let (R,m) be a Noetherian local domain with infinite residue field
and I a non-zero ideal. Let R be the integral closure of R. Prove that
ℓ(I) = 1 if and only if IR is principal.

8.19 (Cf. Lemma 8.5.4.) Let R = k[X, Y ]/(X −X2Y 2), where k is a field
and X and Y variables over k. (Or replace R by its localization at the
complement of the union of the prime ideals (X, Y ) and (1−XY 2).)
Let I = (Y ).
(i) Prove that X ∈ In for all n, so that ∩nIn is non-zero.
(ii) Let r = (1−XY 2)Y . Prove that r ∈ I is a zerodivisor in R that

is superficial for I.
8.20 Let R = (Z/2Z)[[X, Y, Z]]/(Z5, Z4 +XY (X + Y )), where X, Y, Z are

variables over Z/2Z. Let J = (X, Y )R, I = m = (X, Y, Z)R.
(i) Prove that J is a minimal reduction of I.
(ii) Prove that µ(J) 6= ℓ(I).
(iii) Prove that J3 ∩mI3 6= mJ3. (Cf. Corollary 8.3.6 (3).)

8.21 Let k be a field, and X1, . . . , Xn variables over k. Set R to be either
k[[X1, . . . , Xn]] or k[X1, . . . , Xn](X1,...,Xn). Then R is a Noetherian
local ring with maximal ideal m = (X1, . . . , Xn). Let a1, . . . , as be
homogeneous elements in k[X1, . . . , Xn] all of the same degree, and I
the ideal in R generated by a1, . . . , as.
(i) Prove that FI(R) = ⊕i(Ii/mIi) is isomorphic to k[a1, . . . , as],

the subring of k[X1, . . . , Xn] generated by a1, . . . , as.
(ii) Assume that a1, . . . , as are monomials of degree d, Write ai =

Xci1
1 · · ·Xcin

n for some non-negative integers cij . Prove that ℓ(I)
equals the rank of the matrix (cij).

See [17] for more on the analytic spread of monomial ideals.
8.22 Suppose that R is a Noetherian ring and I is an ideal of linear type.

Prove for all prime ideals P containing I, the analytic spread of IP is
equal to the minimal number of generators of IP , i.e., that IP is its
own minimal reduction.

8.23 Let k be a field, m,n positive integers, and Xij, i = 1, . . . , m, j =
1, . . . , n, variables over k. Set R = k[Xij](Xij). Let t < min{m,n}
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and I the ideal of all t × t minors of the m × n matrix (Xij). Prove
that ℓ(I) = mn.

8.24 Let k be a field, t,m, n ∈ N, 2 ≤ t < min{m,n}, and Xij variables
over k, where i = 1, . . . , m, j = 1, . . . , n. Set R = K[Xij], and P the
prime ideal generated by the t× t minors of (Xij). Prove that grP (R)
is not an integral domain. (Hint: use Exercise 8.23.)

8.25 Let (R,m) be a Noetherian local ring and let I be an ideal in R.
Let (x1, . . . , xn) ⊆ I be a minimal reduction of I generated by a
superficial sequence of length n. Set J = (x1, . . . , xr). Prove that
depth(grI(R)) ≥ r + 1 if and only if depth(grI/J (R/J)) ≥ 1.

8.26 Let (R,m) be a Noetherian local ring and I an ideal in R. Elements
a1, . . . , al are said to be analytically independent in I if for any
polynomial F in variables X1, . . . , Xl over R that is homogeneous
of degree d, the condition F (a1, . . . , al) ∈ mId implies that all the
coefficients of F are in m. Assume that a1, . . . , al are analytically
independent in I.
(i) Prove that if J = (a1, . . . , al), then FJ(R) is isomorphic to a

polynomial ring in l variables over R/m.
(ii) Prove that a1, . . . , al minimally generate (a1, . . . , al).
(iii) Assume that (b1, . . . , bl) = (a1, . . . , al). Prove that b1, . . . , bl are

analytically independent.
8.27 Let (R,m) be a Noetherian local ring and I an ideal in R.

(i) Prove that if a1, . . . , al are analytically independent in I, then
l ≤ ℓ(I).

(ii) Prove that if R/m is infinite, there exist ℓ(I) analytically inde-
pendent elements in I that generate a reduction of I.

(iii) Prove that if R/m is infinite, every minimal reduction of I is
generated by analytically independent elements.

8.28 Let R be a local Noetherian ring with a fixed prime ideal q. Prove that
there exists a local homomorphism R → T , with kernel q, such that
T is a one-dimensional Noetherian local domain with field of fractions
κ(q), essentially of finite type over R whose residue field L is a purely
transcendental extension of the residue field k of R. (Hint: Choose
elements y1, . . . , yd in R/q that form a system of parameters. Set T =
(R/q)[ y2

y1
, . . . yd

y1
](m/q). Since y1, . . . , yd are a system of parameters,

they are analytically independent and m/q generates a prime ideal.)
8.29 (Swanson [283]) Let (R,m) be a Noetherian local ring with infinite

residue field and let I be an ideal. Define S(I) to be the set of
all s ∈ N for which there exists a non-empty Zariski-open subset
U ⊆ (I/mI)s such that whenever x1, . . . , xs ∈ I and (x1, . . . , xs) ∈ U ,
then I ⊆

√
(x1, . . . , xs). Prove that ℓ(I) = min(S(I)).

8.30* Let (R,m) be a Noetherian local ring and I an ideal. Is the number of
generators of minimal reductions of I independent of the reduction?
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The answer is yes if R/m is infinite (Proposition 8.3.7), but not known
in general.

8.31 (Compare with the proof of Theorem 8.6.6.) Let (R,m) be a Noe-
therian local ring with infinite residue field and I an ideal of analytic
spread at most l. For each n ≥ 1, define Un to be the set of all
(uij) ∈ (I/mI)l such that (

∑m
j=1 u1jaj , . . . ,

∑m
j=1 uljaj) is a reduc-

tion of I of reduction number at most n.
(i) Prove that min{n |Un 6= ∅} is the (absolute) reduction number

of I.
(ii) Prove that “almost all” minimal reductions of I have the same

reduction number. In precise terms, if s = dim(I/mI), prove
that there exists a Zariski-open subset U of (R/m)sl ∼= (I/mI)l

such that whenever (uij) ∈ Rsl with image (uij) ∈ (I/mI)l

being in U , then (
∑m
j=1 u1jaj , . . . ,

∑m
j=1 uljaj) is a reduction of

I with minimal possible reduction number.
8.32 Let (R,m) be a Noetherian local ring. Let a1, . . . , ad be a system of

parameters. Set S = R[a2
a1
, . . . , ad

a1
], and Q = mS.

(i) Prove that dimS = d.
(ii) Prove that Q is a prime ideal of height one and that Q =

√
a1S.

(iii) Prove that the elements a2a1 , . . . ,
ad
a1

are algebraically independent
over R/m.

(iv) Prove that AssS = {pR[a−1
1 ] ∩ S | p ∈ AssR, a1 6∈ p}.

8.33 (Burch [35]) Let (R,m) be a Noetherian local ring and I a basic ideal.
(i) Let f1, . . . , fr ∈ m, and C1, C2, C3, . . . ideals of R such that

for each n, In+1 ⊆ Cn+1 ⊆ Cn ⊆ In and (f1, . . . , fr)(R/Cn) is
generated by a regular sequence. Prove that ℓ(I+(f1, . . . , fr)R)
= ℓ(I) + ℓ((f1, . . . , fr)R).

(ii) Let C1, C2, C3, . . . ideals of R such that for each n, In+1 ⊆
Cn+1 ⊆ Cn ⊆ In and depth(R/Cn) ≥ k. Prove that ℓ(I) ≤
dimR − k.

8.34 ([35]) Let (R,m) be a Noetherian local ring, I an ideal in R. Prove
(i) ℓ(I) ≤ dimR−min{depth(R/In) |n ∈ N}.
(ii) ℓ(I) ≤ dimR−min{depth(R/In) |n ∈ N}.

8.35 Let k be a field, X, Y variables over k, R = k[[X2, X3, Y ]], I =
(X2, X3Y )R. Prove that the bound for ℓ(I) in Exercise 8.34 (ii) is
sharper than the bound for ℓ(I) in Exercise 8.34 (i).
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Analytically unramified rings

It is not surprising that the behavior of integral closure of ideals under exten-
sion of rings should relate to the behavior of nilpotents under extensions, since
the nilradical is always inside the integral closure of every ideal. It is also not
surprising that the behavior of the integral closure of ideals under extension
rings should directly relate to the module-finite property of the integral clo-
sures of finitely generated extension rings of a given ring, since the integral
closures of Rees algebras and affine pieces of the blowup of an ideal relate
directly to the integral closure of the ideal. In this chapter we study these
problems and show that they all relate to a basic idea that the completions of
the localizations of a ring R should not have “new” nilpotents. We formalize
this in the following definition:

Definition 9.0.1 A local Noetherian ring (R,m) is analytically unrami-
fied if its m-adic completion is reduced.

If (R,m) is analytically unramified, then R must itself be reduced as R
embeds in its completion. However, not every reduced Noetherian ring is
analytically unramified (see Exercises 4.9 and 4.11).

The main results of this chapter, Theorems 9.1.2 and 9.2.2, are two clas-
sic theorems of David Rees characterizing the locally analytically unramified
rings. The first theorem characterizes analytically unramified rings in terms
of integral closures of powers of ideals, and the second theorem has to do with
module-finiteness of integral closures of analytically unramified rings.

In the last section, we use the work on analytically unramified rings to study
an important set of rank one discrete valuations, called divisorial valuations.

We give here an incomplete list of locally analytically unramified rings.
(1) Every reduced ring that is a localization of finitely generated algebra over

a field; Theorems 4.6.3, 9.2.2.
(2) Every reduced ring that is a localization of finitely generated algebra over

Z; Corollary 4.6.5 and Theorem 9.2.2.
(3) Every complete local domain (by definition).
(4) Every pseudo-geometric Noetherian reduced ring; see Exercise 9.6.
(5) Every reduced ring that is finitely generated over a complete local ring;

see Exercise 9.7.
(6) The ring of convergent power series in n variables over Q, R, or C (com-

pletion is the power series ring, which is a domain).
(7) Every excellent reduced ring. (We do not define excellent rings in this

book; the analytically unramified property follows quickly from the defi-
nition.)
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9.1. Rees’s characterization

The main result of this section is Rees’s characterization of analytically un-
ramified local rings in terms of integral closures of powers of ideals. We also
discuss constructions of analytically unramified rings.

We first prove a lemma: even though a necessary condition that integral
closure commute with passage to completion for all ideals is that the ring
be analytically unramified, there is a class of ideals for which the integrally
closed property is preserved for all Noetherian local rings:

Lemma 9.1.1 Let (R,m) be a Noetherian local ring, and let I be an m-

primary ideal. Then IR̂ = IR̂.

Proof: Obviously IR̂ ⊆ IR̂. Let s ∈ IR̂ and consider an integral equation

sn + a1s
n−1 + · · ·+ an = 0,

where aj ∈ IjR̂. Choose ℓ such that mℓ ⊆ I. Choose s′ ∈ R and a′i ∈ Ii such

that s− s′, ai − a′i ∈ m
nℓR̂. Then

(s′)n + a′1(s
′)n−1 + · · ·+ a′n ∈ m

nℓR̂ ∩R = m
nℓ.

By the choice of ℓ, mnℓ ⊆ In, so that we can modify this equation to give an
integral equation for s′ over I. Since s − s′ ∈ m

nℓR̂ ⊆ InR̂ ⊆ IR̂, it follows
that s ∈ IR̂.

With this we can prove that the analytically unramified property is closely
related to the integral closures of powers of ideals:

Theorem 9.1.2 (Rees [235]) Let (R,m) be a Noetherian local ring. The
following are equivalent:
(1) R is analytically unramified.

(2) For all I ⊆ R there is an integer k such that for all n ≥ 0, In+k ⊆ In.

(3) There exist an m-primary ideal J and an integer k such that Jn+k ⊆ Jn

for all n ≥ 0.
(4) There exist an m-primary ideal J and a function f : N → N such that

limn→∞ f(n) = ∞ and such that Jn ⊆ Jf(n) for all n.

Proof: Obviously (2) implies (3) and (3) implies (4).

We assume (4) and prove (1): let N denote the nilradical of R̂. Then

N ⊆ ∩n≥1JnR̂, so that by Lemma 9.1.1, N ⊆ ∩n≥1JnR̂. By assumption this

intersection is contained in ∩nJf(n)R̂ = 0. Hence R is analytically unramified.
Finally we assume (1) and prove (2). Fix any I ⊆ R. It is enough to prove

that for any ideal I ⊆ R there exists an integer k such that for all n ≥ 0

In+kR̂ ⊆ InR̂,

since contracting to R gives (2) in this case. Thus we may assume that R is
complete and reduced.
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We next reduce to the case in which R is a domain. Let the minimal primes
of R be {P1, · · · , Pt}. By ( )i we denote images in R/Pi. Suppose that there
exist integers ki such that

In+kii ⊆ Ini

for all n ≥ 0 and for 1 ≤ i ≤ t. Choose ci ∈ P1 ∩ · · · ∩ P̂i ∩ · · · ∩ Pt \ Pi. Set
c = c1 + · · · + ct, so that in particular c 6∈ ⋃ti=1 Pi. Let k be the maximum

of the ki. Since In+kRi ⊆ In+ki ⊆ Ini , we obtain that In+k ⊆ In + Pi for all
1 ≤ i ≤ t. Multiply by ci to obtain that

ciIn+k ⊆ In + ciPi = In

for all 1 ≤ i ≤ t. Hence cIn+k ⊆ In for all n ≥ 0 and so cIn+k+ℓ ⊆
In+ℓ∩ (c) ⊆ cIn for some ℓ and for all n ≥ 0, the latter containment following
by the Artin–Rees Lemma. As R is reduced, c is a non-zerodivisor, and hence

In+k+ℓ ⊆ In.

Thus we have reduced the implication (1) =⇒ (2) to the case in which R is a
complete local domain. Now the theorem follows from Proposition 5.3.4.

Theorem 13.4.8 in Chapter 13 shows that under some extra conditions, k
can be taken to be independent of I.

This enables us to build further analytically unramified rings from the
known ones.

Proposition 9.1.3 Let (R,m) be a Noetherian local ring R. If R is ana-
lytically unramified, then for every minimal prime ideal P in R, R/P is also
analytically unramified.

If R/P is analytically unramified for all P ∈ Min(R) and if R is reduced,
then R is analytically unramified.

Proof: First assume that R is analytically unramified. To prove that R/P is
analytically unramified, we use Theorem 9.1.2. It suffices to prove that for all
ideals I ⊆ R there exists an integer k such that In+k(R/P ) ⊆ In(R/P ) for
all n ≥ 0. Fix I.

By Theorem 9.1.2 there exists an integer k1 such that for all n ≥ 0, In+k1 ⊆
In. Next, choose c ∈ R such that P = (0 : c). By the Artin–Rees Lemma, we
may choose k2 such that

(c) ∩ In+k2 ⊆ c · In for all n ≥ 0.

We claim that In+k1+k2(R/P ) ⊆ In(R/P ) for n ≥ 0. Let u ∈ R such that

u+ P ∈ In+k1+k2(R/P ). Then there exists an equation:

ul + a1u
l−1 + · · ·+ al ∈ P, aj ∈ Ij(n+k1+k2).

Multiply by cl:
(cu)l + a1c(cu)

l−1 + · · ·+ alc
l = 0,
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which implies that cu ∈ In+k1+k2 ⊆ In+k2 , n ≥ 0. Hence cu ∈ In+k2 ∩ (c) ⊆
cIn, which implies that there exists v ∈ In such that u − v ∈ (0 : c) = P .
Then u+ P = v + P ∈ In(R/P ).

Now assume thatR/P is analytically unramified for all minimal prime ideals

P of R, and that R is reduced. Then ∩P∈Min(R)P = 0, and so ∩P (PR̂) = 0.

By assumption, each PR̂ is a radical ideal in R̂, so that R̂ is reduced. Thus
R is analytically unramified.

Here is another example of construction of analytically unramified rings:

Proposition 9.1.4 An analytically unramified Noetherian local ring is lo-
cally analytically unramified.

Proof: Let Q ∈ Spec(R). For an arbitrary ideal J in RQ, let I be an ideal
in R such that IRQ = J . As R is analytically unramified, there exists an

integer k such that for all n ≥ k, In+k ⊆ In. Thus Jn+k ⊆ Jn. As J was an
arbitrary ideal in RQ, RQ is analytically unramified by Theorem 9.1.2.

It is not true that module-finite extensions of analytically unramified rings
are also analytically unramified, or that an arbitrary quotient domain of an
analytically unramified ring is analytically unramified; see Exercise 4.11.

9.2. Module-finite integral closures

Chapter 4 is partly about Noetherian rings whose integral closures are module-
finite extensions. With the newly introduced analytically unramified rings, we
can now determine even more such cases. See also Chapter 19.

Corollary 9.2.1 Let (R,m) be an analytically unramified Noetherian local
ring and I an ideal in R.
(1) Let t be a variable over R, and set S = R[It], the Rees algebra of I. Then

the integral closure of S in R[t] is module-finite over S.
(2) There exists an integer ℓ such that for all n ≥ 1,

In+ℓ = InIℓ and (Iℓ)n = Iℓn.

Proof: By Proposition 5.2.1, the integral closure of S in R[t] is ⊕n≥0Int
n.

By Theorem 9.1.2 there exists an integer k such that In ⊆ In−k for all n ≥ k.
Hence ⊕n≥kIntn ⊆ R[It]tk and then ⊕n≥0Int

n is a finitely generated R[It]-
module. Therefore by Proposition 5.2.5, there exists an integer ℓ such that
In = In−ℓ · Iℓ for all n ≥ ℓ. Hence

(Iℓ)n ⊆ Iℓn = Iℓn−ℓ · Iℓ ⊆ (Iℓ)n,

which implies that (Iℓ)n = Iℓn for all n ≥ 1.

The following theorem due to Rees proves that whenever R is an analytically
unramified domain and S is a finitely generated R-algebra with the same field
of fractions as R, then S is also analytically unramified:



9.2. Module-finite integral closures 189

Theorem 9.2.2 (Rees [235]) Let R be a Noetherian local domain. The
following are equivalent:
(1) R is analytically unramified.
(2) For every finitely generated R-algebra S such that S is between R and its

field of fractions, the integral closure of S is a finitely generated S-module.

Proof: We begin by proving that (1) implies (2). By using Corollary 4.6.2,
the integral closure R of R is a finitely generated R-module. Let r be a
non-zero element of R such that rR ⊆ R. Write S = R[x1

x
, . . . , xm

x
] and set

I = (x, x1, . . . , xm). Choose an integer k as in Theorem 9.1.2 such that for

all n ≥ 0, In+k ⊆ In. Note that S = R[ Ix ] = ∪l≥0
Il

xl . Let S be the integral

closure of S and let z ∈ S. There is an equation zn+s1z
n−1+ · · ·+sn = 0 for

some si ∈ S. Write si =
ai
xl , where we may increase l if necessary to assume

that l ≥ k and where ai ∈ I l ⊆ R, 1 ≤ i ≤ n. Multiply by xnl:

(xlz)n + a1(x
lz)n−1 + · · ·+ aj(x

l)j−1(xlz)n−j + · · ·+ an(x
l)n−1 = 0.

Note that all coefficients aj(x
l)j−1 ∈ R. This proves that xlz is integral over

R and hence rxlz ∈ R. As aj(x
l)j−1 ∈ Ijl, rxlz ∈ I lR ∩ R = I l. Hence

rxlz ∈ I l−k. Then rxkz ∈ Il−k

xl−k ⊆ S and so z ∈ S · 1
rxk . Therefore S ⊆ S · 1

rxk ,
so that it is a finitely generated S-module.

Assume condition (2). To prove (1), it suffices by Theorem 9.1.2 to prove
that there exist an m-primary ideal J and an integer k such that Jn ⊆ Jn−k

for all n ≥ k. By Proposition 8.5.7 there exists an integer l such that J = m
l

has a non-zero superficial element x. By Lemma 8.5.3 this means that there
exists an integer q such that for all n ≥ q, Jn : x = Jn−1. Set S = R

[
J
x

]
.

The integral closure S of S is finite over S, and hence S ∩ Rx is a finitely
generated S-module, so there exists p such that S ∩Rx ⊆ S · 1

xp . Let u ∈ Jn

and assume that n ≥ p+ q. Then u
xn ∈ S and u

xn ∈ Rx, so that u
xn ∈ S · 1

xp .

Now, S =
⋃
m≥0

Jm

xm , so there exist am ∈ N and s ∈ Jm such that u
xn = s

xm+p .

Hence uxm+p = sxn ∈ Jm+n and so u ∈ Jm+n : xm+p We can cancel one
x and one exponent of J at a time provided that the power of J never goes
below q. The final cancellation gives u ∈ J (m+n)−(m+p) = Jn−p for n−p ≥ q,
i.e., u ∈ Jn−p whenever n ≥ p + q. Hence Jn ⊆ Jn−p−q for all n ≥ p + q.
Setting k = p+ q proves (1).

Here is a special case of this:

Theorem 9.2.3 Let R be a regular domain, K its field of fractions and L
a finite separable field extension of K. Let S be a finitely generated R-algebra
contained in L. Then the integral closure S of S is module-finite over S.

Proof: Let R′ be the integral closure of R in L. By Theorem 3.1.3, R′ is
module-finite over R. The integral closure S of S contains R′. Let T be the
algebra generated over R by the generators of R′ and S. Then T is finitely
generated over R, module-finite over S, the field of fractions of T is L, and
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the integral closure of T equals S. Thus it suffices to prove that the integral
closure of T is module-finite over T . By changing notation we may thus
assume that L is the field of fractions of S, and that S contains the integral
closure R′ of R in L.

By Theorem 4.2.4, there exists a non-zero r ∈ R such that Sr is integral
over Rr. Thus Sr = R′

r is integrally closed. By Corollary 4.5.10, the normal
locus of S is open. It is certainly not empty as S is a domain. Corollary 4.5.11
shows that to prove the theorem it suffices to prove that for each maximal
ideal m in S, Sm is module-finite over Sm. Let m be a prime ideal in S, and
set P = m ∩ R. We may now change notation: we replace R by the regular
local ring RP and S by the finitely generated domain extension SR\P (S need
not be local). The integral closure R′ of R in L is still contained in S.

As R is local and R′ is module-finite over it, R′ is Noetherian and semi-
local. Let R̂ be the m-adic completion of R. As R is a regular local ring, R̂ is
a domain. Let K̂ be the field of fractions of R̂. Then

R′ ⊗R R̂ ⊆ L⊗R R̂ ∼= (L⊗K K)⊗R R̂ ∼= L⊗K (K ⊗R R̂) ⊆ L⊗K K̂.

By Proposition 3.2.4 (2), L⊗K K̂ is reduced, so that R′ ⊗ R̂ is reduced. But

R′ ⊗ R̂ is a finite direct product of completions of (R′)Q, where Q varies
over the maximal ideals of R′, so that for each Q, the completion of (R′)Q is
reduced, so that each (R′)Q is analytically unramified. Set Q = m ∩ R′. As
Q ∩R = m ∩R′ = P , Q is a maximal ideal in R′. Thus (R′)Q is analytically
unramified, so that by Theorem 9.2.2, SR′\Q is module-finite over SR′\Q,
whence Sm is module-finite over Sm.

In Chapter 19 we prove that under some quite general conditions on (R,m),

for any ideal I in R, IR̂ is integrally closed and equals the integral closure of
IR̂. In Section 19.2, we prove the easier special case in which R is analyti-
cally unramified. The reader may proceed to that section right now (via the
introductory section Section 19.1 on normal maps).

9.3. Divisorial valuations

Let R be a Noetherian integral domain and let S be a domain containing R.
Let Q be a prime ideal in S and P = Q ∩ R. By the Dimension Inequality
(Theorem B.2.5),

htQ+ tr.degκ(P )κ(Q) ≤ htP + tr.degRS.

If S happens to be a Noetherian valuation ring V properly contained in the
field of fractions K of R, then with Q = mV , the formula above says that
tr.degκ(P )κ(v) ≤ htP − 1. The same inequality also follows from Theo-
rem 6.6.7 (1). This motivates the following definition:

Definition 9.3.1 Let R be a Noetherian integral domain with field of frac-
tions K, and let (V,mV ) be a valuation ring of K such that R ⊆ V . Let
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P = mV ∩R. If tr.degκ(P )κ(v) = htP − 1 then the corresponding valuation v
of V is said to be a divisorial valuation with respect to R, and V is said to
be a divisorial valuation ring of K.

The set of all divisorial valuation rings of K that are non-negative on R is
denoted D(R).

The Noetherian property is not part of the definition of divisorial valuations,
but in fact this property is forced. See Theorem 9.3.2 below.

An example of a non-divisorial valuation is in Example 6.7.3. Divisorial
valuations are classically called prime divisors. Prime divisors are further
divided into the first and second kinds. V is of the first kind if the center of
V on R is a height one prime ideal. This forces V to be the localization at a
height one prime of the integral closure of R. All the others are said to be of
the second kind (with respect to R).

Our use of the word “divisorial” is not completely standard. Some authors
refer to a divisorial valuation of R to mean only prime divisors of the first
kind.

Divisorial valuations are critically important in the theory of the integral
closure of ideals. Namely, as we prove in Chapter 10, the integral closures of
the powers of a given ideal in a Noetherian domain are determined by finitely
many discrete divisorial valuations. These special valuations are called the
Rees valuations of the ideal. Also, in Chapter 18 the divisorial valuations are
used to define the adjoints of ideals (multiplier ideals).

Divisorial valuations tend to be essentially of finite type:

Theorem 9.3.2 Let R be a Noetherian integral domain. Every divisorial
valuation domain V with respect to R is Noetherian. If moreover R is locally
analytically unramified, then every divisorial valuation domain V with respect
to R is essentially of finite type over R.

Proof: Assume that V is a divisorial valuation domain with respect to R with
associated valuation v. Necessarily R has positive dimension. Let mV be the
maximal ideal of V , and P = mV ∩R. The hypotheses and the conclusion do
not change if we pass to the localization at P , so that we may assume that
P is the unique maximal ideal of R. Let d be the height of P . Note that
tr.degκ(P )κ(v) = d− 1.

Let x, x2, . . . , xd be elements in P such that x2

x
, . . . , xd

x
are units in V and

such that their images in κ(v) are algebraically independent over κ(P ). Let I
be the ideal (x, x2, . . . , xd) in R. If R is assumed to be analytically unramified,
Theorem 9.2.2 shows that the integral closure S of R[ Ix ] is a finitely generated
R-algebra contained in V . Let Q = mV ∩ S. Then Q ∩ R = P . By the
Dimension Inequality (Theorem B.2.5):

htQ+ tr.degκ(P )κ(Q) ≤ htP + tr.degRS = d,

so that htQ ≤ d − tr.degκ(P )κ(Q). Any algebraic relation among the xi

x in
κ(Q) with coefficients in κ(P ) remains an algebraic relation in κ(v), so that
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tr.degκ(P )κ(Q) = d − 1. Hence htQ ≤ 1. But Q contracts to the non-zero
prime ideal P , so that htQ = 1. Thus as S is a Krull domain, SQ is a
Noetherian valuation domain, so it necessarily equals V . If R is analytically
unramified, then since S is a finitely generated R-algebra, V is essentially of
finite type over R.

Small modifications of the proof above show relations between D(R) and
D(S) for various extensions S of R. These facts will be needed in Chapter 18:

Lemma 9.3.3 Let R be a Noetherian locally analytically unramified integral
domain with field of fractions K. Let V be a discrete valuation domain of
rank one between R and K. Let S be a finitely generated R-algebra between R
and V . If V ∈ D(R) then V ∈ D(S). If the dimension formula holds between
R ⊆ S, then V ∈ D(R) if and only if V ∈ D(S), i.e., the valuation domain
V is divisorial over R if and only if it is divisorial over S.

Proof: Let Q = mV ∩ S and P = mV ∩ R. By the Dimension Inequality for
R ⊆ S,

htP − 1− tr.degκ(P )κ(v) = htP − 1− tr.degκ(P )κ(Q)− tr.degκ(Q)κ(v)

≥ htQ− 1− tr.degκ(Q)κ(v).

Equality holds above if R ⊆ S satisfies the dimension formula. Suppose that
V is divisorial over R. By the definition, htP −1−tr.degκ(P )κ(v) = 0, and by
Theorem 9.3.2, V is essentially of finite type over R and hence over S. Thus
0 ≥ htQ − 1− tr.degκ(Q)κ(v) ≥ 0, so that V is divisorial over S. If equality
holds in the display above, then the implication also goes the other way.

Here is another relation of D(R) and divisorial valuations on an extension
of R:

Lemma 9.3.4 Let R be a Noetherian locally analytically unramified univer-
sally catenary integral domain with field of fractions K. Let t be a variable
over K. Let V be a discrete valuation domain of rank one between R[t]t (in-
verting t) and K(t). If V ∈ D(R[t]t) then either V ∩K = K or V ∩K ∈ D(R).

Proof: We may assume that V ∩K 6= K. By Proposition 6.3.7, V ∩K is a
valuation domain containing R with field of fractions K, it is Noetherian and
thus a discrete valuation domain of rank one. Let n be the maximal ideal of
V ∩K. By Exercise 9.5 and Theorem 9.3.2, V is essentially of finite type over
R[t] and thus also essentially of finite type over R, and therefore it is essentially
of finite type over V ∩K. By the Dimension Inequality tr.degκ(n)κ(V ) ≤ 1.
But as t is a unit in V , tr.degκ(n)κ(V ) ≥ 1, so that tr.degκ(n)κ(V ) = 1.

Let Q = mV ∩ R[t]t and P = mV ∩ R. By the additivity of transcendence
degrees and by the Dimension Formula (Theorem B.3.2),

htP − 1− tr.degκ(P )κ(n) = htP − 1− tr.degκ(P )κ(V ) + tr.degκ(n)κ(V )

= htP − 1− tr.degκ(P )κ(Q)− tr.degκ(Q)κ(V ) + 1
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= htQ− tr.degRR[t]t − tr.degκ(Q)κ(V )

= htQ− 1− tr.degκ(Q)κ(V ),

which is zero as V ∈ D(R[t]t). Thus V ∩K ∈ D(R).

Proposition 9.3.5 Let (R,m) be a Noetherian local domain whose m-adic

completion R̂ is an integral domain (R is analytically irreducible). Let K be

the field of fractions of R and L the field of fractions of R̂. There is a one-to-
one correspondence between elements w ∈ D(R̂) with center on mR̂ and ele-
ments of v ∈ D(R) with center on m, given by restriction of the L-valuations
to K. This correspondence preserves value groups and residue fields.

Proof: By Proposition 6.5.2, real-valued L-valuations with center on m con-
tract to K-valuations with center on m that preserve value groups and residue
fields. Thus

tr.degκ(m)κ(v) = tr.deg
κ(mR̂)

κ(w),

and ht(mR̂) − 1 = ht(m) − 1. Thus W ∈ D(R̂) if and only if V ∈ D(R). It
remains to prove that for any V ∈ D(R) there exists W ∈ D(R) such that
W ∩K = V , but this follows from Proposition 6.5.4.

9.4. Exercises

9.1 Let R be a local analytically unramified Noetherian domain. Prove
that the integral closure of R is also a locally analytically unramified
Noetherian domain.

9.2 Let R be an integrally closed domain that is locally analytically ir-
reducible. Let L be a finitely separable field extension of the field of
fractions of R and let S be a finitely generated R-algebra contained
in L. Prove that the integral closure of S is module-finite over S.

9.3 (Rees [235]) Let (R,m) be a Noetherian local ring. Prove that R is
analytically unramified if and only if for any ideal I in R there exists
a constant k ∈ N such that for all non-zero x ∈ R,

0 ≤ vI(x)− ordI(x) = lim
n→∞

ordI(x
n)

n
− ordI(x) ≤ k.

(Cf. Theorem 13.4.8, where k can be taken to be independent of I.)
9.4 Let (R,m) be an analytically unramified Noetherian local domain.

Prove that for any x1, . . . , xn in the field of fractions of R and for all
P ∈ SpecR[x1, . . . , xn], (R[x1, . . . , xn])P is analytically unramified.

9.5 Let (R,m) be an analytically unramified Noetherian local ring, and
X a variable over R. Prove that R[X ] is locally analytically unram-
ified, i.e., that for arbitrary Q ∈ Spec(R[X ]), R[X ]Q is analytically
unramified.

9.6 A ring R is said to be pseudo-geometric if for every prime ideal P
in R, the integral closure of R/P in any finite field extension of κ(P )
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is module-finite over R/P . Pseudo-geometric is Nagata’s terminol-
ogy, Matsumura’s terminology is Nagata, and EGA’s is universally
Japanese.
(i) Prove that a pseudo-geometric Noetherian domain is locally an-

alytically unramified.
(ii) Prove that every finitely generated algebra over a field or Z is

pseudo-geometric.
(iii) Prove that if R is pseudo-geometric, then every finitely gener-

ated R-algebra is pseudo-geometric.
9.7 Let R be a finitely generated algebra over a complete local ring A.

Prove that R is pseudo-geometric.
9.8 (Abhyankar [6, Proposition 8]) Let d be a positive integer and (R0,m0)

a d-dimensional regular local ring with field of fractions K. Let V be
a Noetherian K-valuation ring containing R and centered on m. Let
v be the corresponding valuation. For every integer n ≥ 0, we build
(Rn+1,mn+1) if dimRn > 1 as follows: let xn ∈ mn be such that
xnV = mnV , Sn+1 = Rn[mn/xn], and Rn+1 the localization of Sn+1

at mV ∩ Sn+1.
(i) Prove that Rn+1 is a regular local ring with field of fractions K

such that the center of V on Rn+1 is mn+1.
(ii) Let x ∈ K such that v(x) ≥ 0. For any n, write x = an/bn

for some an, bn ∈ Rn. Prove that if v(an) > 0 and v(bn) > 0,
then we may choose an+1 and bn+1 in Rn+1 such that v(an+1) <
v(an) and v(bn+1) < v(bn).

(iii) Prove that ∪nRn = V .
9.9 With the set-up as in Exercise 9.8, assume in addition that v is a

divisorial valuation with respect to R.
(i) Prove that v is a divisorial valuation with respect to each Rn.
(ii) Prove that for all sufficiently large n ≥ 0, Rn/mn ⊆ Rn+1/mn+1

is an algebraic extension.
(iii) Let N be the largest integer such that RN/mN ⊆ RN+1/mN+1

is transcendental. Prove that ∪nRn = RN+1 = V .
(iv) Prove that V/m is purely transcendental over RN/mN .

9.10 Let R be a Noetherian domain and letK be its field of fractions. Let v
be a K-valuation that is non-negative on R. Let P be its center in R.
Assume that tr.degκ(P )κ(v) ≥ htP − 1. Prove that v is a divisorial
valuation with respect to R.

9.11 (Chevalley’s Theorem) Let R be a complete semi-local ring, m the in-
tersection of the maximal ideals of R and {In} a descending sequence
of ideals such that ∩nIn = (0). Prove that there exists a function
f : N → N that tends to infinity such that In ⊆ m

f(n).
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Rees valuations

The valuative criterion for integral closure, Theorem 6.8.3, shows that the
integral closure of an arbitrary ideal I in a ring R is the intersection of con-
tractions of extensions of I to possibly infinitely many valuation rings. Thus
whenever R/I satisfies the descending chain condition, the integral closure of
I is the intersection of contractions of extensions of I to finitely many val-
uation rings. We prove in this chapter more generally that whenever R is
Noetherian, for an arbitrary ideal I there exist finitely many valuation rings
that determine not just the integral closure of I but also the integral closures
of all the powers of I.

10.1. Uniqueness of Rees valuations

Definition 10.1.1 Let R be a ring and I an ideal in R. Suppose that there
exist finitely many discrete valuation rings V1, . . . , Vr of rank one satisfying
the following properties:
(1) For each i = 1, . . . , r, there exists a minimal prime ideal P of R such that

R/P ⊆ Vi ⊆ κ(P ). Let ϕi : R→ Vi be the natural ring homomorphism.
(2) For all n ∈ N, In = ∩ri=1ϕ

−1
i (ϕi(I

n)Vi).
(3) The set {V1, . . . , Vr} satisfying (2) is minimal possible.
Then V1, . . . , Vr are called the Rees valuation rings of I, and the cor-
responding valuations v1, . . . , vr are called the Rees valuations of I. If
v1, . . . , vr are Rees valuations of I as in the definition above, then the set
{v1, . . . , vr} is denoted as RV (I). We also sometimes by abuse of notation
write RV (I) = {V1, . . . , Vr} to be the set of valuation rings themselves. It
should be clear from the context which set we mean.

Note that if I is the zero ideal in an integral domain, any valuation ring V
between R and its field of fractions is by definition a Rees valuation ring of
I. Thus in this case the set of Rees valuations is not unique. But this is an
exceptional case. We will prove below that the set of Rees valuations RV (I)
of I is unique in non-exceptional cases.

Example 10.1.2 The simplest and in some ways the only example of Rees
valuations arises from the case in which R is an integrally closed Noetherian
domain, and I = (x) is a principal ideal. We claim that the rings {RP | P ∈
Min(R/xR)} are Rees valuations rings of (x). To see this, we need to prove
first that (xn) = (xn) =

⋂
P∈Min(x)(x

nRP ∩ R). The first equality holds
since principal ideals in integrally closed domains are integrally closed by
Proposition 1.5.2. Since R is integrally closed, every associated prime of (xn)
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is minimal (Proposition 4.1.1), and then the desired formula follows at once
from the primary decomposition of the ideal (xn). By the uniqueness theorem
of primary decomposition, no RP can be deleted in the formula

(xn) = (xn) =
⋂

P∈Min(x)

(xnRP ∩R).

Discussion 10.1.3 As the example above indicates, it is helpful to think of
what the existence of a set of Rees valuations means for the primary decom-
positions of the ideals In. Suppose in general that R ⊆ S are Noetherian rings
and that Q is a P -primary ideal in S, where P is a prime in S. Set q = Q∩R
and p = P ∩R. Then p is a prime ideal in R, and q is p-primary. This follows
immediately from the definition of a primary ideal. Further assume that R
is a domain, and that S = V is a Noetherian valuation domain. Let I be
a non-zero ideal in R. Automatically, IV is mV -primary, and hence IV ∩ R
is p-primary in R, where p is the center of the valuation ring V on R, i.e.,
p = mV ∩R.

Suppose that {V1, . . . , Vr} are the Rees valuations for I, where R is a domain
and I is a non-zero ideal of R. Condition (2) in the definition says that

In =

r⋂

i=1

InVi ∩R.

Since InVi is primary in Vi, then InVi ∩ R is primary in R, so that In =
∩ri=1(I

nVi ∩ R) is a primary decomposition of In. In particular, the as-
sociated primes of In are among the centers of the Rees valuations, P1 =
mV1

∩R, . . . , Pr = mVr
∩R.

Condition (3) means in particular that every one of P1, . . . , Pr is associated
to In for some n. To see this, let I be an ideal with a primary decomposition
I = q1 ∩ · · · ∩ qr, and suppose that q1 cannot be removed. Let p1 =

√
q1. We

prove that p1 is associated to I. If I : (q2∩· · ·∩qr) is not contained in p1, then
choose an element s ∈ I : (q2 ∩ · · · ∩ qr) with s /∈ p1. Since s(q2 ∩ · · · ∩ qr) ⊆
I ⊆ q1 and s /∈ p1 it would follow that q2 ∩ · · · ∩ qr ⊆ q1, contradicting
the assumption that q1 cannot be removed. Hence I : (q2 ∩ · · · ∩ qr) ⊆ p1.
This means that after localizing at p1, (q1)p1 is still needed in the primary
decomposition of Ip1 given by localizing the given primary decomposition
at p1. Hence we may assume that p1 is the unique maximal ideal of R. If
p1 is not associated to I, we can choose an element z ∈ q1 that is not a
zerodivisor on R/I. Thus z(q2 ∩ · · · ∩ qr) ⊆ q1 ∩ · · · ∩ qr = I, which forces
I = q2 ∩ · · · ∩ qr, a contradiction.

We conclude that the centers of the Rees valuations are exactly the as-
sociated primes of In as n varies. In particular, for any ideal I in a Noe-
therian ring R, ∪nAss(R/In) is finite. We record this important fact in
Corollary 10.2.4, after proving the existence of Rees valuations.

Though the centers of the Rees valuations will be the associated primes of
the integral closures of large powers of an ideal, the correspondence is not
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one-to-one, i.e., it is possible that Pi = Pj for i 6= j. For example, if (R,m) is
local and I is m-primary then m is the center of every Rees valuation of I.

A valuation v corresponding to a valuation ring V as in Definition 10.1.1
is only defined on the field of fractions of R/P for some minimal prime ideal
P in R. With abuse of notation (as in Chapter 6 on valuations), it will be
convenient in what follows to think of v to be also defined on all of R as
follows:

v(r) =

{
∞ if r ∈ P ,
v((r + P )/P ) otherwise.

We adopt the following natural order on R ∪ {∞}:
∞/∞ = ∞,∞+∞ = ∞, u/∞ = 0, u+∞ = ∞.

Remark 10.1.4 With the convention above, it is important to observe
that (2) of Definition 10.1.1 is equivalent to saying that r ∈ In if and only if
v(r) ≥ nv(I) for every Rees valuation v. This equivalent condition is often
easier to work with and think about.

Lemma 10.1.5 Let I be an ideal contained in no minimal prime ideal of R.
Let w : R → Q≥0 ∪ {∞} be a function such that for all n ≥ 1, In = {x ∈
R |w(x) ≥ n}, and such that w(xn) = nw(x) for all x ∈ R and n ≥ 1. Let
RV (I) = {v1, . . . , vr} be a set of Rees valuations. Then

w(x) = min{vi(x)/vi(I) | i = 1, . . . , r}.

Proof: We define w′ : R→ Q≥0 ∪ {∞} to be

w′(x) = min{vi(x)/vi(I) | i = 1, . . . , r}.
With this notation, for any n ≥ 1, In = {x ∈ R |w′(x) ≥ n}. Furthermore,
for all x ∈ R and all n ≥ 1, w′(xn) = nw′(x).

If w 6= w′, then there exists a non-zero element x in R, such that w′(x) 6=
w(x). Assume that w′(x) < w(x). For some large integer n, w′(xn) ≤
w(xn) − 1. In case w(x) = ∞, set k to be an arbitrarily large integer, and
otherwise set k = ⌊w(xn)⌋, the largest integer less than or equal to w(xn). By

assumption xn ∈ Ik, and xn is not in Ik by the definition of w′, which is a
contradiction. Thus necessarily w′(x) ≥ w(x). A symmetric argument proves
that w(x) = w′(x).

Thus by Corollary 6.9.1, assuming the existence of Rees valuations,

vI(x) = lim
m→∞

ordI(x
m)

m
= min

{v(x)
v(I)

∣∣ v ∈ RV (I)
}
.

We next prove that for an ideal I not contained in any minimal prime
ideal of R, a minimal set of valuations determining the function w is uniquely
determined from w. This then proves that the set of Rees valuations of I,
when it exists, is unique.
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Theorem 10.1.6 (Uniqueness of Rees valuations ) Let R be a ring and
let I be an ideal contained in no minimal prime ideal of R. Let v1, . . . , vr
be discrete valuations of rank 1 that are non-negative on R and each infinite
exactly on one minimal prime ideal of R. Let w : R→ Q≥0 ∪ {∞} be defined
by

w(x) = min{vi(x)/vi(I) | i = 1, . . . , r}.
If no vi can be omitted in this expression then the vi are determined by the
function w up to equivalence of valuations.

Therefore the set of Rees valuations of I, when it exists, is uniquely deter-
mined, up to equivalence of valuations.

Proof: The last statement follows from the first statement by using the pre-
vious lemma. We therefore only need to prove the first statement.

The conclusion is clear if r = 1. So suppose that r > 1.
We call a subset S of R to be w-consistent if for any m ∈ N and any

x1, . . . , xm ∈ S, w(x1 · · ·xm) =
∑m
i=1 w(xi). Note that for any element x

of R, the set {xm |m ∈ Z} is w-consistent. Thus the set of all non-empty w-
consistent sets is not empty. Under the natural partial ordering by inclusion,
each chain of w-consistent sets has its union as an upper bound. Thus by
Zorn’s lemma there exist maximal w-consistent sets.

For each i = 1, . . . , r, define Si = {x ∈ R |w(x) = vi(x)
vi(I)

}. This set is

w-consistent and non-empty as it contains 1. We claim that the maximal w-
consistent sets are exactly the sets Si. Since every Si is contained in some max-
imal w-consistent set, it is enough to prove that every maximal w-consistent
set S is equal to some Si. If not, then for some maximal w-consistent set S
and for each i = 1, . . . , r, there exists yi ∈ S \ Si. As yi 6∈ Si, w(yi) <∞. Set
y = y1 · · · yr. As S is w-consistent, for each j = 1, . . . , r,

w(y) =
r∑

i=1

w(yi) <
r∑

i=1

vj(yi)

vj(I)
=
vj(y)

vj(I)
.

Hence w(y) < min{ vj(y)vj(I)
| j = 1, . . . , r}, which contradicts the definition of w.

This proves that every maximal w-consistent set S is equal to some Si, and
hence the Si are exactly the maximal w-consistent sets. Since the vi are
irredundant, the Si are all distinct. Notice that the the number of the vi is
uniquely determined by w as the number of maximal w-consistent sets.

We need to recover the valuation vi from the sets Si. Let c be an element
of R such that vi(c) < ∞. By the irredundancy of the vi there exists xi ∈
Si \ ∪j 6=iSj . By the choice of xi, for all j 6= i,

vj(xi)
vj(I)

> vi(xi)
vi(I)

, so that for all

sufficiently large positive integers d, whenever j 6= i,
(
vj(xi)

vj(I)
− vi(xi)

vi(I)

)
d >

vi(c)

vi(I)
− vj(c)

vj(I)
.

This means that
vj(cx

d
i )

vj(I)
>

vi(cx
d
i )

vi(I)
. Thus w(cxdi ) =

vi(cx
d
i )

vi(I)
, so that cxdi ∈ Si.



10.2. A construction of Rees valuations 199

Now let K be the set of all fractions a
b , with a, b elements of R, and b not

in any minimal prime ideal of R. For each i = 1, . . . , r, define a function
ui : K → Q ∪ {∞} as follows. Let a

b ∈ K, with a, b ∈ R, b not in any
minimal prime ideal of R. By the previous paragraph, for all sufficiently
large integers d, xdi b ∈ Si. If for some large positive integer d, xdi a ∈ Si and
xdi b ∈ Si, define ui(a/b) = w(xdi a) − w(xdi b). Clearly ui does not depend
on d. If instead for all positive integers d, xdi a 6∈ Si, then define ui(a/b) = ∞.
Note that xdi a 6∈ Si for all d means that w(a) < ∞ = vi(a). Now we show
that ui does not depend on a and b. So suppose that a/b = a′/b′ in K∗,
i.e., that there exists c ∈ R and not in any minimal prime ideal in R such
that c(ab′ − a′b) = 0. If we can show that ui(a/b) = ui((ca

′)/(cb′)), then
similarly ui(a

′/b′) = ui((ca
′)/(cb′)). Thus without loss of generality we may

assume that c = 1. First suppose that for all d, xdi a 6∈ Si. Then vi(a) = ∞,
so vi(a

′) = ∞, and ui(a
′/b′) = ∞ = ui(a/b). Equality also holds if for all e,

xeia
′ 6∈ Si. Thus we may suppose that for all sufficiently large d and e, we

have xdi a, x
e
ia

′ ∈ Si. By the previous paragraph, for all sufficiently large e, d,
we have xdi b, x

e
i b

′ ∈ Si. Then

w(xeia
′) + w(xdi b) =

vi(x
e
ia

′)

vi(I)
+
vi(x

d
i b)

vi(I)
=
vi(x

d+e
i a′b)

vi(I)

=
vi(x

d+e
i ab′)

vi(I)
=
vi(x

d
i a)

vi(I)
+
vi(x

e
i b

′)

vi(I)
= w(xdi a) + w(xei b

′),

so that ui(a
′/b′) = ui(a/b), and ui depends only on w. Furthermore, it is

straightforward to verify that ui satisfies the two properties of valuations:

ui(αβ) = ui(α) + ui(β), ui(α+ β) ≥ min{ui(α), ui(β)}.
Set Pi to be the prime ideal {r ∈ R | ui(r) = ∞} in R. Note that ui is

naturally a κ(Pi)-valuation. Set

Vi = {s ∈ κ(Pi)
∗ | s is the image of some r ∈ K such thatui(r) ≥ 0}.

As ui depends only on w, the same also holds for Vi. As ui and
vi
vi(I)

agree

on Si and thus on all of κ(Pi)
∗, Vi is the unique valuation ring of vi. Hence

ui is equivalent to vi, and since ui only depends upon w, this completes the
proof of the theorem.

10.2. A construction of Rees valuations

In this section we construct Rees valuations. In the case of an ideal I in a
Noetherian domain our construction gives that all the localizations of all the
normalizations of all the affine pieces of the blowup of I at height one prime
ideals containing I are exactly the Rees valuations.

The following lemma will help prove irredundancy of the construction. It
also highlights the critical point in understanding which affine pieces of the
blowup of I contribute to the set of Rees valuations.
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Lemma 10.2.1 Let R be an integral domain, I a non-zero ideal in R, a, b
non-zero elements of I, and V a discrete valuation ring of rank one that is
the localization of the integral closure of R[ Ib ] at a prime ideal containing b.
Assume that aV = IV . Then V is the localization of the integral closure of
R[ Ia ] at a height one prime ideal containing a.

Proof: Note that bR[ Ib ] = IR[ Ib ], so that bV = IV = aV . Hence a
b is a unit

in V , and V is the localization of the integral closure of R[ Ib ] ab = R[ Ia ] ba
at

a height one prime, so V is the localization of the integral closure of R[ Ia ].
Necessarily the localization is at a height one prime ideal of the integral closure
of R[ Ia ] containing a.

Theorem 10.2.2 (Existence of Rees valuations, Rees [232])
(1) Every ideal in a Noetherian ring has a set of Rees valuations.
(2) RV (I) ⊆ ∪RV (I(R/P )), as P varies over the minimal prime ideals of R.
(3) In case R is an integral domain, let I = (a1, . . . , ad), and for each i =

1, . . . , d, set Si = R[ Iai ] and Si to be the integral closure of Si. Let T be

the set of all discrete valuation domains (Si)p, where p varies over the
prime ideals in Si minimal over aiSi, and i varies from 1 to d. Then T
is the set of Rees valuation rings of I. In particular, for all n,

In =
d⋂

i=1

InSi ∩R =
d⋂

i=1

ani Si ∩R =
d⋂

i=1

(
⋂

p

(ani (Si)p) ∩R).

Proof: Proposition 1.1.5 proves (1) and (2) provided that Rees valuations
exist for I(R/P ) as P varies over the minimal primes of R. Hence both
(1) and (2) reduce to proving Rees valuations exist for ideals in Noetherian
domains.

Thus we may assume that R is an integral domain. As any discrete valua-
tion ring of rank one between R and its field of fractions will do for the zero
ideal, we may assume that I is a non-zero ideal.

Clearly for all i = 1, . . . , d, ISi = aiSi. Note that by Proposition 5.5.8, Si
equals the homogeneous part of degree zero of the ring R[It]ait, where t is a
variable of degree 1 over the zero-degree ring R, and that the integral closure
Si of Si equals the homogeneous part of degree zero of the ring R[It]ait. In

particular, Si = ∪m≥0
ImR
am
i

. We claim that In = ∩iani Si ∩ R. Certainly In

is contained in the intersection. Let r ∈ ∩iani Si ∩R. There exists an integer

m ≥ n such that for each i, r =
bia

n
i

am
i

for some bi ∈ ImR. Thus for each i,

ram−n
i ∈ ImR, whence r ∈ InR by Corollary 6.8.7. Hence r ∈ InR ∩R = In

(by Proposition 1.6.1). Thus for all n, In = ∩iani Si ∩R.
As Si is Noetherian, by the Mori–Nagata Theorem 4.10.5, Si is Krull do-

main, and so every prime ideals p in Si minimal over ai has height one and
(Si)p is an integrally closed domain. Thus by Proposition 6.3.4, (Si)p is a
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discrete valuation ring of rank one. Let Ti be the set of such valuation rings.
This is a finite set (as Si is a Krull domain). Hence by Proposition 4.10.3, for
all n ∈ N,

InSi = ani Si =
⋂

V ∈Ti

ani V ∩ Si

yields a minimal primary decomposition of ani Si. Thus I
n =

⋂
i

⋂
V ∈Ti

InV ∩
R, and the set T = ∪iTi satisfies the first two properties of Rees valuations.

It remains to prove the third condition, namely that none of the valuation
rings in T is redundant. For this let V0 be one of the valuation rings in T .
Then V0 ∈ Ti for some i between 1 and d. By relabeling, say i = 1. By the
primary decomposition of a1S1, there exists r in ∩V ∈T1\{V0}a1V ∩ S1 such

that rV0 = V0. Write r = s/am1 for some integer m and some s ∈ ImR. If V
is a valuation ring containing S1, then by Lemma 10.2.1, V ∈ T1. If V 6= V0,
then by the choice of r, sV = ram1 V ∈ am+1

1 V . If instead V ∈ T does not
contain S1, then a1V is properly contained in IV , so for all suficiently large n,
an1V ⊆ In+1V . As T is a finite set, it follows that for all V ∈ T \ {V0}, and
all sufficiently large n,

snV0 = rnamn1 V0 = ImnV0 6⊆ Imn+1V0,

snV = rnamn1 V ⊆ Imn+1V, for all V ∈ T \ {V0}.

Thus sn ∈ R lies in
⋂
V ∈T\{V0} I

mn+1V ∩R but not in
⋂
V ∈T I

mn+1V ∩ R.
This proves that V0 is not redundant in the set T as a Rees valuation ring

of IR. It remains to prove that V0 is not redundant in the set T as a Rees
valuation ring of I, which is done in the following proposition:

Proposition 10.2.3 Let R be a Noetherian integral domain with field of
fractions K. Let I be a non-zero ideal. Let T be a set of Noetherian K-
valuation rings satisfying:

(i) For all n ≥ 1, InR = ∩V ∈T InV ∩R.
(ii) If T ′ ( T , there exists an integer n such that InR 6= ∩V ∈T ′InV ∩R.
Then T satisfies the same properties also in R, not just in R. Explicitly:
(1) For all n ≥ 1, In = ∩V ∈T InV ∩R.
(2) If T ′ ( T , there exists an integer n such that In 6= ∩V ∈T ′InV ∩R.
Proof: By Proposition 1.6.1, In = ∩V InV ∩R, so we only have to prove (2).

By the assumption on the irredundancy of T on R, for each V0 ∈ T there
exist n ≥ 1 and r ∈ R such that r ∈ ⋂V 6=V0

InV ∩ R and r 6∈ InV0 ∩ R.
As R[r] is a module-finite extension of R in Q(R), there exists a non-zero
element c ∈ R such that cR[r] ⊆ R. Let v0 be the integer-valued valuation
corresponding to V0. Since t = nv0(I) − v0(r) is positive, there exists m
such that v0(c) < tm. Then v0(cr

m) < mnv0(I), so that crm 6∈ ImnV0. But
crm ∈ ⋂V 6=V0

ImnV ∩R, so that Imn =
⋂r
V ∈T I

mnV ∩R is properly contained
in
⋂
V 6=V0

ImnV ∩R. Hence V0 is not redundant.
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This also finishes the proof of Theorem 10.2.2.

Corollary 10.2.4 (Ratliff [229]) For an ideal I in a Noetherian ring R,
Ass(R/I) ⊆ Ass(R/I2) ⊆ Ass(R/I3) ⊆ · · · .

Furthermore, ∪nAss(R/In) equals the set of centers of the Rees valuations
of I and is therefore a finite set.

Proof: Discussion 10.1.3 shows that ∪nAss(R/In) is exactly the set of centers
of the Rees valuations of I, so that it is a finite set. The rest follows from
Proposition 6.8.8.

It is not clear, but nonetheless is true, that ∪nAss(R/In) is also finite and
independent for large n (see Brodmann [27]).

The given construction of Rees valuations shows that the Rees valuations
of an ideal I in R correspond to certain valuations on the affine pieces of
Proj(R[It]). But the finiteness of the set guarantees that one needs to consider
only one affine piece when there are sufficiently many units in the ring:

Proposition 10.2.5 Let R be a Noetherian integral domain. Assume that R
contains an infinite field, or more generally, assume that for any integer r and
any collection of r prime ideals in R there exist r−1 units in R that are distinct
modulo each of the given prime ideals. Let I be a non-zero proper ideal in R.
Then there exists an element a ∈ I such that RV (I) is the set of all valuation
domains that are localizations of the integral closure S of S = R[ I

a
] at prime

ideals minimal over aS.
In fact, if V1, . . . , Vr are the Rees valuation rings of I and there exists a ∈ I

such that for all i, aVi = IVi, then V1, . . . , Vr are all the valuation domains
that are the localizations of S at prime ideals minimal over aS.

Proof: By Lemma 6.3.3, there exists an element a ∈ I such that for all
i = 1, . . . , r, aVi = IVi. Set S = R[ Ia ]. By the choice of a, S and its integral

closure S are both contained in each Vi.
We claim that for all n, anS ∩ R = In. Certainly In is contained in

anS ∩ R. For the other inclusion, if x ∈ anS ∩ R, then for all i = 1, . . . , r,
xVi ⊆ anVi ⊆ InVi, so by the assumption on the Rees valuations, x ∈ In.
This proves the claim.

Thus RV (I) ⊆ RV (aS). But by Theorem 10.2.2, every valuation arising as
the localization of the integral closure of S = R[ I

a
] at a prime ideal minimal

over a is a Rees valuation of I.

Observe that the element a in the proposition is a “sufficiently general”
element of I. Existence of sufficiently general elements requires sufficiently
many units to exist in the appropriate rings. But even without this assumption
on the units, one can still find all Rees valuations of I to arise as localizations
of the normalization of one ring, see Exercise 10.3. However, a priori one does
not know which are these special rings without further work. Thus to find all
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the Rees valuations of I, it may be more efficient to consider more than one
affine piece of ProjR[It].

There are cases when the one needed affine piece is known in advance: A
key point in recognizing this is that if all elements of a given set of minimal
generators of I have minimal value when evaluated at each Rees valuation,
then all the Rees valuations come from any of the affine pieces determined by
those generators. This point is illustrated by the next two propositions.

Proposition 10.2.6 Let (R,m) be a Noetherian formally equidimensional
local ring of dimension d. Assume that I is an ideal generated by elements
x1, . . . , xd that are analytically independent after going modulo each minimal
prime of R. Let V be a Rees valuation ring of I with center on m.
(1) For every i = 1, . . . , d, xiV = IV .
(2) Let P be the minimal prime ideal of R such that R/P ⊆ V . Write ( )′

to denote images in R/P . For every i = 1, . . . , d, V is the localization of

the integral closure S of S = R′[ I
′

x′
i

] at a height one prime ideal minimal

over x′iS.

Proof: To prove both (1) and (2) we may assume without loss of generality
that R is a domain and that P = 0. Henceforth we omit the ( )′ notation.
There exists an integer j ∈ {1, . . . , d} such that V is the localization of the
normalization of R[ Ixj

] at a height one prime ideal minimal over xj . By Corol-

lary 8.3.6, FI is a polynomial ring over R/m of dimension d, so that mR[It] is
a prime ideal in R[It]. By formal equidimensionality, mR[It] has height 1. We
claim that xit 6∈ mR[It] for all 1 ≤ i ≤ d. If not, then xi ∈ mI, contradicting
the fact that I must be minimally generated by x1, . . . , xd. Thus mR[It]xjt

is a prime ideal of height 1, and xi/xj = xit/xjt is a unit in R[It]mR[It]. As

in Proposition 5.5.8, the degree zero component of R[It]xjt is R[
I
xj
], so that

mR[ Ixj
] is a prime ideal of height 1 and xi

xj
is a unit in R[ Ixj

]mR[ I
xj

]. The

maximal ideal mV of V contracts to m in R, so that xi

xj
is a unit in V . In

particular, v(xi) = v(xj) = v(I), proving (1), and (2) follows by applying
Lemma 10.2.1.

Corollary 10.2.7 (Sally [258, page 438]) Let (R,m) be a Noetherian for-
mally equidimensional local domain of dimension d > 0, and I an m-primary
ideal satisfying µ(I) = d. Let I = (a1, . . . , ad). Then for every Rees valuation
ring V of I and every i = 1, . . . , d, V is the localization of the normalization
of R[ Iai ] at a height one prime ideal minimal over ai.

Proof: Observe that all Rees valuations of I have center on m. The proof is
immediate from the proposition above.

There are other cases in which we can reach the same conclusion, even when
the ring is not equidimensional:
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Proposition 10.2.8 Let R be a Noetherian ring, x1, . . . , xr a regular se-
quence in R, and I = (x1, . . . , xr). Then:
(1) for every Rees valuation v of I and every i = 1, . . . , r, v(xi) = v(I).
(2) Let V be a Rees valuation ring of I, taking infinite value on a minimal

prime P of R. Write ( )′ to denote images in R/P . For every i =

1, . . . , r, V is the localization of the integral closure S of S = R′[ I
′

x′
i

] at a

height one prime ideal minimal over x′iS.

Proof: Let n be a positive integer. We first prove that In : xi = In−1. Let
s ∈ In : xi. By Remark 1.2.3, there exists a positive integer k such that for all
l ∈ N, (sxi)

k+l ∈ I ln. Hence sk+l ∈ I ln−l−k for all positive integers l. Passing
to any valuation domain V that is an R-algebra, since k is fixed and l varies
over all positive integers, necessarily sV ⊆ In−1V . Thus by Theorem 6.8.3,
s ∈ In−1. This proves that In : xi = In−1 for all n.

Now let v be a Rees valuation of I. By definition, v(xi) ≥ v(I). Suppose
that v(xi) > v(I). As the set of Rees valuations is irredundant, there exist
an integer n and an element y 6∈ In such that for all Rees valuations w
different from v, w(y) ≥ nw(I). Necessarily v(y) < nv(I). If RV (I) = {v},
set y = 1, n = 1. Choose an integer l ≥ nv(I)−v(y)

v(xi)−v(I) . This choice gives that

v(xliy) ≥ v(I l+n), and for all w as above, w(xliy) = lw(xi) + w(y) ≥ lw(I) +

nw(I), so that by the definition of Rees valuations, xliy ∈ In+l. Thus by
the first paragraph, y ∈ In, which contradicts the choice of y. So necessarily
v(xi) = v(I). This proves (1).

Let V be a Rees valuation as in (2). We may pass to R/P and assume
that R is a domain. We still denote the image of xj in R/P by xj . Note
that these elements need not form a regular sequence. We know that V is the
localization of the normalization of some R[ Ixj

] at a height one prime ideal

containing xj . As v(xj) = v(I) = v(xi) by (1), we have that xiV = IV .
We apply Lemma 10.2.1 to conclude that V is also the localization of the
normalization of R[ I

xi
] at a height one prime ideal containing xi.

Alternative constructions of Rees valuations are outlined in Exercises 10.5
and 10.6.

10.3. Examples

One of the main examples of Rees valuations comes from the order valuation
of a regular local ring:

Example 10.3.1 Let (R,m) be a regular local ring. Then the m-adic val-
uation (the valuation ordm) is a divisorial valuation that is the only Rees
valuation of m. The residue field of the corresponding valuation ring is purely
transcendental over R/m. Explicitly, the m-adic valuation ring equals R[mx ](x)
for any x ∈ m \m2.
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In Theorem 6.7.9 it was proved that the order function is a valuation, the
residue field is purely transcendental, and that this m-adic valuation ring
equals R[mx ](x) for any x ∈ m\m2. Since xR[mx ] is prime, Proposition 10.2.6

gives that R[mx ](x) is the unique Rees valuation.
Furthermore, this is a divisorial valuation: clearly the center of v is m, and

κ(xR[mx ](x)) is generated over κ(m) by the images of xi

x , i = 2, . . . , d, where
m = (x, x2, . . . , xd) with no relations among them, so that the transcendence
degree of κ(xR[mx ](x)) over κ(m) is d− 1 = htm− 1.

Example 10.3.2 Let R be a one-dimensional Noetherian semi-local integral
domain. Then {RP |P ∈ MaxR} = ∪IRV (I) is finite, as I varies over all the
ideals of R. Namely, by Theorem 4.9.2 (the Krull–Akizuki Theorem), R is
one-dimensional Noetherian. Thus for each maximal ideal m in R, there are
only finitely many prime ideals in R minimal over mR. But every maximal
ideal in R contracts to a maximal ideal in R (by Going-Up, Theorem 2.2.4),
and by Incomparability Theorem, Theorem 2.2.3, every maximal ideal in R
is minimal over the extension to R of some maximal prime ideal in R. Thus
R has only finitely many maximal ideals. For each maximal prime ideal P
of R, RP is a discrete valuation ring of rank one. By the previous example,
RP is a Rees valuation ring of any xR, where x ∈ P ∩ R \ {0}. Hence by
Proposition 10.2.3, RP is a Rees valuation ring of xR. (It is also a Rees
valuation ring of P ∩ R, see Exercise 10.8.) If V is a Rees valuation ring
of some non-zero ideal of R, as V is integrally closed, V contains R. Set
P = mV ∩R. Then P ∈ MaxR, RP ⊆ V , and as both RP and V are discrete
valuation rings of rank one with the same field of fractions, RP = V . This
proves the example.

Example 10.3.3 Let R = k[X, Y ] be the polynomial ring in two variables X
and Y over a field k. Let I be the ideal I = (XY,X3, Y 3)R. We calculate its
Rees valuations via the original construction.

For this let S1 = R[ IX3 ], S2 = R[ I
XY ], and S3 = R[ IY 3 ]. Then

S1 = R

[
I

X3

]
= k

[
X, Y,

XY

X3
,
Y 3

X3

]
∼= k[X, Y, Z,W ]

(X2Z − Y,W −X3Z3)
,

which is isomorphic to k[X,Z], and hence integrally closed. We find all the
minimal prime ideals over X3S1: if a prime ideal P minimally contains X3,

it contains X , and hence also Y and W = Y 3

X3 . But (X, Y, Y
3

X3 ) is a prime
ideal in S1, so that it equals P . The localization (S1)P is a one-dimensional
integrally closed domain. As XY

X3 is a unit of (S1)P , Y ∈ X2(S1)P \X3(S1)P .

Also, Y 3

X3 = X3(XYX3 )
3 ∈ X3(S1)P . Thus P (S1)P = X(S1)P . Thus for the

corresponding valuation v1, v1(X) = 1, v1(Y ) = 2, and v1 is monomial (see
Proposition 10.3.4 for a general result). In particular, v1(I) = 3.

By symmetry, S3 yields one monomial valuation v2(X) = 2, v2(Y ) = 1.

It is straightforward to see that S2 = R[ I
XY ] = k[X, Y, X

3

XY ,
Y 3

XY ] is isomor-
phic to k[X, Y, Z,W ]/(ZV −XY,X2−Y Z, Y 2−XW ), which is an integrally
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closed ring by the Jacobian criterion (Theorem 4.4.9). A prime ideal in S2

minimal over XY contains either X or Y . If it contains X , it also contains Y 2

so that it contains Y . Similarly, a prime ideal minimal over Y also contains

X . Any prime ideal containing X and Y also contains XY = X3

XY
· Y 3

XY
, so

that we get two prime ideals minimal over XY S2:

P1 =

(
X, Y,

X3

XY

)
S2, P2 =

(
X, Y,

Y 3

XY

)
S2.

It can be easily checked that these two prime ideals give the valuations v1 and
v2 that were also obtained on S1 and S3. The geometric picture that goes
with this example is given below:

0 1 2 3

0

1

2

3

The three lattice points on the outside corners of the gray shaded area
correspond to the generators X3, XY, Y 3. All the integral lattice points to
the right and up of the three points correspond to monomials in I. The two
bold lines connecting the three generator points bound the Newton polytope.
The equations of the two lines are

x+ 2y = 3 and 2x+ y = 3.

From the equation for the first line we can read off the valuation v1(X
aY b) =

a+ 2b, v1(I) = 3, and from the second one the valuation v2(X
aY b) = 2a+ b,

v2(I) = 3. Furthermore, the piece R[ I
X3 ] gives only the first valuation as only

the first line passes through the point corresponding to X3, and the piece
R[ I

XY
] gives both valuations as both lines pass through the point correspond-

ing to XY .
Notice in this example that the Rees valuations are monomial, and can

be read off from the Newton polyhedron of I. We prove that this is true
in general for monomial ideals. First, we prove that all Rees valuations are
monomial.

Proposition 10.3.4 Let I be a monomial ideal in a polynomial ring. Then
the Rees valuations of I are monomial.
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Proof: By Theorem 10.1.6 it suffices to prove that we can construct a set of
Rees valuations that are all monomial. Let k[X1, . . . , Xd] be the polynomial
ring.

Let a1, . . . , am be the monomials generating I. For each i = 1, . . . , m, R[ I
ai
]

is a Zd-graded algebra under the grading degXi = (0, . . . , 0, 1, 0, . . . , 0), with 1
in the ith entry and 0 everywhere else. By Theorem 2.3.2, the integral closure
S of R[ Iai ] in k[X±1

1 , . . . , X±1
d ] is a Zd-graded algebra. As k[X±1

1 , . . . , X±1
d ]

is integrally closed, S is the integral closure of R[ Iai ], and is Zd-graded. As
ai is homogeneous, all the minimal prime ideals over aiS are homogeneous.
Let P be such a minimal prime ideal. By Theorem 10.2.2, SP is a Rees
valuation ring of I. By Lemma 6.3.2 there exist integers e1, . . . , ed ∈ Z such
that r = Xe1

1 · · ·Xed
d is in S and such that PSP = rSP . Let e = (e1, . . . , ed).

It suffices to prove that the valuation v corresponding to the valuation ring
SP is monomial. For let f =

∑
ν aνX

ν be a polynomial, with aν ∈ k. For each
ν, let nν = v(Xν) and set n = min{nν | aν 6= 0}. We need to show that v(f) =
n. By subtracting homogeneous summands of f , without loss of generality
we may assume that for all ν with aν 6= 0, Xν is not in the homogeneous
ideal P (n+1) (symbolic power). We may write f = rn

∑
ν aνX

ν−ne, where
Xν−ne are elements of SP . Suppose that

∑
ν aνX

ν−ne ∈ PSP . Then f ∈
P (n+1), and there exists s ∈ S \ P such that sf ∈ Pn+1. Without loss of
generality no summand of s is in P . Both s and f are finite linear combinations
of monomials with integer exponents. Under the lexicographic ordering of
monomials, write s = s0 + s′, f = f0 + f ′, where s0 (respectively f0) is a
non-zero homogeneous summand of s (respectively f) of highest degree in the
ordering. Then sf = s0f0 + lower terms, so that necessarily s0f0 ∈ Pn+1.
As s0 6∈ P , necessarily f0 ∈ P (n+1), which contradicts the assumption. So
necessarily

∑
ν aνX

ν−ne 6∈ PSP , so that v(f) = v(rn) = n. This proves that
v is a monomial valuation.

We now prove that the Rees valuations of an arbitrary monomial ideal I
can be read off from the Newton polyhedron of I. Namely, by Carathéodory’s
Theorem (Theorem A.2.1), the convex hull of the Newton polyhedron of a
monomial ideal in k[X1, . . . , Xd] is defined by finitely many non-redundant
hyperplanes, and they are of the form a1X1 + · · ·+ adXd = a for some non-
negative integers ai, a. Furthermore, for an arbitrary positive integer n, the
hyperplanes bounding the Newton polyhedron of In are simply the (trans-
lated) hyperplanes of the form a1X1 + · · · + adXd = na, where a1X1 +
· · · + adXd = a is a hyperplane bounding the Newton polyhedron of I.
(The vector (m1, . . . , md) ∈ Qd is in the Newton polyhedron of In if and
only if (m1/n, . . . , md/n) is in the Newton polyhedron of I.) From each
such hyperplane we can read off the monomial valuation v(Xb1

1 · · ·Xbd
d ) =

a1b1 + · · ·+ adbd, v(I) = a. A monomial Xb1
1 · · ·Xbd

d is in the integral closure
of In if and only if (b1, . . . , bd) is in the Newton polyhedron of In, and that
holds if and only if (b1, . . . , bd) lies on the correct side of every boundary hy-



208 10. Rees valuations

perplane of the Newton polyhedron of In. In other words, Xb1
1 · · ·Xbd

d is in
the integral closure of In if and only if for all valuations v obtained from the
hyperplanes as above, v(Xb1

1 · · ·Xbd
d ) = a1b1 + · · ·+ adbd ≥ na = v(In). Thus

the corresponding monomial valuations v(Xb1
1 · · ·Xbd

d ) = a1b1 + · · · + adbd,
v(I) = a, determine the integral closures of all the powers of I. Thus by the
non-redundancies among the hyperplanes, we just proved:

Theorem 10.3.5 Let I be a monomial ideal in a polynomial ring R over a
field. Then the set of Rees valuations of I is the set of monomial valuations
obtained from the bounding hyperplanes of the Newton polyhedron of I.

In general, the set of Rees valuations of I may be strictly larger than a set
of valuations determining the integral closure of I. For example, the integrally
closed monomial ideal I = (X3, XY, Y 2) has two Rees valuations, namely the
monomial valuations v1(X

aY b) = a+ b and v2(X
aY b) = a+2b, which can be

read off from the Newton polytope. The integral closure of I is determined
by v2 alone: I = {r ∈ k[X, Y ] | v2(r) ≥ v2(I)} = I, but the integral closure of
I2 needs both valuations.

0 1 2 3

0

1

2

3

We now present a false attempt at finding the Rees valuations of I. Note
that I = (X3, Y ) ∩ (X, Y 2). The Newton polytopes of (X3, Y ) and (X, Y 2)
are bounded by x + 3y = 3 and 2x + y = 2, respectively (see figure above).
Do the two corresponding monomial valuations v′(XaY b) = a + 3b and
v′′(XaY b) = 2a+ b constitute the set of Rees valuations of I? The answer is
no. Here is the reason. Note that the Newton polytope of I is touching or
above the two lines x+3y = 3 and 2x+y = 2. The gap between the area below
the convex hull of the Newton polytope and the latter two lines contains the
point (1, 2/3), which translates to the “monomial” XY 2/3. The third power
of this element, X3Y 2, is a legitimate monomial, and it is not in I3. However,
v′(X3Y 2) = 9 ≥ 3 · 3 = 3 · v′(I), and v′′(X3Y 2) = 8 ≥ 3 · 2 = 3 · v′′(I). Thus
{v′, v′′} could not be the set of Rees valuations of I.

This example in particular shows that the Rees valuations of monomial ide-
als correspond to the non-coordinate boundary hyperplanes (so-called faces)
and not to arbitrary hyperplanes bounding from below the integer lattice part
of the polytope.
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10.4. Properties of Rees valuations

Proposition 10.4.1 Let R be a Noetherian ring, I an ideal of R, and W is
any multiplicatively closed set in R. Then RV (W−1I) = {V ∈ RV (I) |mV ∩
W = ∅} (where mV is the unique maximal ideal of V ).

Proof: By definition, for all positive integers n, In = ∩V ∈RV(I)I
nV ∩ R, so

that W−1In = W−1In = ∩V ∈RV(I),mV ∩W=∅I
nV ∩ R. By irredundancy of

elements of RV (I), the set {V ∈ RV (I) |mV ∩ W = ∅} is irredundant in
determining the integral closures of W−1In.

Centers of Rees valuations can be determined without explicit construction:

Theorem 10.4.2 Let R be a Noetherian ring, I an ideal in R and P a prime
ideal in R. If ℓ(IRP ) = dim(RP ), then P is the center of a Rees valuation
of I. Conversely, if R is locally formally equidimensional and P is the center
of a Rees valuation of I, then ℓ(IRP ) = dim(RP ).

Proof: By Proposition 10.4.1, without loss of generality we may assume that
P is the unique maximal ideal of R. If P is not the center of any Rees
valuation of I, then by Discussion 10.1.3 P is not associated to any In. But
by Proposition 5.4.7, ℓ(I) = dim(R) implies that P is associated to In for all
large n, which forces P to be the center of some Rees valuation of I.

Conversely, suppose that P is the center of a Rees valuation of I. We may
again assume that P is the unique maximal ideal of R. By Discussion 10.1.3
we know that P is associated to In for all large n. We can apply Theorem 5.4.6
to conclude that ℓ(IRP ) = dim(RP ).

Every Rees valuation on a restricted class of rings is a divisorial valuation:

Proposition 10.4.3 Let R be a Noetherian ring, I an ideal, and V a Rees
valuation ring of I. Set P = mV ∩ R. There exist a minimal prime ideal
q in the P -adic completion R̂ of RP and a valuation ring W in the field of
fractions of R̂/q such that W is a Rees valuation of IR̂, V is a valuation ring
on the field of fractions of R/(q∩R), and such that V is the contraction of W .
For any such q,

tr.degκ(P )κ(mV ) = dim(R̂/q)− 1.

In particular, if RP is formally equidimensional, then tr.degκ(P )κ(mV ) =
htP − 1, implying that V is a divisorial valuation ring (see Definition 9.3.1).

Proof: Without loss of generality R is local with maximal ideal P , and R is
an integral domain with field of fractions K. Let R̂ be the P -adic completion
of R. Let {w1, . . . , wr} be a set of Rees valuations of IR̂. Let vi = wi|K .
By Proposition 6.3.7, vi is a Noetherian K valuation. Proposition 1.6.2 says

that for all n, InR̂ ∩ R = In, so that In = {r ∈ R |wi(r) ≥ nwi(I)} =
{r ∈ R | vi(r) ≥ nwi(I)}. By uniqueness of Rees valuations, V must equal
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the valuation ring corresponding to some vi. Let W be the valuation ring
corresponding to wi. Then V = W ∩ K. Note that mW ∩ R = P and
mW ∩ R̂ = PR̂. Let q be the minimal prime ideal in R̂ such that W is a
valuation ring on κ(q). As R̂/q is analytically unramified, by the construc-
tion of Rees algebras and by Theorem 9.2.2, W is a localization of a finitely
generated R̂-algebra. As R̂/q is universally catenary, the Dimension Formula
(Theorem B.5.1) applies:

tr.deg
κ(PR̂)

κ(mW ) = dim(R̂/q) + tr.deg
R̂/q

W − htmW .

As W is Noetherian, htmW = 1, and by the definition of Rees valuations,
tr.deg

R̂/q
W = 0. By Proposition 6.5.2, κ(mV ) = κ(mW ), so that

tr.degκ(P )κ(mV ) = dim(R̂/q)− 1 = dim(R̂/q)− 1.

The rest follows trivially.

Proposition 10.4.4 Let R be a Noetherian local integral domain. Let V be
a divisorial valuation ring between R and its field of fractions. There exists a
non-zero ideal I in R such that V is one of its Rees valuations. Furthermore,
we may assume that I is primary to P = mV ∩R, where mV is the maximal
ideal of V .

We give essentially the same proof as for Theorem 9.3.2. Note that in
general V will not be the only Rees valuation ring of I. In fact, there exists
a two-dimensional complete normal local domain in which every ideal has at
least two Rees valuations (see Cutkosky [52]).

Proof: By Proposition 10.4.1, without loss of generality we may localize at
P and thus assume that P is the unique maximal ideal of R. Let d = htP .
By assumption on V , tr.degκ(P )κ(mV ) = d − 1. Thus there exist non-zero
elements x1, . . . , xd ∈ P such that x2

x1
, . . . , xd

x1
are in V and their images in

V/mV = κ(mV ) form a transcendence basis of κ(mV ) over κ(P ).
Let n be a positive integer such that PnV ⊆ x1V . Let I be any ideal

between (x1, x2, . . . , xd) and (x1, x2, . . . , xd)+P
n. Thus I can be taken to be

P -primary.
Set S = R[ Ix1

], a finitely generated R-algebra. Let S be its integral closure.

By the choice of I, S ⊆ S ⊆ V . Set Q = mV ∩ S. The images of the xi

x1

in κ(Q ∩ S) ⊆ κ(Q) form a transcendence basis of κ(Q ∩ S) over κ(P ), so
that by the Dimension Inequality (Theorem B.2.5), ht(Q ∩ S) ≤ 1. Hence
htQ = dim(S)Q ≤ dimSQ∩S ≤ 1, so that as x1 ∈ Q, htQ = 1, and Q is a
prime ideal minimal over x1S. Thus by the construction of Rees valuations
SQ is one of the Rees valuation rings of I. But SQ ⊆ V are both discrete
valuation rings of rank 1 with the same field of fractions, so that they must
be equal. Thus V is a Rees valuation ring of I.

With the following proposition one can find some Rees valuations of prod-
ucts of ideals:
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Proposition 10.4.5 Let R be a Noetherian integral domain. Then for any
non-zero ideals I and J in R, RV (I) ∪ RV (J) ⊆ RV (IJ).

Proof: We will prove that RV (I) ⊆ RV (IJ). Let V ∈ RV (I). By Theo-
rem 10.2.2 we may choose an element a ∈ I such that if S is the integral
closure of S = R[ Ia ], and P = mV ∩ S, then (S)P = V . Choose b ∈ J such
that JV = bV . Then

S = R

[
I

a

]
⊆ T = R

[
I

a

] [
J

b

]
= R

[
IJ

ab

]
⊆ V.

Let T be the integral closure of T , and Q = mV ∩ T . Then V = (S)P ⊆
(T)Q ⊆ V , so that V = (T)Q. Thus V ∈ RV (IJ).

In general, the other inclusion need not hold:

Example 10.4.6 Let R = k[X, Y, Z] be a polynomial ring over a field k.
Let I = (X, Y ) and J = (X,Z). We claim that RV (IJ) 6= RV (I) ∪ RV (J).
We have that RV (I) = {v1}, where v1 is the monomial valuation that takes
value 1 on X and Y and value 0 on Z. Similarly, RV (J) = {v2}, where
v2 is the monomial valuation taking value 1 on X and Z and value 0 on Y .
Suppose that RV (IJ) = {v1, v2}. Note that v1(IJ) = 1 since v1(XZ) = 1,
and similarly v2(IJ) = 1 since v2(XY ) = 1. However, v1(X) = v2(X) = 1
as well. If RV (IJ) = {v1, v2}, then this would imply that X ∈ IJ , which is
clearly false.

This can also be seen from the equations of the Rees algebra of IJ . We
can map R[A,B,C,D] onto the Rees algebra of IJ by mapping A → X2,
B → XY , C → XZ and D → Y Z. With this map,

k[X, Y, Z, A,B, C,D]/P ∼= R[IJt]

where P = (XD − Y C, Y C − ZB,BC − AD,XC − ZA,XB − Y A). The
Rees algebra is Gorenstein and integrally closed, and the height of P is 3, as
can be easily seen by using a computer algebra program or by hand. Since
the Rees algebra is integrally closed, Remark 10.1.4 shows that the Rees
valuations correspond to the minimal primes over IJR[IJt], and there are
exactly three minimal primes corresponding to the images of the prime ideals
P1 = (X, Y,A,B) (which gives v1), P2 = (X,Z,A, C) (which gives v2) and
a third prime P3 = (X, Y, Z,BC − AD), which accounts for an additional
valuation v3 in RV (IJ). The valuation ring of v3 is (R[IJt]P3

), and v3 is the
order valuation of the maximal ideal (X, Y, Z).

Below we prove two cases where equality holds in Proposition 10.4.5.

Proposition 10.4.7 Let R be a Noetherian domain, I and J non-zero ideals
in R such that I is locally principal. Then RV (I) ∪ RV (J) = RV (IJ).

Proof: By Proposition 10.4.5 it suffices to prove that RV (IJ) ⊆ RV (I) ∪
RV (J), and it suffices to prove this locally. So without loss of generality R is



212 10. Rees valuations

local, and I = (x) for some non-zero x ∈ R. Let V be a Rees valuation ring
of IJ . Then there exists b ∈ J such that T = R

[
xJ
xb

]
⊆ V , and there exists

a prime ideal Q in the integral closure T of T such that Q is minimal over
xb and (T)Q = V . If b ∈ Q, then as T = R

[
J
b

]
, it follows by construction

of Rees valuations that V is a Rees valuation ring of J . Now suppose that
b 6∈ Q. Then necessarily x ∈ Q, and as b is a unit in (T)Q, V is a localization
of the integral closure of R at a prime ideal necessarily minimal over xR, so
that V is a Rees valuation ring of I.

Proposition 10.4.8 Let R be a Noetherian locally formally equidimensional
domain of dimension at most 2. Let I and J be non-zero ideals in R. Then
RV (I) ∪ RV (J) = RV (IJ).

Proof: By Proposition 10.4.5 it suffices to prove that RV (IJ) ⊆ RV (I) ∪
RV (J). Let V be a Rees valuation of IJ . By the construction (proof of
Theorem 10.2.2) we know that there exist a ∈ I and b ∈ J such that S =
R
[
IJ
ab

]
⊆ V , and there exists a height one prime ideal Q in the integral closure

S of S containing ab such that (S)Q = V .
If a 6∈ Q, then SQ is the same as the integral closure of R

[
J
b

]
localized at

(the image of) Q, so that then clearly V ∈ RV (J). So we may assume that
a ∈ Q, and similarly that b ∈ Q.

Set p = Q(S)Q ∩ R = mV ∩ R. As R ⊆ V is contained in the field of
fractions of R, p is a non-zero prime ideal, so its height is either 1 or 2. By
Proposition 10.4.3, tr.degκ(p)κ(mV ) = tr.degκ(p)κ(Q) = ht p− 1.

If tr.degκ(p)κ(Q) is 0, then the height of p is 1, so that the height of IJ
is one, and p is minimal either over I or over J . Say p is minimal over I.
The normalization of Rp is a one-dimensional semi-local Noetherian domain
contained in V , so for some maximal ideal p̃ in Rp, (R)p̃ equals V . Then by
Example 10.3.2, V is a Rees valuation ring of I.

Now assume that tr.degκ(p)κ(Q) is 1. Then necessarily ht p = dimR = 2.

Let Sa = R[ I
a
], Sb = R[ I

b
], qa = Q(S)Q ∩ Sa, and qb = Q(S)Q ∩ Sb. Both

Sa and Sb are subrings of S, and both Sa/qa and Sb/qb are subrings of S/Q.
There is a natural ring surjection

(
Sa
qa

)(
Sb
qb

)
→ SaSb

Q ∩ SaSb
.

The composition of this map with inclusion into S/Q is an injection, so that(
Sa

qa

)(
Sb

qb

)
= SaSb

Q∩SaSb
. Let W be the multiplicatively closed set (Sa \ qa)(Sb \

qb) in SaSb ⊆ S. The localization at W gives

κ(qa)κ(qb) =W−1

(
Sa
qa

)(
Sb
qb

)
=W−1 SaSb

Q ∩ SaSb
⊆W−1

(
S

Q

)
.

The last inclusion is integral as S is the integral closure of SaSb. Hence the
transcendence degree of κ(Q) over κ(qa)κ(qb) is 0. Thus the transcendence



10.5. Rational powers of ideals 213

degree of κ(qa)κ(qb) over κ(p) is 1, whence either tr.degκ(p)κ(qa) = 1 or
tr.degκ(p)κ(qb) = 1. Suppose that tr.degκ(p)κ(qa) = 1. By the Dimension
Inequality B.2.5, ht(qa) ≤ 1, so that as qa is non-zero, necessarily ht(qa) = 1.
Hence by Proposition 6.3.4, (Sa)qa is a discrete valuation domain of rank one
contained in V , and necessarily equal to V . Furthermore, by construction V
is a Rees valuation ring of I. Similarly, if tr.degκ(p)κ(qb) = 1, it follows that
V is a Rees valuation of J .

Proposition 10.4.9 Let R be a Noetherian domain and I an ideal in R with
RV (I) = {v1, . . . , vr}. Let X be a variable over R, and for each i = 1, . . . , r,
let wi be the Gauss extension of vi to Q(R)(X) as in Remark 6.1.3: wi agrees
with vi on Q(R) and takes X to 0. Then RV (IR[X ]) = {w1, . . . , wr}.
Proof: By definition, wi is a Gauss extension of vi. For n ≥ 1, {u ∈
R[X ] |wi(u) ≥ wi(I

n), i = 1, . . . , r} is the ideal in R[X ] generated by el-
ements in u ∈ R with vi(u) ≥ vi(I

n), for i = 1, . . . , r. This means that
{u ∈ R[X ] |wi(u) ≥ wi(IR[X ]), i = 1, . . . , r} equals InR[X ], which is the
integral closure of InR[X ] by Lemma 8.4.2. Thus w1, . . . , wr are contained
in the set of Rees valuations of IR[X ]. If one of them, say wi, is redundant,
then it is easy to show that vi would be redundant as well, proving that
RV (IR[X ]) = {w1, . . . , wr}.

10.5. Rational powers of ideals

In this section we associate to an ideal its “rational powers”, in the following
sense:*

Definition 10.5.1 Let R be a Noetherian ring, and let I be an ideal. Fix a
rational number α = p

q with p, q ∈ N, q 6= 0. We define Iα = {x ∈ R| xq ∈ Ip}.
The next proposition summarizes the basic properties of Iα, including the

fact it is a well-defined ideal and is integrally closed. It would be appropriate
to call this ideal the “αth” power of I except for the fact that the definition
brings in the integral closure of Ip. If we simply took the set of elements x
such that xq ∈ Ip, this set would not necessarily be an ideal. Taking all of
this into account, it is natural to think of Iα as the integral closure of the
“αth” power of I.

Proposition 10.5.2 Let R be a Noetherian ring, I an ideal in R, and
α, β ∈ Q.
(1) Iα is well-defined, i.e., does not depend on the representation of α as a

quotient of two integers.
(2) If α < β, then Iβ ⊆ Iα.
(3) IαIβ ⊆ Iα+β.

* We thank Mark Johnson for sharing notes on this topic. We also refer to [184] for more

information.
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(4) Iα is an integrally closed ideal.
(5) For n ∈ N, In = In.
(6) x ∈ Iα if and only if for all minimal primes P of R and for all rank one

discrete κ(P )-valuations v that are non-negative on R/P , v(x) ≥ α ·v(I).
(7) An element x ∈ Iα if and only if v(x) ≥ α ·v(I) for all the Rees valuations

v of I.

Proof: First of all, Iα is well-defined. Namely, if α = tm
tn for some integer t,

certainly rn ∈ Im implies that rtn ∈ Itm, and if rtn ∈ Itm, then an equation of
integral dependence of rtn on Imn is also an equation of integral dependence of
rn on Im. Thus Iα is well-defined. It is clear that if α, β are two non-negative
rational numbers, then IαIβ ⊆ Iα+β, and if α < β, then Iβ ⊆ Iα.

Let r be integral over Iα. Write α = m
n for some non-negative integers

m,n. As rn is integral over Inα and Inα is contained in Im, it follows that rn is
integral over Im, whence r ∈ Iα. This proves that Iα is integrally closed.

Part (5) is clear from the definition.
Suppose that x ∈ Iα and v is a rank one discrete κ(P )-valuation (for some P

a minimal prime of R). Write α = p
q with p, q ∈ N. Apply v to the equation

xq ∈ Ip. One obtains that qv(x) ≥ pv(I) or equivalently v(x) ≥ α · v(I).
Conversely, suppose that for all rank one discrete κ(P )-valuations v (for P a
minimal prime of R) v(x) ≥ α · v(I). Write α = p

q with p, q ∈ N. We obtain

that for all such valuations v, v(xq) = qv(x) ≥ qα · v(I) = pv(I) = v(Ip). The
valuative criterion for integral closure Theorem 6.8.3 gives that xq ∈ Ip.

Suppose that x ∈ Iα and v = vi is a Rees valuation of I. Write α = p
q
with

p, q ∈ N. Apply v to the equation xq ∈ Ip. One obtains that qv(x) ≥ pv(I) or
equivalently v(x) ≥ α · v(I). Conversely, suppose that for all Rees valuations
v of I we know that v(x) ≥ α · v(I). Write α = p

q
with p, q ∈ N. We obtain

that for all Rees valuations v of I, v(xq) = qv(x) ≥ qα · v(I) = pv(I) = v(Ip).
It follows that xq ∈ Ip.
Definition 10.5.3 Let R be a Noetherian ring, I an ideal, and α ∈ Q. Define
I>α = ∪β>αIβ.

By Proposition 10.5.2, this union is actually an ascending union of ideals,
hence it is also an ideal. Moreover, as R is Noetherian, the chain {Iβ} for
β > α of ideals stabilizes, and the stable value is therefore I>α. In particular,
all of the ideals Iα+ǫ for small rational ǫ are the same, namely I>α.

Associated to the ideals Iα is the graded ring G = ⊕α∈QIα/I>α, which is

a graded ring over the non-negative rational numbers by Proposition 10.5.2.
As we shall see, however, this graded ring is actually N-graded. Its degree

0 piece is exactly R/
√
I by the calculation in the example below.

Example 10.5.4 I>0 =
√
I. If x ∈

√
I, then xn ∈ I for all large n, so that

x ∈ I 1
n
for all large n. Thus

√
I ⊆ I>0. Conversely, if x ∈ I>0, then for some

n, x ∈ I 1
n
, which implies that xn ∈ I ⊆

√
I, and x ∈

√
I.
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Proposition 10.5.5 Let R be a Noetherian ring and I an ideal of R of
positive height. Let {v1, ..., vm} be the Rees valuations of I. Set e to be the
least common multiple of v1(I), . . . , vm(I). Every ideal Iα with α ∈ Q is equal
to In

e
for some n ∈ N.

Proof: Set ei = vi(I) and write e = eidi. Given α ∈ Q, set n = ⌈eα⌉.
We claim that Iα = In

e
. Since n

e ≥ α, we know that In
e

⊆ Iα. To prove
the opposite containment, let x ∈ Iα. Write α = p

q . By Proposition 10.5.2,

vi(x) ≥ αei for all i = 1, . . . , m. Hence min{ vi(x)di
e

| i = 1, . . . , m} ≥ α.
By the choice of n it follows that n ≤ min{vi(x)di | i}, and therefore that
vi(x) ≥ n

e
ei for all i = 1, . . . , m. Hence vi(x

e) ≥ vi(I
n) for all i, which implies

that x ∈ In
e
.

The main information provided by these rational “powers” of I is provided
by the following theorem:

Theorem 10.5.6 Let R be a Noetherian ring, let I be an ideal of positive
height, and let u be a variable. Let {v1, ..., vn} be the Rees valuations of I,
and e the least common multiple of v1(I), . . . , vn(I). Put t = ue. Let T be the
integral closure of the extended Rees algebra S = R[It, t−1] in R[u, u−1].
(1) T is a Z-graded ring of the form ⊕

i∈ZJiu
i, where Ji are ideals of R and

Ji = R for i ≤ 0.
(2) For i > 0, Ji = I i

e
.

(3) T/u−1T ∼= ⊕α∈Q≥0
Iα/I>α is an N-graded algebra with degree zero piece

equal to R/
√
I.

(4) u−1T is radical, i.e.,
√
u−1T = u−1T .

Proof: By Theorem 2.3.2, T is a Z-graded ring, and clearly Ji is an ideal in
R. Moreover, u−1 is integral over S, which implies that Ji = R for i < 0.
This proves (1).

Let i > 0, and let z ∈ I i
e
. Then ze ∈ Ii. Then (zui)e is integral over S.

Hence z ∈ Ji. Conversely, suppose that z ∈ Ji. Consider ze ∈ Jei. Then
(zui)e = zeti ∈ T since it is integral over S and is inside R[t, t−1]. Thus

ze ∈ Ii, so by definition z ∈ I i
e
. This proves (2).

To prove (3), first observe that ⊕α∈Q≥0
Iα/I>α = ⊕i≥0Ji/Ji+1. This follows

since Iα = I>α if α is not of the form i
e for some non-negative integer i.

Moreover, if α = i
e
, then I>α = I i+1

e
= Ji+1. The isomorphism⊕i≥0Ji/Ji+1

∼=
T/u−1T is clear. The last statement follows from Example 10.5.4, which gives
that I>0 =

√
I.

Let z be a nilpotent element in T/u−1T of degree α. Let l be a positive
integer such that zl = 0. Let r ∈ Iα be a preimage of z in R. Then rl ∈ I>lα,
so that there exists a rational number f > lα such that rl ∈ If . Then
r ∈ I f

l
⊆ I>α, so that z = 0. Thus T/u−1T is reduced, which proves (4).
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We remark that the eth Veronese subring of T , ⊕keTke, is isomorphic to S,
as the above proof shows. This is useful for calculations of cohomology. For
more geometric understanding of the topic in this section, see [171] and [172].

10.6. Exercises

10.1 Let R be a Noetherian domain.
(i) Prove that for any ideal I and any positive integer n, RV (In) =

RV (I).
(ii) Let I1, . . . , Ik be ideals ofR. Prove that ∪n1,...,nk

RV (In1
1 · · · Ink

k )
is finite.

10.2 Let R be a Noetherian domain and I and J ideals in R. If for some
m,n ∈ N>0, Im = Jn, then RV (I) = RV (J). Show that the converse
fails.

10.3 Let R be a Noetherian ring and I an ideal in R. Prove that there
exist m ∈ N>0 and a ∈ Im such that each Rees valuation of I is a
localization of the integral closure of R[ I

m

a ] at a prime ideal minimal
over a.

10.4 Let I be an ideal in a Noetherian ring R and let S be the integral
closure of R[It, t−1]. Let P be a prime ideal in S minimal over t−1S.
Prove that for each n ∈ N, t−nSP ∩R = InSP ∩R.

10.5 (Alternative construction of Rees valuations) Let R be a Noetherian
integral domain with field of fractions K, I an ideal in R, and S the
integral closure of R[It, t−1]. Prove that the set of Rees valuations
of I equals the set of all SQ ∩K, as Q varies over prime ideals in S
that are minimal over t−1S.

10.6 (Alternative construction of Rees valuations) Let R be a Noetherian
integral domain with field of fractions K, I an ideal in R, and S the
integral closure of R[It]. Prove that the set of Rees valuations of I
equals the set of all SQ ∩K, as Q varies over prime ideals in S that
are minimal over IS.

10.7 Let R be a Noetherian local ring with infinite residue field. Prove
that for any ideal I in R there exists x ∈ I such that v(x) = v(I) for
all v ∈ RV (I).

10.8 Let R be a Noetherian local domain of dimension 1. Let S be the
integral closure of R and P a maximal ideal in S. Prove that SP is a
Rees valuation of P ∩R.

10.9 Let k be a field, X1, . . . , Xd variables over k, and I a monomial ideal
in R = k[X1, . . . , Xd]. Let m be a monomial generator of I, and let
U be the set of all valuations that are localizations of the integral
closure of R[ Im ] at height one prime ideals containing m. Prove that
there is a natural one-to-one correspondence between U and the set
of valuations obtained from those hyperplanes bounding the Newton
polyhedron of I that pass through the point corresponding to m.
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10.10 Let R be a Noetherian domain and I an ideal. If P ∈ Ass(R/In)
for some large n, then there exists a ∈ I and a prime ideal Q in
S = R[ Ia ] such that Q is associated to anS for all large n and such
that Q ∩R = P .

10.11 (J. Watanabe [320]) Let (R,m) be a Noetherian local ring with infinite
residue field. Let I be an integrally closed ideal in R. Prove that I is
m-full, i.e., that there exists x ∈ m such that mI : x = I.

10.12 ([320]) Let (R,m) be an arbitrary Noetherian local ring. Let m =
(inserted an ex-
ercise)

(a1, . . . , an) and set R′ = R[X1, . . . , Xn]mR[X1,...,Xn]. An ideal I in R
is said to be an m-full if there exists x ∈ R′ such that mIR′ :R′ x =
IR′. Now suppose that R/m is infinite and I is m-full in R. Prove
that there exists an element x ∈ R such that mI : x = I.

10.13 ([320]) Let (R,m) be an arbitrary Noetherian local ring. Let I be an
m-primary m-full ideal. Prove that for all ideals J in R containing I,
µ(J) ≤ µ(I).

10.14 ([320]; Goto [95]) Let (R,m) be a Noetherian local ring. Let m =
(a1, . . . , an) and set R′ = R[X1, . . . , Xn]mR[X1,...,Xn]. An ideal I in R
is said to be an m-full if there exists x ∈ R′ such that mIR′ :R′ x =
IR′. Let J be any ideal in R containing I such that J/I has finite
length. Prove that µ(J) ≤ µ(I).

10.15 (Goto [95]) Let R be a Noetherian ring and I an integrally closed
ideal in R whose minimal number of generators r equals its height.
Let P be a prime ideal in R associated to I.
(i) Prove that P is minimal over I.
(ii) Prove that λRP

((I+P 2)RP /P
2RP ) ≥ r−1 and that µ(PRP ) ≤

µ(IRP ) = r.
(iii) Prove that RP is regular local ring.
(iv) Prove that the Rees algebra RP [IRP t] is Cohen–Macaulay and

satisfies Serre’s condition (R1).
(v) Prove that for all positive integers n, In = In, i.e., that I is a

normal ideal.
10.16 Prove that for ideals I ⊆ J in a Noetherian ring, I = J if and only if

for every Rees valuation ring V of I, IV = JV .
10.17 Let X, Y, Z be variables over C, and R = C[X, Y, Z]/(X2+Y 3 +Z5).

Prove that R is a normal domain, that m = (X, Y, Z)R has only one
Rees valuation, but that grm(R) is not an integral domain.

10.18 Let R = C[X, Y, Z] be a polynomial ring in variables X, Y, Z. Let n
be a positive integer, and A the integral domain R/(X2 + Y 2 + Zn).
(i) Prove that for i < n/2, the ideal (X, Y, Zi)A has more than one

Rees valuation.
(ii) Prove that if n is an even integer, then (X, Y, Zn/2) has only

one Rees valuation.
(iii) Impose on A the grading w(X) = w(Y ) = n/gcd(2, n), w(Z) =

2/gcd(2, n). Prove that w is a valuation function and that for



218 10. Rees valuations

any positive integer i ≤ n/2, (X, Y, Zi)A = {r ∈ A |w(r) ≥ i}.
10.19 Let R be the polynomial ring k[X1, . . . , Xn], where k is a field.

(i) Let I be an ideal of the form (Xa1
1 , . . . , Xan

n ), where the non-
negative integers a1, . . . , am are not all zero. Prove that I has
only one Rees valuation, namely the monomial valuation with
aiv(xj) = ajv(xi) for all i, j.

(ii) Give an example of ideals I1, . . . , Il in k[X1, . . . , Xn] of the form
as in (i) such that I1 ∩ · · · ∩ Il 6= I1 ∩ · · · ∩ Il.

10.20 Let R be a Noetherian local ring and I an ideal with only one Rees
valuation. Prove that

√
I is a prime ideal.

10.21 (Hübl–Swanson [134]) Let I be an ideal in an integrally closed Noe-
therian local domain R.
(i) Prove that grI(R) is reduced if and only if I is a normal ideal

and if for each (normalized integer-valued) Rees valuation v of I,
v(I) = 1.

(ii) Let S = R/I ⊕ I/I2 ⊕ I2/I3 ⊕ · · · . Prove that S is a reduced
ring if and only if for each (normalized) Rees valuation v of I,
v(I) = 1.

10.22 (Reid, Roberts, Vitulli [245]) Let n > 2, k[X1, . . . , Xn] a polynomial
ring over a field, and a1, . . . , an positive integers whose greatest com-
mon divisor is strictly bigger than n−2. Let I be the integral closure
of (Xa1

1 , . . . , Xan
n ). Prove that I is normal.

10.23 (Katz [160]) Let (R,m) be a formally equidimensional Noetherian
local domain. Let x1, . . . , xd be a system of parameters. Set I =
(x1, . . . , xd) and

S = R
[x2
x1
, . . . ,

xd
x1

]
mR
[

x2
x1
,...,

xd
x1

].

Let S be the integral closure of S.
(i) Prove that for all n ≥ 1, In = InS ∩R.
(ii) Prove that the number of minimal prime ideals in the m-adic

completion of R is at most the number of maximal ideals in S.
(iii) Prove that there is a one-to-one correspondence between max-

imal ideals of S and the prime ideals in the integral closure of
R[It, t−1] that are minimal over t−1.

10.24 (Sally [258]) Let (R,m) be an analytically unramified Noetherian local
ring. Assume that there exists an m-primary ideal I in R with only
one Rees valuation. Prove that the m-adic completion of R is an
integral domain, i.e., that R is analytically irreducible.

10.25 (Lipman [189, page 144]) Let (R,m) be a formally equidimensional
Noetherian local ring, and I and J ideals in R satisfying ht(I + J) =
ℓ(I) + ℓ(J). Prove that IJ = I ∩ J .

10.26 Let R be a Noetherian ring, I and J ideals of R.
(i) Assume that I = J . Prove that vI(J) = vJ (I) = 1.
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(ii) Assume that vI(J) = vJ(I) = 1. Prove that I = J .
10.27 Let R be a Noetherian ring. Ideals I and J in R are called projec-

tively equivalent if there exists a positive real number α such that
vI = α vJ .
(i) Prove that α is a rational number.
(ii) Prove that I and J are projectively equivalent if and only if

there exist positive integers m and n such that Im = Jn.
10.28 Let R be a Noetherian domain, and I an ideal. Prove that {m

n
∈

Q>0 : m,n ∈ N>0 and there exists an ideal J in R with Im = Jn} is
a discrete set with no limit points.

10.29 Let (R,m) be a Noetherian local ring whose m-adic completion R̂ is
an integral domain. Let S be the integral closure of R̂. Prove that R
has an m-primary ideal with only one Rees valuation if and only if S
has a zero-dimensional ideal with only one Rees valuation.

10.30 (Criterion of analytic irreducibility, Hübl and Swanson [134]) Let
(R,m) be a Noetherian local domain.
(i) Prove that R is analytically irreducible if and only if there exist

positive integers a and b such that for all positive integers n and
all x, y ∈ R, xy ∈ m

an+b implies that either x or y is in m
n.

(ii) Let (R,m) be a complete local domain of dimension 1, and let R
be its integral closure. Let n be the maximal ideal of R, and let
n
a be the conductor ideal of R (why is there only one maximal

ideal, and why is the conductor of this form?). Let I be a non-
zero ideal in R, and i such that IR = n

i. Prove that whenever
x, y ∈ R are such that xy ∈ I2n+⌊2a/i⌋, then either x ∈ In or
y ∈ In.

10.31 ([134]) Let (R,m) be a Noetherian local analytically irreducible do-
main, and I an m-primary ideal. Prove that I has only one Rees
valuation if and only if there exists an integer b such that for all pos-
itive integers n and all x, y ∈ R, xy ∈ I2n+b implies that either x or
y lies in In.

10.32 (Muhly and Sakuma [213, Lemma 4.1]) Let I1, . . . , Ir be ideals in a
two-dimensional universally catenary Noetherian integral domain R.
Suppose that for j = 1, . . . , r, RV (Ij) = {vj}, and that v1, . . . , vr are
pairwise not equivalent. Prove that det(vi(Ij)i,j) 6= 0.

10.33 Let R = Q[X, Y ], and I = (X2Y +XY 2, Y 4, XY 3, X4).
(i) Prove that for all n, In is integrally closed.
(ii) Prove that J = (X2Y + XY 2, Y 4 + XY 3 + X4) is a minimal

reduction of I.
(iii) Let S = R[ I

(X2Y+XY 2) ]. Prove that each Rees valuation of I

equals SQ for some prime idealQ in S minimal overX2Y +XY 2.
(iv) Find all the Rees valuations of I.
(v) For each Rees valuation v of I, compute v(I).
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10.34* Find the Rees valuations of generic determinantal ideals.
10.35 Let R be a Noetherian ring and I an ideal in R that is not contained

in any minimal prime ideal of R. Let Iα be any rational power of I.
(i) Prove that RV (Iα) = RV (I).
(ii) Prove that for large integers n, Ass(R/Inα) = Ass(R/In).

10.36 Let (R,m) be a Noetherian analytically irreducible local ring and I

an m-primary ideal. Prove that |RV (I)| = |RV (IR̂)|.
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Multiplicity and integral closure

This chapter is devoted to the theory of multiplicity and its relationship to
integral closure. We begin by developing the theory of Hilbert–Samuel poly-
nomials. The basic result states that if (R,m) is a Noetherian local ring, I
an m-primary ideal, and M a finitely generated R-module, then there ex-
ists a polynomial P (n) with rational coefficients, such that for all sufficiently
large n,

P (n) = λR(M/InM).

The leading coefficient of P (n), suitably normalized, is an important invariant
of I and M , called the multiplicity of I with respect to M . This invariant
gives information concerning how (the integral closures of) the powers of I
grow with respect to M . The main result in this chapter, Theorem 11.3.1, is
a famous theorem due to David Rees, which states that if (R,m) is a formally
equidimensional Noetherian local ring and J ⊆ I are m-primary ideals, then
J = I if and only if the multiplicities of J and I with respect to R are the
same. The general proof we give is due to Schaub [260]. For the case when
R contains a field, we give another and easier proof, due to Scheja [261].
This proof introduces an important technique. The final section presents an
algebraic approach, due to Lipman [189], related to Teissier’s “principle of
specialization of integral dependence”.

11.1. Hilbert–Samuel polynomials

Throughout this section we let (R,m) be a Noetherian local ring of dimension
d, I an m-primary ideal, and M a finitely generated R-module. We begin
with two well-known lemmas concerning polynomials, which we will use in an
inductive step.

Define a polynomial
(
t−1+i
i

)
∈ Q[t] as

(
t−1+i
i

)
= (t−1+i)(t+i−2)···(t+1)t

i!
. This

is a polynomial of degree i in t, with leading coefficient 1/i!. For any overfield
K of Q, a polynomial P : N → K of degree d can be written uniquely as
P (n) =

∑d
i=0 ki

(
n−1+i

i

)
, with ki ∈ K, and kd 6= 0.

Lemma 11.1.1 Let P (t) ∈ Q[t] be a polynomial of degree d ≥ 0. (We use
the convention that the degree of the constant zero polynomial is −∞.) The
following are equivalent:
(1) P (n) ∈ N for all n≫ 0.
(2) There exist unique integers a1, . . . , ad such that ad > 0 and P (t) =∑d

i=0 ai
(
t−1+i
i

)
.
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Proof: It is easy to see that (2) implies (1). For the converse, observe
that the set of polynomials

(
t−1+i
i

)
forms a Q-basis for Q[t], so that P (t) =∑d

i=0 ai
(
t−1+i
i

)
for unique ai ∈ Q. We leave it as an exercise that (1) then

forces ai ∈ Z (Exercise 11.1). The leading coefficient must be positive.

Lemma 11.1.2 Let R be a domain containing Q, and let Q(n) be a poly-
nomial in n of degree d ≥ 0 with coefficients in R. Fix an integer j, and
set P (n) =

∑n
i=j Q(i). Then P (n) is a polynomial in n of degree equal to

degQ+ 1 and with coefficients in R. If the leading coefficient of Q is c, then
the leading coefficient of P is c/(deg(Q) + 1).

Proof: By assumption Q(n) is a non-zero polynomial. By shifting the index
and changing the sum by a constant, it is enough to prove that

∑n
i=0Q(i) is

a polynomial in n of degree one greater than Q(n) with the specified leading

coefficient. Write Q(n) =
∑d
j=0 aj

(
n−1+j

j

)
, for some aj ∈ Q, ad 6= 0. Then

P (n) =
n∑

i=0

Q(i) =
d∑

j=0

aj

n∑

i=0

(
i− 1 + j

j

)
=

d∑

j=0

aj

(
n+ j

j + 1

)
,

which is a polynomial of degree degQ + 1 with coefficients in R. Clearly
c = ad/d!, and the leading coefficient of P is ad/(d+ 1)!.

Theorem 11.1.3 (The Hilbert–Samuel Polynomial) Let (R,m) be a Noe-
therian local ring, let I be an m-primary ideal, and let M be a non-zero finitely
generated R-module. Set d = dim(R). There exists a polynomial P (n), with
rational coefficients, such that for all n≫ 0,

P (n) = λR(M/InM).

Furthermore, the degree in n of P (n) is dimM , which is at most d.

We call λ(M/InM) the Hilbert function and P (n) the Hilbert–Samuel
polynomial of I with respect to M . If the dependence of P (n) on I and M
needs to be specified, we write PI,M (n).

Proof: Using Lemma 8.4.2 we may assume that the residue field k of R is
infinite. We prove the theorem by induction on d = dim(M).

If dimM = 0, then for all large n, InM = 0, and P (n) = λ(M), the
constant polynomial. Clearly in this case the degree of the polynomial is 0,
equal to the dimension of M .

Assume that dimM > 0. By Proposition 8.5.7, there exists a superficial
element x ∈ I with respect to M , and not contained in any prime ideal that
is minimal over annM . For n > 0, the exact sequence

0 → InM :M x

In−1M
→ M

In−1M

x→ M

InM
→ M

xM + InM
→ 0

of finite-length modules says that

λ

(
M

InM

)
− λ

(
M

In−1M

)
= λ

(
M

xM + InM

)
− λ

(
InM :M x

In−1M

)
.
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By Lemma 8.5.5, for large n, say for n ≥ c, InM :M x = 0 :M x + In−1M
and (0 :M x) ∩ In−1M = 0, so that InM :Mx

In−1M
∼= 0 :M x. It follows that

λ

(
M

InM

)
= λ

(
M

IcM

)
+

n∑

i=c+1

(
λ

(
M

xM + IiM

)
− λ (0 :M x)

)
. (11.1.4)

Since x is not in any minimal prime ideal over annM , dim(M/xM) = dimM−
1, so that by induction on dimension, for all large n, λ(M/(xM + InM))
equals a polynomial Q(n) of degree dimM − 1, with rational coefficients.
If Q(n) = λ(0 :M x) for all large n, then by this formula, λ(M/InM) is
a constant function for large n. It follows that λ(InM/In+1M) = 0 for
large n, so that by Nakayama’s Lemma, InM = 0, whence dimM = 0,
contradicting the assumption that the dimension of M was positive. Hence
necessarily Q(n) 6= λ(0 :M x) for infinitely many n. But Q(n) is a non-
decreasing function, so that Q(n) 6= λ(0 :M x) for all large n. Thus by the
displayed formula and by Lemma 11.1.2, for all large n, λ(M/InM) equals a
polynomial of degree dimM with rational coefficients.

Observe that for all n, λR(M/InM) = λR/ann(M)(M/InM), so that the
Hilbert–Samuel polynomials of I and of I(R/ann(M)) with respect to M are
identical.

Definition 11.1.5 Let (R,m) be a Noetherian local ring of dimension d, let
I be an m-primary ideal, and let M be a finitely generated R-module. We
define eR(I;M), the multiplicity of I on M, to be d! times the coefficient
of PI,M (n) of degree d. If M = R, we simply write e(I) for eR(I;R), while if
M = R and I = m, we write e(R) = e(m), the multiplicity of R.

In other words, e(I;M) = limn→∞ λ(M/InM)d!/nd, where d = dimR. By
Lemma 11.1.1, PI,M (n) can be written in the following standard form:

PI,M (n) =

dimM∑

i=0

(−1)dimM−i · edimM−i ·
(
n− 1 + i

i

)
,

where e0, . . . , edimM ∈ Z, and e0 > 0. We conclude that eR(I;M) = 0 if
dimM < dimR, and eR(I;M) = e0 if dimM = dimR.

In the definition of multiplicity, we could have replaced d, the dimension
of R, with the dimension of M . However, for purposes in this book, it is
convenient to have the multiplicity be 0 when the dimension ofM is less than
the dimension of R.

Discussion 11.1.6 Let (R,m) be a Noetherian local ring of dimension d,
M a finitely generated R-module of dimension d, and let I be an m-primary
ideal. In computing e(I;M) we can either use the polynomial P (n) such that

P (n) = λ(M/InM) for all large n, whose leading coefficient is e(I;M)
d! , or use

the function λ(InM/In+1M), which is also a polynomial for large n of degree

d−1 whose leading coefficient is e(I;M)
(d−1)!

. The function λ(InM/In+1M) agrees
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with a polynomial for large n because λ(InM/In+1M) = P (n + 1) − P (n),

and its leading coefficient is e(I;M)
(d−1)! by Lemma 11.1.2.

The proof of Theorem 11.1.3 can be extended to show more:

Lemma 11.1.7 Let (R,m) be a d-dimensional Noetherian local ring, I an
m-primary ideal, x ∈ I, and M a finitely generated R-module of dimension
d = dimR. SetM ′ =M/xM , R′ = R/xR or R′ = R/ann(M ′), and I ′ = IR′.
Then the following hold.
(1) If dimM ′ = d − 1, then the leading coefficient of (d − 1)!PI′,M ′ is big-

ger than or equal to the leading coefficient of d!PI,M , and for n ≥ 0,
λ((InM :M x)/In−1M) is a polynomial in n of degree at most d− 1 with
rational coefficients.

(2) If dimR′ = d− 1, then eR′(I ′;M ′) ≥ eR(I;M), and equality holds if and
only if λ((InM :M x)/In−1M) is a polynomial in n of degree at most
d− 2 for all large n.

Proof: If dimR′ = d− 1, necessarily dimM ′ = d− 1. (The other implication
need not hold.)

By Theorem 11.1.3, the polynomials PI,M ′ and PI,M have degrees d−1 and
d, respectively. Let g(n) = λ((InM :M x)/In−1M). The short exact sequence

0 → InM :M x

In−1M
→ M

In−1M

x→ M

InM
→ M

xM + InM
→ 0 (11.1.8)

gives that g(n) = λ(M/(xM + InM)) + λ(M/In−1M)− λ(M/InM). Hence
for all large n, g(n) = PI,M ′(n) − PI,M (n) + PI,M (n − 1) is a polynomial of
degree at most d − 1, as the degree d-parts cancel. Furthermore, the degree
(d− 1) part says that the difference of the leading coefficient of (d− 1)!PI,M ′

minus the leading coefficient of d!PI,M is non-negative, and is zero exactly
when g(n) is a polynomial of degree at most d − 2. Part (2) is simply a
translation of (1) into multiplicities.

Here are some cases where Lemma 11.1.7 applies:

Proposition 11.1.9 Let (R,m) be a Noetherian local ring, M a finitely
generated R-module of dimension d = dimR > 0, and I an m-primary ideal.
Let x ∈ I, set M ′ = M/xM , and R′ = R/xR or R′ = R/ann(M ′), and
I ′ = IR′. Suppose that one of the following conditions hold:
(1) x ∈ I is superficial with respect to M and not contained in any minimal

prime ideal.
(2) The dimension of R′ is d− 1, I has d generators, x ∈ I \mI, and x is a

non-zerodivisor on M or x is a superficial element for some m-primary
ideal with respect to M .

Then

eR(I;M) =

{
eR′(I ′;M ′) if d > 1;
λ(M ′)− λ(0 :M x) if d = 1.
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Proof: In case x is superficial for I with respect to M and not contained in
any minimal prime ideal, it follows from Equation (11.1.4) and Lemma 11.1.2
that eR(I;M) = eR′(I ′;M ′) if d > 1, and eR(I;M) = eR′(I ′;M ′)− λ(0 :M x)
= λ(M ′)− λ(0 :M x) if d = 1. This proves the case (1), and also (2) if d = 1.

Now let d > 1 with set-up as in (2). Write I = (x, x2, . . . , xd), J =
(x2, . . . , xd). By Lemma 8.5.5, there exists e ∈ N such that (0 :M x)∩IeM = 0.
As I = (x) + J , it follows that InM :M x = (xIn−1M + JnM) :M x =
In−1M + (JnM :M x). By the Artin–Rees Lemma, there exists c ∈ N such
that for all n ≥ c, JnM ∩ xM ⊆ xJn−cM . Thus for all n ≥ c, JnM :M x ⊆
Jn−cM + (0 :M x), whence InM :M x ⊆ In−1M + Jn−cM + (0 :M x), and

InM :M x

In−1M
⊆ In−1M + Jn−cM

In−1M
+
In−1M + (0 :M x)

In−1M
.

For large n, by Lemma 8.5.5, the second module on the right is isomorphic to
(0 :M x). The first module on the right is a module over R/Ic and its length is
bounded above by µ(Jn−cM)λ(R/(Ic + ann(M))), which in turn is bounded
above by µ(M)

(
n−c+d−2
d−2

)
λ(R/(Ic + ann(M))), which is a polynomial of de-

gree at most d − 2. Thus for d > 1, the length of (InM :M x)/In−1M is
for large n a polynomial of degree at most d − 2, so that by Lemma 11.1.7,
eR(I;M) = eR′(I ′;M ′).

Proposition 11.1.10 Let (R,m) be a Noetherian local ring of dimension d,
I = (x1, . . . , xd) an m-primary ideal.
(1) If M is a finitely generated R-module, then for all n, λ(M/InM) ≤

λ(M/IM)
(
n+d−1

d

)
, and e(I;M) ≤ λ(M/IM).

(2) If R is Cohen–Macaulay, then for all n, λ(R/InR) = λ(R/IR)
(
n+d−1

d

)

and e(I;R) = λ(R/I).

Proof: Clearly λ(M/InM) =
∑n−1
i=0 λ(I

iM/Ii+1M) ≤∑n−1
i=0 λ(M/IM)µ(Ii)

≤ ∑n−1
i=0 λ(M/IM)

(
d+i−1
d−1

)
= λ(M/IM)

(
n+d−1

d

)
. If R is Cohen–Macaulay,

then I is generated by a regular sequence, so the associated graded ring R/I⊕
I/I2 ⊕ · · · is isomorphic to a polynomial ring in d variables over R/I (see
Corollary 5.5.9). In particular, Ii/Ii+1 is a free (R/I)-module whose rank over
R/I is exactly the number of monomials in d-variables of degree i. Hence the
inequalities above, repeated with M = R, are all equalities. The rest follows
easily.

An important theorem is that the converse statement in this proposition
also is true. This is due to Serre [267, Appendice II]; see Exercise 11.7.

Example 11.1.11 If (R,m) is a regular local ring, then e(R) = 1.

Proof: Since m is generated by a regular sequence we can apply Proposi-
tion 11.1.10 to see that e(R) = λ(R/m) = 1.

The converse of the statement in this example also holds if R is formally
equidimensional. This is due to Nagata [215, Theorem 40.6]. For a proof, see
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Exercise 11.8. If R is not equidimensional, then the multiplicity can be 1 even
if R is not regular. A reader may verify this on R = k[[X, Y, Z]]/(XY,XZ).

Remark 11.1.12 We defined multiplicities in Noetherian local rings. One
gets a similar theory also on standard graded rings as follows. Let A =
⊕n≥0An be an N-graded Noetherian ring, generated over the Artinian local
ring A0 by elements of A1. For each n ≥ 0, An is a finitely generated A0-
module, so it has finite A0-length. We show that there exists a polynomial
Q(n) with rational coefficients such that for all large n, Q(n) = λA0

(An). As
λ(An) = λ(⊕ni=0Ai) − λ(⊕n−1

i=0 Ai), it suffices to prove that λ(⊕ni=0Ai) equals
a polynomial in n for large n. If m is the maximal ideal of A0, then M =
mA+A1A is the unique homogeneous maximal ideal of A, and (A/Mn+1)M =
A/Mn+1 = ⊕ni=0Ai. Thus by Theorem 11.1.3, λ(⊕ni=0Ai) equals a polynomial
in n for large n, with rational coefficients, of degree d = dim(AM), and
with leading coefficient e(M;A)/d!. It follows that Q(n) has degree d − 1 =
htM − 1, and that the leading coefficient is e(M;A)/(d− 1)!.

11.2. Multiplicity

In this section we introduce several methods for manipulating and comput-
ing multiplicity. We prove that the multiplicity of a hypersurface variety is
given by the order of the defining polynomial (Example 11.2.8) and that the
multiplicity of ideals in Cohen–Macaulay rings are the co-lengths of certain
parameter ideals (Propositions 11.2.1 and 11.2.2). The end of the section
gives a geometric interpretation.

Proposition 11.2.1 Let (R,m) be a Noetherian local ring, and assume that
J and I are m-primary ideals having the same integral closure. Let M be a
finitely generated R-module. Then e(I;M) = e(J ;M).

Proof: It suffices to prove the proposition for the case I = J . Then J is a
reduction of I, and there exists an integer k such that Ik+1 = JIk. Hence for
all n ≥ k+1, In = Jn−k ·Ik, and λ(M/JnM) ≥ λ(M/InM) ≥ λ(M/Jn−kM)

for all n ≥ k. We know that for large n, λ(M/JnM) = e(J ;M)
d! nd + O(nd−1),

where d = dimR. Similarly, λ(M/InM) = e(I;M)
d! nd + O(nd−1). Note that

λ(M/Jn−kM) = e(J ;M)
d! nd +O(nd−1) as well, since (n− k)d = nd +O(nd−1).

After dividing by nd and taking limits as n→ ∞, the proposition follows.

Proposition 11.2.2 Let (R,m) be a Cohen–Macaulay Noetherian local ring
with infinite residue field, and let I be an m-primary ideal. If J is an arbitrary
minimal reduction of I, then e(I;R) = λ(R/J).

Proof: Since the residue field of R is infinite and R is Cohen–Macaulay, J is
generated by a regular sequence. By Proposition 11.2.1, e(I) = e(J), and by
Proposition 11.1.10, e(J) = λ(R/J).
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Theorem 11.2.3 Let (R,m) be a Noetherian local ring, and let I be an m-
primary ideal. If 0 → K → M → N → 0 is a short exact sequence of finitely
generated R-modules, then e(I;M) = e(I;K) + e(I;N).

Proof: By tensoring the short exact sequence in the statement of the theorem
with R/In, we get a right exact sequence K/InK →M/InM → N/InN → 0,
which proves that λ(M/InM) ≤ λ(N/InN) + λ(K/InK).

On the other hand, by the Artin–Rees Lemma, there exists an integer q such
that for all n ≥ q, InM ∩K ⊆ In−qK, and in particular, λ(K/(InM ∩K)) ≥
λ(K/In−qK). The sequence 0 → K/(InM ∩K) → M/InM → N/InN → 0
is exact. Combining the above remarks, we see that

λ(N/InN) + λ(K/In−qK) ≤ λ(M/InM) ≤ λ(N/InN) + λ(K/InK).

Since limn→∞ λ(K/InK)d!/nd = limn→∞ λ(K/In−qK)d!/nd, we obtain that
e(I;M) = e(I;N) + e(I;K).

Theorem 11.2.4 (Additivity and Reduction Formula) Let (R,m) be a local
Noetherian ring, let I be an m-primary ideal, and let M be a finitely gener-
ated R-module. Let Λ be the set of minimal prime ideals P of R such that
dim(R/P ) = dim(R). Then

e(I;M) =
∑

P∈Λ

e(I;R/P )λ(MP ).

Proof: By Theorem 11.2.3, multiplicity is additive on short exact sequences.
Fix a prime filtration ofM , say 0 =M0 ⊆M1 ⊆M2 ⊆ · · · ⊆Mn =M , where
Mi+1/Mi

∼= R/Pi (Pi a prime) for all 0 ≤ i ≤ n − 1. As e(I;R/Q) = 0 if
dim(R/Q) < dim(R), the additivity of multiplicity applied to this filtration
shows that e(I;M) is a sum of the e(I;R/P ) for P ∈ Λ, counted as many
times as R/P appears as some Mi+1/Mi. We count this number by localizing
at P . In this case, we have a filtration of MP , where all terms collapse except
for those in which (Mi+1/Mi)P ∼= (R/P )P , and the number of such copies is
exactly the length of MP .

Lemma 11.2.5 Let (R/m) be a Noetherian local ring, and let M and N be
finitely generated R-modules. Assume that I is an m-primary ideal. Let W
be the complement of the set of minimal prime ideals of maximal dimension.
If W−1M ∼=W−1N , then e(I;M) = e(I;N).

Proof: SinceMW
∼= NW , there is a homomorphism fromM toN such that the

cokernel C is annihilated by some element ofW . Tensoring the exact sequence
M → N → C → 0 with R/In yields an exact sequence that shows that the
length of N/InN is at most the sum of the lengths of M/InM and C/InC.
Since dimC < dimR, we obtain that eR(I;N) ≤ eR(I;M). Reversing the
roles of M and N finishes the proof.

Corollary 11.2.6 Let (R,m) be a Noetherian local domain, I an m-primary
ideal, and M a finitely generated R-module. Then e(I;M) = e(I;R) rkRM .
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Proof: Let W = R \ 0 and r = rkRM . Then r = dimW−1R(W
−1RM) and by

Lemma 11.2.5, W−1M ∼= Kr ∼=W−1Rr, and the corollary follows.

Theorem 11.2.7 Let (R,m, k) be a d-dimensional local Noetherian domain
with field of fractions K, let I be an m-primary ideal, and suppose that S is
a module-finite extension domain of R with field of fractions L. Then

eR(I) =
∑

Q∈Max(S),dimSQ=d

eSQ
(ISQ)[S/Q : k]

[L : K]
.

Proof: LetW = R\0. SinceW−1S ∼=W−1R[L:K], we can apply Lemma 11.2.5
to conclude that eR(I;S) = eR(I)[L : K]. On the other hand,

eR(I;S) = lim
n→∞

λR(S/I
nS)d!

nd
.

As every maximal ideal Q of S contains mS, the Chinese Remainder Theorem
implies that S/InS ∼=

∏
Q∈Max(S) SQ/I

nSQ. In particular, λR(S/I
nS) =∑

Q∈Max(S) λR(SQ/I
nSQ) =

∑
Q∈Max(S) λSQ

(SQ/I
nSQ)[S/Q : k]. Therefore

eR(I;S) equals

lim
n→∞

∑

Q∈Max(S)

λSQ
(SQ/I

nSQ)[S/Q : k]d!

nd

= lim
n→∞

∑

dimSQ=d

λSQ
(SQ/I

nSQ)[S/Q : k]d!

nd
.

Hence

eR(I) =
∑

Q∈Max(S),dimSQ=d

eSQ
(ISQ)[S/Q : k]

[L : K]
.

Example 11.2.8 Let (R,m) be a regular local ring of dimension d, and let
f ∈ m. Then e(R/(f)) = ord(f).

Proof: We will use that λ(mn/mn+1) =
(
n+d−1
d−1

)
, a polynomial of degree d−1

in n. This follows since the associated graded ring of R is a polynomial ring
in d variables.

By Discussion 11.1.6, it suffices to calculate the polynomial giving the length
of (mn+(f))/(mn+1+(f)). This module is isomorphic to m

n/(mn+1+((f)∩
m
n)) = m

n/(mn+1 + fmn−t), where t = ord(f). The equality (f) ∩ m
n =

fmn−t follows from the fact that the leading form of f in the associated
graded ring of R is a non-zerodivisor since this associated graded ring is a
polynomial ring, hence a domain. There is a short exact sequence,

0 → m
n−t/mn−t+1 f→m

n/mn+1 → m
n/(mn+1 + fmn−t) → 0.

Hence λ(mn/(mn+1 + fmn−t)) = λ(mn/mn+1) − λ(mn−t/mn−t+1), which
equals

(
n+d−1
d−1

)
−
(
n+d−t−1
d−1

)
, a polynomial of degree d − 2 with leading co-

efficient t
(d−2)!

.
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Proposition 11.2.9 Let (R,m) be a Noetherian local ring of dimension d,
M a finitely generated R-module, and I an m-primary ideal.
(1) If l is a positive integer, then e(I l;M) = lde(I;M).
(2) If I = (x1, . . . , xd), then for any l1, . . . , ld ∈ N>0, e((x

l1
1 , . . . , x

l2
d );M) =

l1 · · · ld e((x1, . . . , xd);M).

Proof: If dimM < d, all multiplicities are 0. So we may assume that dimM =
d. Part (1) follows from

e(I l;M) = lim
n→∞

d!

nd
λ(M/I lnM) = ld lim

n→∞
d!

(ln)d
λ(M/I lnM) = lde(I;M).

Part (2) follows immediately if d = 1. Now let d > 1. If (2) holds for
M = R/P , where P is a prime ideal, then by the Additivity and Reduction
Formula (Theorem 11.2.4) it also holds for M . Thus it suffices to prove (2) in
case M = R is an integral domain. It also suffices to prove the case l2 = · · · =
ld = 1. Set l = l1. Let I = (x1, . . . , xd) and J = (xl1, x2, . . . , xd). Let ( )′

denote images in R/xdR. By Proposition 11.1.9, eR(J ;R) = eR′(J ′;R′), and
eR(I;R) = eR′(I ′;R′). By induction on d, eR′(J ′;R′) = l eR′(I ′;R′), whence
(2) holds.

Theorem 11.2.10 (Lech’s Formula [182]) Let (R,m) be a d-dimensional
Noetherian local ring, M a finitely generated R-module, I = (x1, . . . , xd) an
m-primary ideal. Then

lim
n1,...,nd→∞

λ
(

M
(x

n1
1 ,...,x

nd
d

)M

)

n1 · · ·nd
= e((x1, . . . , xd);M).

(We mean limit as all ni go to infinity, along any path.)

Proof: We use induction on the dimension d. The case d = 1 follows from
the definition. So we may assume that d > 1.

By Proposition 11.1.10, for all ni > 0,

e((xn1
1 , . . . , xnd

d );M) ≤ λ(M/(xn1
1 , . . . , xnd

d )M).

Thus by Proposition 11.2.9,

e((x1, . . . , xd);M) = lim
n1,...,nd→∞

e((xn1
1 , . . . , xnd

d );M)

n1 · · ·nd
≤ lim
n1,...,nd→∞

λ(M/(xn1
1 , . . . , xnd

d )M)

n1 · · ·nd
.

We switch to the shorter notation J = (xn1
1 , . . . , xnd

d ). If 0 → K →
M → N → 0 is a short exact sequence of finitely generated R-modules,
then K/JK → M/JM → N/JN → 0 is exact, so that λ(M/JM) ≤
λ(N/JN) + λ(K/JK). Thus if 0 = M0 ⊆ M1 ⊆ M2 ⊆ · · · ⊆ Mn = M
is a prime filtration of M , then λ(M/JM) ≤∑n

i=1 λ(Mi/(JMi +Mi−1)). If
we know the theorem for cyclic modules R/P where P is prime, then

lim
n1,...,nd→∞

λ(M/JM)

n1 · · ·nd
≤

n∑

i=1

e((x1, . . . , xd);Mi/Mi−1) = e((x1, . . . , xd);M)
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by additivity of multiplicities, which proves the theorem for M . Thus it
suffices to prove the theorem in case M = R/P is a domain. If the dimension
of R/P is strictly less than d, then both sides of the formula are 0. Hence we
may assume that R/P has dimension d. We can then change R to R/P and
assume that R is an integral domain of dimension d. In particular, each xi is
a non-zerodivisor.

Set R′ = R/(x1). By induction on d,

lim
n2,...,nd→∞

λ(R′/(xn2
2 , . . . , xnd

d )R′)

n2 · · ·nd
= e((x2, . . . , xd)R

′;R′).

By Proposition 11.1.9, e((x2, . . . , xd)R
′;R′) = e((x1, x2, . . . , xd);R). By the

exact sequence

R

(x1, x
n2
2 , . . . , xnd

d )

x
n1−1

1−−−→ R

(xn1
1 , xn2

2 , . . . , xnd

d )
→ R

(xn1−1
1 , xn2

2 , . . . , xnd

d )
→ 0,

the length of R/(xn1
1 , . . . , xnd

d ) is at most n1λ(R/(x1, x
n2
2 , . . . , xnd

d )). Hence

lim
n1,...,nd→∞

λ
(

R
(x

n1
1 ,...,x

nd
d

)R

)

n1 · · ·nd
≤ lim
n1,...,nd→∞

n1λ
(

R
(x1,x

n2
2 ,...,x

nd
d

)R

)

n1 · · ·nd

= lim
n1,...,nd→∞

λ
(

R
(xn

1 ,x
n2
2 ,...,x

nd
d

)R

)

n2 · · ·nd
= e((x1, . . . , xd);R).

We end this section with a geometric interpretation of multiplicity. Sup-
pose that (R,m) is a Noetherian local domain of dimension d, containing
an infinite field. Suppose that for every system of parameters x1, . . . , xd
in R, there is a Noether normalization A = k[x1, . . . , xd] or a Cohen sub-
ring A = k[[x1, . . . , xd]] of R such that A ⊆ R is a module-finite extension.
(Noether normalization exists if R is an affine k-algebra, by Theorem 4.2.2,
and a Cohen subring exists if R is complete local, by the Cohen Structure The-
orem 4.3.3.) Set I = (x1, . . . , xd)A. By Corollary 11.2.6, e(IR) = rkA(R). By
Proposition 11.1.9, by induction on d, if x1, . . . , xd are a superficial sequence
in m, then e(IR) = e(m). In general, for arbitrary x1, . . . , xd, e(IR) ≤ e(m)
(as λ(R/In) ≤ λ(R/mn)). Superficial sequences arise from Zariski-open sets,
so that for all sufficiently general choices of x1, . . . , xd, the rank of R over
A is finite, and equal to e(m). Lipman summarized this point of view for
complex analytic rings in [189] as follows (we do not explain all the terms):
“For a (reduced) d-dimensional complex germ (V, 0) in Cm, and most linear
projections π: (Cm, 0) → (Cd, 0), with restriction ϕ: (V, 0) → (Cd, 0), almost
all fibers of ϕ near the origin have the same finite cardinality — the degree of ϕ
— which is greater than or equal to the multiplicity of (V, 0), with equality if
and only if the linear space π−1(0) has no point in common with the Zariski
tangent cone of V at the origin.” (The avoidance of the Zariski tangent cone
in our notation in the previous paragraph is guaranteed by the construction
of superficial elements.)
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11.3. Rees’s theorem

The goal in this section is to prove a famous result of David Rees concerning
the relationship between integral closures of ideals and multiplicity. A neces-
sary assumption in the statement of his theorem is that the ring be formally
equidimensional (cf. Exercise 11.5). One way to think about formally equidi-
mensional rings is that in such rings parameters are ‘true’ parameters, i.e.,
their images stay parameters after completing and going modulo the minimal
prime ideals. This is particularly relevant in work concerning integral closures
since the integral closure of an ideal is determined by the integral closure of
the image of the ideal in the completion of the ring modulo the minimal prime
ideals. Moreover, if one deals with m-primary ideals in local rings with infinite
residue field, then they are integral over ideals generated by parameters, and
it is important that the parameters be true parameters in the sense above.

Theorem 11.3.1 (Rees [234]) Let (R,m) be a formally equidimensional
Noetherian local ring and let I ⊆ J be two m-primary ideals. Then J ⊆ I if
and only if e(I) = e(J).

Proof: We present a proof due to Schaub [260]. If J ⊆ I, then J = I, and by
Proposition 11.2.1, e(J) = e(I).

Conversely, assume that e(I) = e(J). We use induction on the dimension
of R to prove the theorem. If the dimension is 0, then every proper ideal
is integral over every other proper ideal as all proper ideals are nilpotent.
Henceforth we assume that dim(R) > 0.

We reduce to the case in which R is a complete local domain with infinite
residue field and all powers of I and J are integrally closed. We first apply
reductions as in Section 8.4: by passing to S = R[X ]mR[X], e(IS) = e(I) =
e(J) = e(JS), and by Proposition 1.6.2, if JS and IS have the same integral
closure, so do I and J . Thus by possibly renaming R, we may assume that
R has an infinite residue field. Observe that we may also complete R: the

multiplicities do not change and since IR̂ ∩ R = I by Proposition 1.6.2,
we may descend the conclusion. Next we claim it is enough to prove the
theorem going modulo the minimal prime ideals of R (which we now assume
is complete). Let P1, . . . , Pn be the minimal prime ideals of R. The Additivity
and Reduction Formula for multiplicity, Theorem 11.2.4, shows that

e(I) =

n∑

i=1

e(Ii)λ(RPi
),

where Ii is the image of I in Ri = R/Pi. In general, the sum is taken over
all minimal prime ideals of maximal dimension, which under our assumptions
are all of the minimal prime ideals. Similarly, e(J) =

∑n
i=1 e(Ji)λ(RPi

). As
e(Ji) ≤ e(Ii) and e(J) = e(I), we must have that e(Ji) = e(Ii) for each i.
If we have proved the theorem for complete domains, then we can conclude
that Ji ⊆ Ii for each i. Now Proposition 1.1.5 shows that J ⊆ I. Since R is a
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complete domain, it is analytically unramified, and Corollary 9.2.1 shows that
there exists an integer k (respectively ℓ) such that for all n ≥ 1, (Ik)n = Ikn

(respectively (Jℓ)n = Jℓn). By replacing I by the integral closure of Ikℓ and
J by the integral closure of Jkℓ, we still will have that I is contained in J and
their multiplicities are the same. If we prove that Jkℓ ⊆ Ikℓ, then it follows
that J is in the integral closure of I. Hence we may assume that both I and
J are normal ideals, i.e., all powers of I and J are integrally closed.

Choose a superficial element x of I. By Lemma 8.5.3, there exists a positive
integer c such that for all n ≥ c, In : x = In−1. Thus for all n ≥ c, Icn :
xc = Ic(n−1). By replacing I with Ic, and correspondingly x with xc, and
J with Jc, we may assume that for all n ≥ 1, In : x = In−1. By ( )′ we
denote images in R/Rx. Lemma 11.1.7 implies that e(I ′) = e(I). Then we
have that e(I ′) ≥ e(J ′) ≥ e(J) = e(I), where the first inequality follows since
I ′ ⊆ J ′ and the second inequality follows from Lemma 11.1.7. This proves
that e(J ′) = e(J).

We claim that the image x∗ of x in grJ (R) is a non-zerodivisor in grJ (R)
of degree one. Obviously x ∈ J . Suppose that x ∈ J2. Then λ((Jn :
x)/Jn−1) ≥ λ(Jn−2/Jn−1), and the latter length is given by a polynomial
in n of degree d − 1 for large n. Using Lemma 11.1.7 this contradicts that
e(J ′) = e(J). Hence x /∈ J2, proving that x∗ has degree one in grJ(R).
Consider 0 : x∗ ⊆ grJ (R). The nth graded piece of this annihilator is
[((Jn+1 : x) ∩ Jn−1)/Jn]. Since e(J ′) = e(J), Lemma 11.1.7 implies that
this length is bounded by a polynomial of degree at most d − 2 in n. In
particular, 0 : x∗ has dimension at most d − 1 as a grJ (R)-module. This
means the dimension of grJ(R)/(0 : (0 : x∗)) is at most d − 1. For every
minimal prime ideal Q of grJ (R), dimgrJ (R)/Q = d by Proposition 5.4.8. It
follows that (0 : (0 : x∗)) is not contained in any minimal prime of grJ(R).
But grJ (R) has no embedded prime ideals. This follows from the fact that
grJ(R)

∼= R[Jt, t−1]/(t−1): if grJ (R) had an embedded prime, we could lift
this prime ideal to an embedded prime of (t−1) in the extended Rees alge-
bra R[Jt, t−1]. However, our reductions were made so that R[Jt, t−1] is an
integrally closed domain, and hence principal ideals have no embedded prime
ideals (Proposition 4.10.3, as R[Jt, t−1] is integrally closed, hence a Krull
domain). Thus 0 : x∗ = 0, so that x∗ is a non-zerodivisor.

By above, e(J ′) = e(I ′). Using our induction we can conclude that J ′ ⊆ I ′.
Then there exists an integer n such that (J ′)n = I ′(J ′)n−1. Lifting this
equality back to R, we obtain that Jn ⊆ IJn−1 + Rx ∩ Jn. Since x∗ is a
non-zerodivisor of degree one in grJ(R), Rx ∩ Jn = xJn−1. Hence Jn =
IJn−1 + xJn−1 = IJn−1, proving the theorem.

We can immediately extend Rees’s Theorem to ideals used in Theorem 5.4.1:

Corollary 11.3.2 (Böger [20]) Let (R,m) be a formally equidimensional
local ring, and let I ⊆ J be two ideals such that ℓ(I) = ht(I). Then J ⊆ I if
and only if e(IP ) = e(JP ) for every prime P minimal over I.
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Proof: By Ratliff’s Theorem 5.4.1, every associated prime ideal of I has
height at most the height of I; hence every such prime is minimal over I.
One direction of the corollary is clear: if J ⊆ I then e(IP ) = e(JP ) for all
minimal prime ideals P over I by a direct application of the easy part of
Theorem 11.3.1. Assume that e(IP ) = e(JP ) for all minimal prime ideals P
over I. To prove that J ⊆ I, it is enough to prove that JP ⊆ (I)P for all
associated prime ideals P of I, and all these are minimal by above. Another
application of Theorem 11.3.1 finishes the proof.

Discussion 11.3.3 We present Scheja’s treatment [261] of Rees’s Theorem
in the case of the ring containing a field. The assumption on the existence of
a subfield avoids the technicalities in the general proof, and makes Scheja’s
proof more accessible.

As in the proof of Rees’s Theorem 11.3.1, we reduce to the case in which
R is a complete domain with infinite residue field. It is this reduction that
uses the hypothesis that R be formally equidimensional. We may also replace
I by a minimal reduction of itself and J by I + Ry for some y ∈ J . Write
I = (x1, . . . , xd), where the dimension of R is d. Rees’s theorem comes down
to proving that y is integral over I if and only the multiplicities of I and
I +Ry are the same. When R contains a field, this question can be reduced
to the hypersurface case as follows.

Choose a coefficient field k ⊆ R, and set A = k[[x1, . . . , xd]] and B =
A[[y]] = A[y]. These are the complete subrings of R generated by the specified
elements. Of course, A is isomorphic to a power series ring in d-variables over
k, and R is module-finite over A. We let n be the maximal ideal of B and let
K = (x1, . . . , xd)B. The residue fields of R and B are the same. If r is the
rank of R as a B-module, then by Theorem 11.2.7, r · eB(K) = eR(KB) =
eR(I) = eR(J) = eR(nR) = r · eB(n), proving that eB(K) = eB(n).

If we prove the theorem for the ideals K ⊆ n in the ring B, it follows that
y is integral over K, and hence over I = KR. Write B ∼= A[T ]/(f(T )), where
f(T ) = T s+a1T

s−1+· · ·+as is a monic polynomial with ai ∈ A and f(y) = 0.
To prove that y is integral over K, it is enough to prove that ai ∈ Ki. Note
that e(n) = e(B) and e(B) is exactly the order of f(T ) thought of in the
power series ring k[[x1, . . . , xd, T ]], by Example 11.2.8. It is enough to prove
that this order is at least s, since this forces ai to be in (x1, . . . , xd)

iA. The
multiplicity e(K) is λ(B/K) as B is Cohen–Macaulay, and this is exactly s.
Since our assumption is that e(n) = e(K) = s, we have proved the result.

Discussion 11.3.4 For some time it was not known if there was a gener-
alization of the results of Rees and Böger to ideals I for which ht(I) 6= ℓ(I).
A generalization was proved by Gaffney and Gassler in 1999 [88, Corollary
4.9, p. 718] using Segre numbers. Another approach was taken in 2001 by
Flenner and Manaresi [76] using j-multiplicities. We give a brief review of j-
multiplicities from [10]. For additional information see [77]. We also benefited
from the presentation provided in Ciupercă [39] and [40].
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Let (R,m) be a Noetherian local ring and I an ideal of R. Let G be the
associated graded ring grI(R) of I, and set A = R/I, mA = m/I. Let Γ be
the submodule of G consisting of all elements that are killed by some power
of mA. Since G is Noetherian, there exists an integer k such that Γ is a
(G/mkAG)-module. If dimΓ < dimR, we define j(I) = 0. If dimΓ = dimR,
we define j(I) = e(M; Γ), where M is the unique homogeneous maximal ideal
of G/mkAG.

Since dimΓ ≤ dimG/mkG = dimG/mG = ℓ(I), it follows that if ℓ(I) <
dimR then j(I) = 0. Conversely, if ℓ(I) = dimR, then one can prove that
j(I) 6= 0. It is not difficult to prove that if I is m-primary, j(I) = e(I).

The theorem of Flenner and Manaresi [76] states:

Theorem 11.3.5 (Flenner and Manaresi [76]) Let I ⊆ J be ideals in a
formally equidimensional Noetherian local ring (R,m). Then I is a reduction
of J if and only if j(IP ) = j(JP ) for all prime ideals P .

A proof of this theorem is beyond the scope of this book. More on j-
multiplicities is in the book [77] by Flenner, O’Carroll, and Vogel.

Observe that Theorem 11.3.5 does recover Böger’s theorem (and therefore
also Rees’s multiplicity theorem) since if λ(I) = ht(I), then j(IP ) = 0 for all
prime ideals P not minimal over I, while if P ∈ Min(R/I), j(IP ) = e(IP ).

Discussion 11.3.6 Rees’s theorem gives algebraic and geometric meaning to
the zeroth coefficient, namely the multiplicity, in the Hilbert–Samuel polyno-
mial of an m-primary ideal I in a Noetherian local ring (R,m). Let d = dimR.

We can write PI(n) =
∑d
i=0(−1)d−ied−i

(
n−1+i

i

)
in standard form and spec-

ulate what meaning the other coefficients, e1, . . . , ed, might have. Such spec-
ulation led Shah [268] to prove the existence of unique largest ideals Ii such
that the first i + 1 Hilbert coefficients of I and i agree, namely such that
ej(Ii) = ej(I) for 0 ≤ j ≤ i. These ideals I0, . . . , Id are called the coefficient
ideals of I. Rees’s Theorem proves that I0 = I. The last coefficient ideal of
I, Id, is also known as the Ratliff–Rush closure of I (see [231] and [113]); it

is the largest ideal such that for all large N , IN = (Id)
N , often denoted Ĩ. It

plays an important role in the study of the Hilbert function of ideals. Liu [197]
extended the theory to modules. The coefficient ideal I1 is closely related to
the S2-ification of the Rees algebra of I; see [39] and [40]. One can also con-
sider the Hilbert–Samuel polynomials associated with the integral closures of
powers. See for example [211], [151], or [237].

11.4. Equimultiple families of ideals

In this section we give an algebraic overview of the “principle of specialization
of integral dependence”, introduced by Teissier in [294] and expanded upon
in [297, Appendice I]. Our treatment follows that of Lipman in [189]. We are
indebted to T. Gaffney for information about this topic (see Discussion 11.4.7).
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Throughout this section ϕ : (R,m, k) → (S, n, ℓ) is a local homomorphism
of Noetherian local rings. We assume that S is formally equidimensional and
that dimS = dimR + dim(S/mS). The second assumption is automatically
satisfied if, for example, S is flat over R (Theorem B.2.2).

We fix an ideal I in S of height c such that ϕ−1(I) = 0 and such that S/I
is a finitely generated R-module.

For all q ∈ Spec(R), define S(q) = S ⊗R κ(q), and I(q) = IS(q). Then
S(q)/I(q) ∼= (S/I) ⊗R κ(q). Since S/I is a finitely generated R-module,
S(q)/I(q) is a finitely generated κ(q)-module, hence is Artinian as a ring. We
may therefore think of I as a family of finite co-length ideals parametrized
by Spec(R). The main point of this section is to determine conditions that
guarantee and are forced by the property that this family of ideals generated
by ideal I in R is equimultiple, i.e., that eq(I) = em(I) for every prime ideal
q in R. The first lemma gives us the ability to talk about the multiplicities of
this family of ideals.

Lemma 11.4.1 Use the notation as above.
(1) S(q)/I(q)n is module-finite over κ(q).
(2) Let q ∈ Spec(R), and let Q be a prime ideal in S containing I and

contracting to q. (Such prime ideals always exist since R →֒ S/I is a
finite map.) Then c = dimS − dimR = dim(SQ/qSQ).

(3) There exists an integer eq(I) such that

dimκ(q)(S(q)/I(q)
n) =

eq(I)

c!
nc +O(nc−1).

(4) Explicitly,

eq(I) =
∑

I⊆Q,ϕ−1(Q)=q

[κ(Q) : κ(q)] e(I(SQ/qSQ)).

(5) (Semicontinuity) If q1 ⊆ q2 ∈ Spec(R), then eq2(I) ≥ eq1(I).
(6) If J is a reduction of I, then for all prime ideals q in R, eq(J) = eq(I).

Proof: Part (1) is clear using induction on n and the exact sequences,

0 → I(q)n−1/I(q)n → S(q)/I(q)n → S(q)/I(q)n−1 → 0.

To prove (2), note that dimR = dim(S/I) = dimS − ht(I). The first
equality holds since S/I is module-finite over R and the second holds since S
is formally equidimensional (Lemma B.4.2). Hence c = dimS − dimR.

By Theorem B.2.2, dim(SQ/qSQ) ≥ dimSQ− dimRq ≥ dimSQ+dim(R/q)
− dimR = dimSQ + dim(S/Q) − dimR (since S/Q is a finitely generated
R/q-module), and this latter sum is exactly dimS − dimR by assumption.
Therefore

dim(SQ/qSQ) ≥ dimS − dimR.

We prove the opposite inequality. Notice that dim(SQ/qSQ) is exactly the de-
gree of the polynomial that gives the length (over SQ) of SQ/(I

nSQ+qSQ) for
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large n. This length is less than or equal to the dimension of S(q)/I(q)n over
κ(q), which by Nakayama’s Lemma is the number of generators of (S/In)R\q
as an Rq-module, and this number is at most the number of generators of
S/In as an R-module. In turn, this number is equal to the dimension over k
of S/(In+mS), which is exactly [ℓ : k] times the length of S/(In+mS) as an
S-module. Finally, this length is given by a polynomial of degree dim(S/mS)
for large n. Comparing the degrees of the first polynomial, which gives the
length of SQ/(I

n+qSQ), and the last polynomial, which gives the k-dimension
of S/(In +mS), yields the inequality

dim(SQ/qSQ) ≤ dim(S/mS) = dimS − dimR.

Hence we obtain equality: dim(SQ/qSQ) = dimS − dimR = c.
We prove (3) and (4) simultaneously. Note that (S/In)R\q has finitely many

maximal ideals, all contracting to q, since (S/In)R\q is finite over Rq. The Chi-
nese Remainder Theorem shows that (S(q)/I(q)n) ∼=

∏
I⊆Q,ϕ−1(Q)=q(S/I

n +

qS)Q. Hence the dimension of S(q)/I(q)n over κ(q) is the sum of the dimen-
sions (over κ(q)) of (S/In + qS)Q as Q ranges over those prime ideals such
that I ⊆ Q and ϕ−1(Q) = q. The length of (S/In + qS)Q as an SQ-module

is given by a polynomial of the form
e(I(S/qS)Q)

c(Q)! nc(Q) + O(nc(Q)−1), where

c(Q) = dim(S/qS)Q. By (2), c(Q) = c. Hence the dimension of (S/In+ qS)Q

over κ(q) is given by a polynomial,
[κ(Q):κ(q)]·e(I(S/qS)Q)

c! nc+O(nc−1). Taking
the sum of these quantities proves both (3) and (4).

By Nakayama’s Lemma, the dimension of S(q)/I(q) over κ(q) is exactly
the number of generators of (S/In)R\q as an Rq-module. This clearly only
increases as we change q to a larger prime. The stated claim in (5) follows
because this number of generators is given by a polynomial of degree c for all

q, whose leading coefficient is
eq(I)
c! .

Part (6) follows immediately from (4) by applying Proposition 11.2.1 to-
gether with the fact that the set of prime ideals containing I and the set
containing J are the same.

Example 11.4.2 Consider the simplest non-trivial case, where R a one-
dimensional local domain. There are two multiplicities to consider, namely
e(0)(I) and em(I). The proof above shows that

µR(S/I
n) =

em(I)

c!
nc +O(nc−1) and rkR(S/I

n) =
e(0)(I)

c!
nc +O(nc−1).

Furthermore, em(I) = [ℓ : k]e(I;S/mS) by Lemma 11.4.1 (4).
We are interested in conditions that imply and are implied by em(I) =

e(0)(I). From the description above, equality holds if and only if

µR(S/I
n)− rkR(S/I

n) = O(nc−1).

Though we will not use this formulation exactly in what follows, it gives a
good idea of what issues one must expect.
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The first theorem below shows that if the family of ideals generated by
ideal I is equimultiple, then the analytic spread of I must be the height. We
later prove a partial converse.

Theorem 11.4.3 Let ϕ : (R,m) → (S, n) be a local homomorphism of
Noetherian local rings and let I be a proper ideal of S such that S/I is a
finitely generated R-module and such that ϕ−1(I) = 0. Assume that S is
formally equidimensional and further that dim(S) = dim(R)+dim(S/mS). If
for every prime ideal q of R, eq(I) = em(I), then ℓ(I) = ht(I).

Proof: We may assume that the residue field of S is infinite. We reduce
to the case in which R is complete. The map ϕ induces a map from the
completion R̂ of R with respect to the maximal ideal m to the completion Ŝ
of S with respect to n. Let Î = IŜ. Then Ŝ/Î = (S/I) ⊗R R̂ is a finitely

generated R̂-module, and R̂ → Ŝ/Î is injective, since R → S/I is injective

and R̂ is flat over R. As S is formally equidimensional, so is Ŝ. Moreover,
since dim R̂ = dimR, dim Ŝ = dimS, and dimS/mS = dim Ŝ/m̂Ŝ, we still
have that

dim Ŝ = dim R̂+ dim Ŝ/m̂Ŝ.

Finally, if Q is a prime ideal in R̂, and q = Q∩R, then for every integer n, we
have that Ŝ/În ⊗

R̂
κ(Q) = ((S/In)⊗R R̂)⊗R̂ κ(Q) = ((S/In)⊗R κ(q))⊗κ(q)

κ(Q), which implies that

eQ(Î) = eq(I) = em(I) = e
m̂
(Î).

Here we used that S/In is a finitely generated R-module. Thus all our as-
sumptions pass to the completions of R and S. If we prove the theorem in
this case, then we can conclude that ℓ(Î) = ht(Î). Since the analytic spread
of an ideal does not change under completion and neither does its height, we
reach the conclusion that ℓ(I) = ht(I).

Henceforth we assume that R and S are complete and S/n is infinite. The
ideal I + mS is n-primary as S/I is finite over R. Set c = dim(S/mS). We
can choose elements z1, . . . , zc ∈ I whose images in S/mS generate a minimal
reduction of the image of I in this ring. Set J = (z1, . . . , zc). We claim that
the height of J is c. To prove this, set d = dimR, and choose a system
of parameters x1, . . . , xd of R. Then the ideal (x1, . . . , xd, z1, . . . , zc)S is n-
primary, and the dimension of S is d+ c by assumption. Since S is catenary
and equidimensional it follows that the height of (z1, . . . , zc) is c as claimed.

To finish the proof it is enough to prove that J is a reduction of I. We
first observe that S/J is a finite R-module. This follows at once from [67,
Exercise 7.4, p. 203] or from [324, Corollary 2, p. 259], since R is complete
and S/(J + mS) is a finite (R/m)-module. By Lemma 11.4.1 (5), we know
that for every prime ideal q of R, eq(I) ≤ eq(J) ≤ em(J) = em(I), which
forces eq(I) = eq(J) for all prime ideals q of R.

Since J is generated by c elements and has height c, and S is formally
equidimensional, the only associated prime ideals of J all have height c and
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are minimal over J . (See Theorem 5.4.1.) Therefore to prove that J is a
reduction of I, it suffices to prove that IQ ⊆ JQ for all prime ideals Q that
are minimal over J . Set q = ϕ−1(Q). Since dimS/Q = dimS − c = dimR,
and since dimS/Q = dimR/q (as S/Q is finite over R/q), it follows that
dimR = dimR/q. Thus Rq is Artinian, and therefore qSQ is a nilpotent
ideal. Hence to prove that IQ ⊆ JQ, it suffices to prove the same containment
after passing to SQ/qSQ. Fix such a q. Since J ⊆ I, we know that every
prime Q contracting to q that contains I also contains J and furthermore
e(J(SQ/qSQ)) ≥ e(I(SQ/qSQ)). Using Lemma 11.4.1 (4) we have that

eq(I) =
∑

I⊆Q,ϕ−1(Q)=q

[κ(Q) : κ(q)]e(I(SQ/qSQ))

≤
∑

J⊆Q,ϕ−1(Q)=q

[κ(Q) : κ(q)]e(J(SQ/qSQ)) = eq(J).

By assumption eq(I) = eq(J). This equality forces the set of primes Q in each
sum above to be the same and furthermore e(J(SQ/qSQ)) = e(I(SQ/qSQ)).
Because qSQ is nilpotent, SQ/qSQ is formally equidimensional if and only if
SQ is formally equidimensional. But a localization of a formally equidimen-
sional ring is also formally equidimensional by Theorem B.5.2. An application
of Theorem 11.3.1 shows that I(SQ/qSQ) and J(SQ/qSQ) must have the same
integral closure.

Remark 11.4.4 Theorem 11.4.3 shows that if I is an equimultiple family,
then the analytic spread of I equals the height of I. By an abuse of language,
any ideal I in a local ring such that ℓ(I) = ht(I) has come to be called an
equimultiple ideal.

Theorem 11.4.5 Let ϕ : (R,m) → (S, n) be a flat local homomorphism
of Noetherian local rings and let I be a proper ideal of S such that S/I is
a finitely generated R-module and such that ϕ−1(I) = 0. Assume that S is
formally equidimensional. If ℓ(I) = ht(I), then for every prime ideal q of R
we have eq(I) = em(I).

Proof: We first prove the case in which R is a one-dimensional domain, and
then reduce the general case to this one. We need to prove that e(0)(I) = em(I)
assuming ℓ(I) = ht(I).

Lemma 11.4.6 Let the notation and assumptions be as in Theorem 11.4.5
above. Further assume that R is a one-dimensional Noetherian local domain,
the residue field of S is infinite, and choose a non-zero element x ∈ m. Then
λ((In :S x)/I

n) = O(nc−1).

Proof: The length of (In :S x)/I
n is finite since S/(I +mS) has finite length

and the radical of xS contains mS. By the Artin–Rees Lemma there exists
an integer k such that for all n ≥ k,

x(In :S x) = (x) ∩ In = In−k((x) ∩ Ik) = In−kx(Ik :S x).
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Since R is a domain, x is a non-zerodivisor in R and therefore is also a non-
zerodivisor in S, as S is flat over R. Hence (In :S x) = In−k(Ik :S x). Choose
a minimal reduction J of I. There will exist an integer k′ such that for all
n ≥ k′, (In :S x) = Jn−k

′

Ik
′−k(Ik :S x). Choose a generating set y1, . . . , yN

of Jn−k
′

. Set M = (Ik
′−k(Ik :S x))/I

k′ . There is a surjective homomorphism

M⊕N → (In :S x)/I
n → 0

sending an element α = (a1, . . . , aN) ∈ M⊕N to the image of a1y1 + · · · +
aNyN in (In :S x)/I

n. In particular, the length of (In :S x)/I
n is bounded

by λ(M) ·N . Since µ(J) = c, N is at most
(
n−k′+c−1

c−1

)
= O(nc−1).

We continue with the proof of Theorem 11.4.5 in case R is one-dimensional.
As in the lemma, choose x ∈ m\{0}. We calculate eS((x);S/I

n) in two ways.
First, using Proposition 11.1.9, eS((x);S/I

n) = λS(S/(I
n, x)) − λS((I

n :
x)/In), and hence by the lemma, eS((x);S/I

n) = λS(S/(I
n, x)) + O(nc−1).

However, λS(S/(I
n, x)) = eS(I;S/xS)

c! nc +O(nc−1), and by the Additivity and
Reduction Formula, Theorem 11.2.4,

eS(I;S/xS) =
∑

Q∈Min(S/xS)

eS(I;S/Q)λSQ
(SQ/xSQ).

We use that S is formally equidimensional to see that dimS/Q = dimS/xS
for every prime ideal Q in Min(S/xS). On the other hand, since R → SQ is
flat, we have that λSQ

(SQ/xSQ) = λR(R/xR)λSQ
(SQ/mSQ). We conclude

that

eS((x);S/I
n) = λR(R/xR) ·

∑

Q∈Min(S/xS)

eS(I;S/Q)λSQ
(SQ/mSQ)

= λR(R/xR)eS(I;S/mS),

the latter equality following by Theorem 11.2.4 and the fact that
√
xS =

√
mS.

On the other hand, Corollary 11.2.6 implies that eS((x);S/I
n) equals

[ℓ : k] eR((x);S/I
n) = [ℓ : k] eR((x);R) rkR(S/I

n) = λR(R/xR)e(0)(I).

The equality of eR((x);R) and λR(R/xR) holds since R is Cohen–Macaulay,
being a one-dimensional domain (see Proposition 11.1.10). We have proved
that [ℓ : k] eS(I;S/mS) = e(0)(I). By Lemma 11.4.1 (4), [ℓ : k] e(I;S/mS) =
em(I), proving e(0)(I) = em(I), and proving the one-dimensional domain case.

Using Exercise 8.28, there exists a local homomorphism R→ T , with kernel
q, such that T is a one-dimensional Noetherian local domain with field of
fractions κ(q), essentially of finite type over R, whose residue field L is a
purely transcendental extension of the residue field k of R.

We claim that there is a unique maximal ideal N in S ⊗R T = ST that
contains IST . Since ST /IST ∼= (S/I) ⊗R T is module-finite over T , every
maximal ideal of ST must contain the maximal ideal mT of T . Hence the
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maximal ideals correspond to maximal ideals in (S/(I +mS))⊗k (T/mT ). As
S/(I + mS) is Artinian local and T/mT is purely transcendental over k, the
claim follows.

Set S∗ = (ST )N . There is a natural map ϕ∗ : T → S∗. Note that ST is flat
over T by base change, and since S∗ is a localization of ST , the map T → S∗

is a flat local homomorphism of Noetherian rings. Set I∗ = IS∗. We have
S∗/I∗ = ST /IST (since ST /IST is already local), and hence S∗/I∗ = S/I⊗R
T is finite over T . Moreover, (ϕ∗)−1(I∗) = 0. To prove this, choose a prime
ideal I ⊆ Q in S with ϕ−1(Q) = q. We then get a natural homomorphism
from S/I ⊗R T → κ(q) whose kernel is a prime ideal contracting to q in R. It
follows that I∗ contracts to q in R and hence to 0 in T .

Recall that the field of fractions of T is κ(q). Hence for every integer n,

(S∗/(I∗)n)⊗T κ(q) = ((S/In)⊗R T )⊗T κ(q) = (S/In)⊗R κ(q)
and

(S∗/(I∗)n)⊗T T/mT = ((S/In)⊗R T )⊗T T/mT
= (S/In)⊗R T/mT
= ((S/In)⊗R k)⊗k T/mT .

It follows that e(0)(I
∗) = eq(R) and emT

(I∗) = em(I). But from the one-
dimensional case done previously, we know that emT

(I∗) = e(0)(I
∗), provided

we prove that ℓ(I∗) = ht(I∗) and that the map from T to S∗ satisfies our
other hypotheses. Since S∗/I∗ is finite over its subring T , we know that
dimS∗/I∗ = 1. Let Q be any non-maximal prime ideal of S∗ containing
I∗. Such Q correspond precisely to the maximal ideals in S∗ ⊗T κ(q) that
contain the image of I∗, hence to maximal ideals in S(q) = S ⊗R κ(q) that
contain I(q). But then dimS∗

Q = ht(I) = c. On the other hand, by flatness,
dimS∗ = dimT +dimS∗/mTS∗ = 1+dimS/mS = 1+dimS−dimR = 1+c.
Hence dimS∗

Q = c = dimS∗ − 1. Furthermore, ht I∗ = dimS∗ − 1 = c. But
ℓ(I∗) ≤ ℓ(I) = c = ht(I∗) ≤ ℓ(I∗) so that ℓ(I∗) = ht(I∗) as needed.

Discussion 11.4.7 Terence Gaffney communicated to us the following back-
ground on the Principle of Specialization of Integral Dependence:

The principle of specialization of integral dependence was first stated
and proved by Teissier in [294]. In Proposition 3.1 of [294], Teissier
considers the case in which X is a flat family of analytic spaces over
the open unit disk centered at the origin in C via a map G, IOX is a
coherent ideal sheaf on X , the cosupport of I finite over C, σ a section of
G, σ(C) = cosupport of I and the multiplicity of It = IOXt

independent
of t. He proved that in this case the exceptional divisor of the blowup of
X by I was equidimensional over D. In Corollary 3.2 of [294], he deduced
under these hypotheses that if f ∈ OX , and ft ∈ Īt, t 6= 0, then f ∈ Ī.
This became known as the principle of specialization of integral
dependence.
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In the appendix to [297] Teissier improved the theorem to:
Consider a reduced equidimensional family X → Y of analytic spaces,

and an ideal sheaf I on X with finite co-support over Y . Suppose h is
a section of OX so that for all t in a Zariski-open dense subset of Y the
induced section of OX(t) on the fiber over t is integrally dependent on the
induced ideal sheaf IOX(t). If the multiplicity e(IOX(t)) is independent
of t in Y , then h is integrally dependent on I.

In [189], Lipman proved algebraic theorems (his Theorems 4a and 4b) re-
lated to Teissier’s results, which we have given in this section with some mod-
ifications. Theorem 4a in [189] is reproduced in Theorem 11.4.5 and Theorem
4b of [189] is Theorem 11.4.3. In particular, Theorem 11.4.3 gives Teissier’s
principle of specialization of integral dependence result as a corollary. How-
ever, this implication is not obvious; the reader should consult [189] and [294]
for details.

In [88], the principle of specialization of integral dependence is extended to
modules of finite co-length ideals using the Segre numbers, while in [89] the
principle is extended to modules using Buchsbaum–Rim multiplicity. See [86]
and [87] for further work.

11.5. Exercises

11.1 Let P (t) =
∑d
i=0 ai

(
t−1+i
i

)
, where ai ∈ Q for i = 0, . . . , d. Assume

that P (n) ∈ Z for all integers n≫ 0. Prove that ai ∈ Z for all i.
11.2 Let R = k[[XU,XV, Y U, Y V ]], where k is a field and X, Y, U, V are

variables. Find the Hilbert–Samuel polynomial of the maximal ideal
of R, and compute the multiplicity of R.

11.3 Let R = k[[X1, . . . , Xn]], where k is a field. Set fi = Xai1
1 + · · ·+Xain

n

for i = 1, . . . , n, and aij > 0 integers. Assume that the ideal generated
by f1, . . . , fn is primary for the maximal ideal. Prove or disprove the
following: λ(R/(f1, . . . , fn)) = minσ∈Sn

{aσ(1)1 · · ·aσ(n)n}.
11.4 Let (R,m) be a regular local ring and let f1, . . . , fd be a system of pa-

rameters of R. Prove or disprove: λ(R/(f1, . . . , fd)) ≥
∏d
i=1 ord(fi).

11.5 Let (R,m) be a Noetherian local ring that is not formally equidi-
mensional. Prove that there exist m-primary ideals I ⊆ J such that
e(I) = e(J) but that I is not a reduction of J .

11.6 Let (R,m) be a complete Cohen–Macaulay local ring with e(R) = 2.
Prove that R ∼= S/(f), where S is a regular local ring and f ∈ S with
ord(f) = 2.

11.7 (Serre [267, Appendice II]) Let (R,m) be a Noetherian local ring of
dimension d, J = (x1, . . . , xd) an m-primary ideal, and X1, . . . , Xd

variables over A = R/J . Set B = A[X1, . . . , Xd], and let ϕ : B →
grJ(R) be the natural surjective map, sending Xi to the image of xi
in J/J2 ⊆ grJ (R). Let K = kerϕ. We know that K is N-graded.
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Suppose that λ(R/J) = e(J ;R).
(i) Prove that there exists a polynomial P (n) with rational co-

efficients of degree at most d − 2 such that for all n ≫ 0,
λ(Kn) = P (n).

(ii) Let F be a non-zero element of some component Kl of K. Let
S be the set of all monomials of B of degree n. Prove that
{Fα |α ∈ S} is a minimal generating set for F · [B]n over A.
Conclude that λ(F ·[B]n) is a polynomial of degree at least d−1,
which contradicts the inequality λ(F · [B]n) ≤ λ(Kn+l).

(iii) Prove that R is Cohen–Macaulay.
11.8 (Nagata [215, Theorem 40.6]) Let (R,m) be a Noetherian formally

equidimensional local ring. Assume that e(R) = 1. Prove that R is
regular. (Hint: reduce to the case that R has an infinite residue field,
is complete, and a domain; use Proposition 11.1.9.)

11.9 Let R = k[[tn1 , . . . , tnl ]], where k is field and 1 ≤ n1 ≤ n2 ≤ · · · ≤ nl
are integers. Prove that e(R) = n1.

11.10 Let (R,m) be a Cohen–Macaulay local ring. Prove that µ(m) ≤ e(R)+
dimR − 1.

11.11 (Lipman [189, page 121], where he credits Dade’s thesis [56]) Let
(R,m) be a Noetherian local ring, and P a prime ideal in R such that
R/P is regular.
(i) Prove that if ℓ(P ) = ht(P ), then R and RP have the same

multiplicity.
(ii) Assume that R is formally equidimensional and that R and RP

have the same multiplicity. Prove that ℓ(P ) = ht(P ).
11.12 Let (R,m) be a Noetherian local ring, and let I be an m-primary ideal.

Prove that the j-multiplicity j(I) equals the usual multiplicity e(I).
11.13 (Associativity Formula, cf. the Additivity and Reduction Formula

11.2.4) Let (R,m) be a Noetherian local ring and M a finitely gen-
erated R-module of dimension d. Let x1, . . . , xd ∈ m be a system of
parameters of R/ann(M). Set I = (x1, . . . , xd) and J = (x1, . . . , xs)
for some s ∈ {0, . . . , d}. Prove that

e(I;M) =
∑

P

e(I(R/P );R/P )e(JRP ;MP ),

where P varies over those prime ideals minimal over J for which
dim(R/P ) = d− s and htP = s.
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The conductor

The conductor of a ring plays a crucial role in integral closure of rings and
ideals. It was already introduced in Exercises 2.11 and 2.12, and we here
recall the definition.

Definition 12.0.1 Let R be a reduced ring with total ring of fractions K and
integral closure R. The conductor of R, denoted CR, is the set of all elements
z ∈ K that satisfy the property zR ⊆ R. In other words, CR = (R :K R).

Clearly CR ⊆ R and in fact CR is the largest common ideal of R and R
(Exercise 2.11).

Any x ∈ K can be written as a fraction of two elements of R, the denomina-
tor being a non-zerodivisor r ∈ R, so that rx ∈ R. Thus any finitely generated
R-module contained in K is multiplied by a non-zerodivisor r ∈ R into R. In
particular, if R is a finitely generated R-module, this gives an element in CR
that is a non-zerodivisor. Conversely, if CR contains a non-zerodivisor z, then
R ⊆ R · 1

z , and if R is Noetherian, this implies that R is a finitely generated
R-module. Because of this, generally when we speak of conductors we assume
that the integral closure of R is a finitely generated R-module.

By Lemma 2.4.2, the conductor CR = {x ∈ K |xR ⊆ R} can be naturally
identified with HomR(R,R).

We will prove several classic formulas concerning elements in the conduc-
tor. In the first section we prove a formula going back at least to Dedekind
that gives explicit elements in the conductor. Namely, let R be an integrally
closed domain and let R[z] be a separable extension of R, i.e., R[z] is an inte-
gral domain integral over R with field of fractions separable over the field of
fractions of R. Let f(X) be the minimal polynomial of z over R. Then the
conductor of R[z] always contains f ′(z).

In the Section 12.2 we present the case of one-dimensional rings and re-
late various length formulas involving the conductor to the property of being
Gorenstein. In that section we use some background on the canonical module
and on the Ext functor. A good reference is [29].

In Section 12.3 we prove a far-reaching generalization due to Lipman and
Sathaye of the classical result of Dedekind that has played an important role
in many aspects of the study of integral closure and of tight closure. More on
the tight closure aspect is in Chapter 13.
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12.1. A classical formula

The following theorem is well-known and goes back at least to the work of
Dedekind.

Theorem 12.1.1 Let R be an integrally closed domain with field of fractions
K. Let K ⊆ L be a separable algebraic field extension, and let z ∈ L be integral
over R. Set S = R[z], and set f(X) equal to the minimal polynomial of z
over R. Then f ′(z) ∈ CS.

Proof: By Theorem 2.1.17, f is the minimal polynomial of z over K. Label
the K-homomorphisms of K(z) into an algebraic closure of L as σ1, . . . , σd
(one of these is induced by the inclusion K(z) → L). Set zi = σi(z). The
roots of f(X) are exactly these conjugates. We let Tr : K(z) → K be the
trace. Let S be the integral closure of S in its field of fractions. Observe that
Tr(S) ⊆ R, since R is integrally closed and the elements of Tr(S) are integral
over R and are in K.

Fix u ∈ S. Note that

h(X) = Tr(u(f(X)/(X − z))) =
∑

1≤i≤d
σi(u)(f(X)/(X − zi)),

so that setting X = z we obtain that h(z) = u(z − z2)(z − z3) · · · (z − zd) =
uf ′(z). Since the coefficients of h(X) are traces of elements in S, h(X) ∈
R[X ]. It follows that uf ′(z) ∈ R[z]. Since u is arbitrary in S, this proves that
f ′(z) ∈ CS .

See Section 12.3 for generalizations due to Lipman and Sathaye.

12.2. One-dimensional rings

In this section we discuss the conductor of a one-dimensional Noetherian an-
alytically unramified local ring (R,m) with total ring of fractions K. In this
case we have shown in Corollary 4.6.2 that the integral closure of R is a
finitely generated R-module and in particular that the conductor CR contains
a non-zerodivisor in R. Since R is one-dimensional, it follows that CR is an
m-primary ideal.

We will use facts about the Ext functor and the canonical module in this
section. We refer the reader to Bruns and Herzog [29] for background.

Example 12.2.1 Let k be a field, t a variable over k, and let R = k[[ta, tb]] ⊆
k[[t]], where a and b are positive relatively prime integers. The integral closure
of R is R = k[[t]] and the conductor of R is the ideal of R generated by all
powers of t past some exponent c, and c is the smallest possible such value,
i.e., CR = (ti)i≥cR and tc−1 /∈ R. We claim that c = (a− 1)(b− 1).

Proof: Write 1 = na+mb and without loss of generality assume that n > 0.
Then m < 0. We choose such a representation with m as large as possible,
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but still negative. Since 1 = (n−a)b+(m+a)b, we must have that m+a ≥ 0,
and then as a and b are relatively prime that 1− a ≤ m.

Consider (a−1)(b−1)+i for i ≥ 0. As above we may write i + 1 = ea + fb
and assume without loss of generality that f < 0 and is as big as possible
staying negative, so that 1−a ≤ f . Then (a−1)(b−1)+i = ab−a−b+(i+1) =
b(a− 1)− a+ ea+ fb = b(a− 1 + f) + a(e− 1), and both a− 1 + f ≥ 0 and
e− 1 ≥ 0, proving that t(a−1)(b−1)+i ∈ R.

We claim that t(a−1)(b−1)−1 /∈ R. For suppose that (a−1)(b−1)−1 = ca+ db
with both c, d ≥ 0. We may assume that d ≤ a − 1. Hence b(a − 1 − d) +
a(−1 − c) = 0, which forces a to divide a − 1 − d. Since 0 ≤ d ≤ a − 1 this
implies that a− 1 = d, but then c = −1, a contradiction.

Theorem 12.2.2 Let (R,m) be a one-dimensional local analytically unram-
ified Gorenstein ring. Let K be the total ring of fractions of R and let R be
the integral closure of R in K with conductor CR. Then

2 · λR(R/CR) = λR(R/CR).

Proof: The discussion at the beginning of this section shows that R is a
finitely generated R-module and that CR is an m-primary ideal of R.

Since R is a one-dimensional Cohen–Macaulay module and R is Gorenstein,
Ext1R(R,R) = 0 (e.g., see Theorem 3.3.10 in [29]). As R/R has finite length,
HomR(R/R,R) = 0. This means that the long exact sequence induced from
applying HomR( , R) to the short exact sequence 0 → R → R → R/R → 0
gives the short exact sequence

0 → HomR(R,R) → HomR(R,R) → Ext1R(R/R,R) → 0.

By Lemma 2.4.2, we can identify CR with HomR(R,R) via the identifica-
tion of R with HomR(R,R). Hence we can identify R/CR ∼= Ext1R(R/R,R).
As R/R has finite length and R is Gorenstein, λ(R/R) = λ(Ext1R(R/R,R))
(Corollary 3.5.9 in [29] and duality). The theorem follows from the short
exact sequence of finite length modules

0 → R/CR → R/CR → R/R→ 0.

We will prove the converse of this theorem in Corollary 12.2.4.
The assumptions in Theorem 12.2.2 imply thatR has a canonical module ωR

that can be embedded into R (see Bruns and Herzog [29] for information about
ωR).

Theorem 12.2.3 Let (R,m) be a one-dimensional local analytically unram-
ified ring with infinite residue field and total ring of fractions K, conductor
CR and canonical module ωR. Then

λ(R/CR) ≥ 2 · λ(R/CR) + µ(ωR)− 1.

Proof: Without loss of generality ωR ⊆ R. We need to relate CR and ωR.
We use that

CR ∼= HomR(R,R) = HomR(R,HomR(ωR, ωR)) ∼= HomR(R⊗R ωR, ωR),
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where the first isomorphism is from Lemma 2.4.2 and the last isomorphism
is from Hom-tensor adjointness. Since ωR is torsion-free, all the torsion in
R⊗RωR is annihilated by any homomorphism to ωR, which means that we can
identify CR ∼= HomR(ωRR, ωR). As R has an infinite residue field and since
R is a principal ideal ring (see Exercise 12.11), we can choose a generic non-
zerodivisor x ∈ ωR such that x generates a minimal reduction of ωR as an ideal
in R and such that ωRR = xR. The inclusions xCR ⊆ xR ⊆ ωR ⊆ xR = ωRR
give the following length equalities:

λ(R/CR) = λ(xR/xCR) = λ(xR/ωR) + λ(ωR/Rx) + λ(Rx/xCR).

But λ(Rx/xCR) = λ(R/CR), and by Proposition 8.3.3, λ(ωR/Rx) ≥ µ(ωR)−
1. Apply HomR( , ωR) to the short exact sequence

0 → CR → R→ R/CR → 0

to obtain a short exact sequence

0 → HomR(R, ωR) = ωR → HomR(CR, ωR) = xR→ Ext1R(R/CR, ωR) → 0.

Since λ(Ext1R(R/CR, ωR)) = λ(R/CR) (by local duality, see Corollary 3.5.9
in [29]), it follows that λ(xR/ωR) = λ(R/CR), which finishes the proof.

Corollary 12.2.4 Let (R,m) be a one-dimensional local analytically unram-
ified ring with infinite residue field and total ring of fractions K, conductor
CR, and canonical module ωR ⊆ R. Then R is Gorenstein if and only if

2 · λ(R/CR) = λ(R/CR).

Proof: If R is Gorenstein, then the length formula holds by Theorem 12.2.2.
Conversely, if the length equality holds, then the inequality of Theorem 12.2.3
proves that µ(ωR) − 1 = 0, i.e., that ωR is principal. This means that R is
Gorenstein.

12.3. The Lipman–Sathaye theorem

Theorem 12.1.1 was vastly generalized to finitely generated extensions of
Cohen–Macaulay rings by Lipman and Sathaye [194]. This generalization
is important because of its applications to tight closure theory and results
concerning the so-called Briançon–Skoda Theorem. We begin by establishing
some notation.

Remark 12.3.1 Throughout this section R denotes a Cohen–Macaulay
Noetherian domain of positive dimension. We let X1, . . . , Xn be variables
over R and we set T = R[X1, . . . , Xn]. We assume that R ⊆ S = T/P for
some prime ideal P in T with P ∩ R = 0. We let K be the field of fractions
of R and we assume that the field of fractions L of S is a finite and separable
field extension of K. If g1, . . . , gn ∈ P , we let gX denote the determinant
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of the Jacobian matrix whose (i, j)th entry is ∂gi
∂Xj

. By Definition 4.4.1, the

Jacobian ideal of S/R is J = JS/R = {gX | g1, . . . , gn ∈ P}S.
Proposition 12.3.2 Adopt the notation of Remark 12.3.1.
(1) L = K[X1, . . . , Xn]/PK, where PK is the image of P in K[X1, . . . , Xn].

In particular, TP = K[X1, . . . , Xn]PK
is a regular local ring of dimension

n and the height of P is n, the number of variables.
(2) Let Q ∈ Spec T with P ⊆ Q. If g1, . . . , gn ∈ P and (g1, . . . , gn) : P 6⊆ Q,

then JQ = gXSQ.
(3) If g1, . . . , gn ∈ P , then gX /∈ P if and only if (g1, . . . , gn) : P 6⊆ P , i.e., if

and only if g1, . . . , gn generate P generically.
(4) The Jacobian ideal J is generated by elements gX such that g1, . . . , gn is

a regular sequence in P and such that (g1, . . . , gn) : P 6⊆ P .

Proof: After inverting the non-zero elements ofR, we have thatK ⊆ S⊗RK ⊆
L. As L is a finite field extension of K, it follows that S ⊗R K is a domain
integral over a field, hence is itself a field. As the field of fractions of S is L,
we must have that S ⊗R K = L. As P ∩ R = 0 and K[X1, . . . , Xn]/PK is a
field, we see that TP = K[X1, . . . , Xn]PK

is a regular local ring of dimension
n, and the height of P is n, the number of variables.

To prove (2), note that (JS/R)Q = JSQ/R by Corollary 4.4.5. Since PQ =
(g1, . . . , gn)Q we can use g1, . . . , gn to compute the Jacobian ideal to obtain
that JQ = gXSQ.

First suppose that (g1, . . . , gn) : P 6⊆ P . By (2), JP = gXSP , so it suffices
to prove that JP 6= 0. This follows immediately from Theorem 4.4.9 since by
assumption L is separable over K.

Conversely, if gX /∈ P , then Theorem 4.4.9 shows that (T/(g1, . . . , gn))P
is regular. But (T/(g1, . . . , gn))P = (K[X1, . . . , Xn]/(g1, . . . , gn))P is regular,
and RP∩R = K is regular, so necessarily (g1, . . . , gn)P is generated by part
of a minimal generating set of PP . Moreover, since Jacobian ideals are well-
defined, the height of (g1, . . . , gn)P must be n, so that (g1, . . . , gn)P = PP and
hence that (g1, . . . , gn) : P 6⊆ P . This proves (3).

To prove (4), it is enough to prove that given any g1, . . . , gn ∈ P there exist
h1, . . . , hn ∈ P such that h1, . . . , hn form a regular sequence and such that
gX ≡ hX modulo P . As the height of P is n and T is Cohen–Macaulay, by
using Prime Avoidance we can find hi ≡ gi modulo P 2 such that h1, . . . , hn
form a regular sequence. It is clear that with such a choice gX ≡ hX modulo
P . The condition that (g1, . . . , gn) : P 6⊆ P is automatically satisfied by any
set of gX that generate J , since by (3), (g1, . . . , gn) : P 6⊆ P if and only if
gX /∈ P , i.e., if and only if gXS 6= 0. However, since (g1, . . . , gn) + P 2 =
(h1, . . . , hn)+P

2, Nakayama’s Lemma shows that (g1, . . . , gn) : P 6⊆ P if and
only if (h1, . . . , hn) : P 6⊆ P . This proves (4).

Definition 12.3.3 We say that g = g1, . . . , gn ∈ P are acceptable if gX /∈ P
and g1, . . . , gn form a regular sequence, or equivalently, if g1, . . . , gn form a
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regular sequence and (g) : P 6⊆ P .

Remark 12.3.4 Assume that g1, . . . , gn ∈ P are acceptable. We define
an S-homomorphism ϕg : ((g1, . . . , gn) : P )/(g1, . . . , gn) → L as follows: if

u ∈ (g1, . . . , gn) : P represents a class u ∈ ((g1, . . . , gn) : P )/(g1, . . . , gn),

define ϕg(u) =
u′

g′
X

, where we use ( )′ to denote images in L. We set Mg to

be the image of ϕg.
A key point in the theorem of Lipman and Sathaye is the following:

Proposition 12.3.5 Adopt the notation and assumptions of Remarks 12.3.1
and 12.3.4. Let g and h be acceptable sequences. Then Mg =Mh.

Proof: For two acceptable sequences g and h in T = R[X1, . . . , Xn] we define
a distance ρ(g, h) between them as the minimum integer s such that for some
invertible matrices E1 and E2 with coefficients in T and for some ws+1, . . . , wn
in T , g E1 = (g′1, . . . , g

′
s, ws+1, . . . , wn) and hE2 = (h′1, . . . , h

′
s, ws+1, . . . , wn).

We prove the proposition by induction upon ρ(g, h). If ρ(g, h) = 0, then it
is easy to check that Mg = Mh as there is an invertible matrix E such that
g = hE.

We need to do the case ρ(g, h) = 1 separately. By possibly multiplying
by invertible matrices, we may assume without loss of generality that g =
(y1, . . . , yn−1, g) and h = (y1, . . . , yn−1, h). Let u ∈ (g) : P , and write

uh =
n−1∑

i=1

riyi + vg.

It is straightforward to check that u′

g′
X

= v′

h′
X

.

We claim that v ∈ (h) : P . Multiplying the displayed equation by an

arbitrary element z ∈ P yields zuh =
∑n−1
i=1 riyiz + vgz. As z ∈ P and

u ∈ (g) : P , there is an equation zu =
∑n−1
i=1 siyi + sg, and upon substitution

in the preceding equation one obtains that

g(sh− vz) ∈ (y1, . . . , yn−1).

Since ht(y1, . . . , yn−1, g) = n, the fact that R is Cohen–Macaulay guarantees
that (sh − vz) ∈ (y1, . . . , yn−1). It follows that vz ∈ (h), and hence that

v ∈ (h) : P . Note that Mg is generated by elements u′

g′
X

as u ranges over

generators of (g) : P . Since u′

g′
X

= v′

h′
X

, and v ∈ (h) : P , this proves that

Mg ⊆ Mh. By symmetry we obtain that Mh = Mg. This finishes the case

ρ(g, h) = 1.
Suppose that ρ(g, h) = m > 1. We may assume that gi = hi for i > m.

Using the Prime Avoidance Theorem we may choose an element h′1 = h1 +∑n
i=2 µihi such that all of the sequences g1, . . . , gi−1, h

′
1, gi+1, . . . , gn are

regular sequences for 1 ≤ i ≤ m. As g is acceptable, (g) : P 6⊆ P and there
is an element u ∈ (g) : P such that u /∈ P . Write uh′1 =

∑n
i=1 λigi. Some
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λi /∈ P for i ≤ m; otherwise we would have that uh′1 ∈ P 2 + (gm+1, . . . , gn) =
P 2 + (hm+1, . . . , hn)T , which contradicts the fact that h is acceptable and
hence that h′1, h2, . . . , hn form a minimal generating set of PTP . Fix i between
1 and m such that λi /∈ P , and let h′ = (g1, . . . , gi−1, h

′
1, gi+1, . . . , gn). Since

λi /∈ P , it follows that (h′) : P 6⊆ P , and by choice, these elements form
a regular sequence. Hence h′ is acceptable. By construction, ρ(g, h′) ≤ 1.
By the case in which the sequences are at most distance 1, we know that
Mg =Mh′ . In addition ρ(h′, h) < m. Hence there exists an integer l ≤ ρ(h′, h)
such that Mh′ =Mh. The proposition follows with k = l + 1.

Definition 12.3.6 If g is acceptable, we set KS/R =Mg.

Proposition 12.3.5 proves that KS/R does not depend upon the choice of
acceptable sequence g. The notation KS/R is meant to suggest a relative
canonical module, which is the role this module plays in the proofs.

Proposition 12.3.7 Adopt the notation of 12.3.1. Let g be an acceptable
sequence. Then
(1) The map ϕg : (g :T P )/(g) → L is injective. In particular, (g :T P )/(g) ∼=

KS/R.
(2) KS/R ⊆ (S :L JS/R).
(3) Assume further that S is normal. Then KS/R is a reflexive S-module.
(4) Assume that S is normal and that for every height one prime Q of S,

RQ∩R is regular. Then KS/R = S :L JS/R.

Proof: Let u ∈ (g :T P ) represent the class of an element u in (g :T P )/(g).
If ϕg(u) = 0, then u′ = 0 and hence u ∈ P . Thus the injectivity of ϕg is

equivalent to the statement that (g :T P )∩P = (g). The assumption that g be
acceptable means that (g :T P ) 6⊆ P . As ((g :T P ) + P )((g :T P ) ∩ P ) ⊆ (g),
it is enough to prove that (g :T P ) + P is not contained in any associated
prime of g. However, T is Cohen–Macaulay as R is Cohen–Macaulay and
(g :T P ) + P has height strictly greater than n = ht(g) since (g :T P ) 6⊆ P .
The last statement of the first part follows by the definition that KS/R =Mg,
which is the image of ϕg.

Let gX ∈ JS/R, where g is acceptable (recall that JS/R is generated by gX
as g runs over acceptable sequences by Proposition 12.3.2). It suffices to prove
that gXKS/R ⊆ S. Choose any element α ∈ KS/R. The definition ofMg then

yields the desired containment of (2).
Assume that S is normal. To proveKS/R is reflexive, it suffices to prove that

for an arbitrary acceptable sequence g, the module (g :T P )/(g) is reflexive.
As S is normal, it suffices to prove that this module satisfies Serre’s condition
(S2). LetQ be a prime in T containing P . If ht(Q/P ) ≥ 2, then depth(T/(g :T
P ))Q ≥ 1 since g is generated by a regular sequence and T is Cohen–Macaulay.
Likewise, depth(T/g)Q ≥ 2. The exact sequence

0 → ((g :T P )/(g))Q → (T/g)Q → (T/(g :T P ))Q → 0

then gives depth(g :T P )/(g))Q ≥ 2. If ht(Q/P ) ≤ 1, then the same exact
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sequence proves that (g :T P )/(g))Q is a maximal Cohen–Macaulay (T/P )Q-
module. Hence (g :T P )/(g) is reflexive.

By (2), KS/R ⊆ (S :L JS/R), and by (3), KS/R is a reflexive S-module.
To prove equality, it suffices to prove equality after localizing at an arbitrary
height one prime of S. Let Q be such a prime and set q = Q∩R. By assump-
tion, Rq is regular, and as S is normal, SQ is also regular. Lift Q to a prime in
Tq = Rq[X1, . . . , Xn], which we denote by Q′. Since TQ′ and SQ = TQ′/PQ′

are regular, PQ′ is generated by a regular sequence, say g1, . . . , gn, which we
may assume are in P . Then (g1, . . . , gn) : P 6⊆ Q′, and Proposition 12.3.2
(2) shows that (JS/R)Q = gXSQ. Hence (S :L JS/R)Q = (SQ :L (JS/R)Q) =

( 1
g′
X

)SQ. Choose u ∈ ((g1, . . . , gn) : P ) \Q′. Then ϕg(u) =
u′

g′
X

is in the image

of the map from K into S :L JS/R. This proves the needed equality at the
localization of every height one prime ideal of S and hence proves (4).

We next compare KS/R and KB/R when B is a finite extension of S with
the same field of fractions.

Remark 12.3.8 Adopt the notation of 12.3.1. Let B = S[y] ⊆ L be an
integral extension of S, where we assume that y /∈ S. Extend the map of T
onto S to an epimorphism ϕ : T [Y ] → B. Let Q be the kernel of ϕ. Clearly
Q ∩ T = P . Since the fields of fractions are the same, Q contains an element
aY − b (a, b ∈ T, a /∈ P ) and also Q contains a monic polynomial h(Y ) of
degree m with coefficients in T .

Suppose that g is an acceptable sequence for P . The sequence g∗ =
g1, . . . , gn, h is clearly a sequence in Q having height n + 1 and the Jaco-
bian g∗X,Y = gX

∂h
∂Y . If ∂h

∂Y /∈ Q, then g∗ is an acceptable sequence for Q.

Since a /∈ P = Q∩T , if ∂h
∂Y

∈ Q, then ∂(h+aY−b)
∂Y

= ∂h
∂Y

+a /∈ Q. Since m ≥ 2,
this change does not affect the fact that h is monic. Henceforth we assume
that ∂h

∂Y
/∈ Q.

We now have the map from ((g∗) : Q)/(g∗) → L given by v ∈ ((g∗) : Q)

goes to v′

(g∗
X,Y

)′ . We denote the image as above by Mg∗ .

Lemma 12.3.9 Let the notation be as above. Then Mg∗ ⊆ Mg. Precisely,

for every v ∈ T [Y ] with vQ ⊆ (g1, . . . , gn, h)T [Y ], there is an element u ∈ T
with uP ⊆ (g1, . . . , gn)T such that

v ≡ u
∂h

∂Y
modQ.

Proof: We can replace T by T/((g1, . . . , gn)T to assume that (g1, . . . , gn) = 0.
Write v = hw + a1Y

m−1 + a2Y
m−2 + · · ·+ am, where w ∈ T [Y ] and ai ∈ T .

Since v(Q∩ T ) ⊆ vQ ⊆ hT [Y ], this forces (Q∩ T )(a1Y m−1 + a2Y
m−2 + · · ·+

am) ⊆ hT [Y ], and so ai(Q ∩ T ) = 0 for 1 ≤ i ≤ m.
We must also have that v(aY − b) ∈ hT [Y ] and so (v − hw)(aY − b) is

divisible by h. This expression is a polynomial in Y of degree m with leading
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coefficient aa1, and hence (v − hw)(aY − b) = aa1h. Differentiating with
respect to Y gives that (v − hw)a ≡ a1a

∂h
∂Y

modulo Q. As a /∈ Q, it follows

that v − hw ≡ a1
∂h
∂Y

modulo Q, and as h ∈ Q, that v ≡ a1
∂h
∂Y

modulo Q.
Setting a1 = u gives the conclusion.

Theorem 12.3.10 (Lipman–Sathaye Theorem) Let R be a Cohen–Macaulay
Noetherian domain with field of fractions K. Let S be a domain that is a
finitely generated R-algebra. Assume that the field of fractions of S is separa-
ble and finite over K and that the integral closure S of S is a finitely generated
S-module. Furthermore, assume that for all prime ideals Q in S of height one,
RQ∩R is a regular local ring. Then

(S :L JS/R) ⊆ S :L JS/R.

In particular, JS/RS ⊆ S.

Proof: Write S = R[X1, . . . , Xn]/P for some variables X1, . . . , Xn over R
and some prime ideal P in T = R[X1, . . . , Xn]. By Proposition 12.3.2, JS/R
is generated by elements gX , where g is acceptable for S. Fix one such g.

We write S = S[y1, . . . , yl] and use Lemma 12.3.9 repeatedly. This lemma
shows that there is an acceptable sequence g∗ for S such that Mg∗ ⊆Mg. By

Proposition 12.3.7 we have an equality S :L JS/R = KS/R = Mg∗, and by

definition KS/R =Mg. Hence Mg∗ ⊆Mg gives that

S :L JS/R ⊆ KS/R ⊆ S :L J,

where the last containment follows from Proposition 12.3.7 (2).

See [124] and [141] for further generalizations of this theorem.

Remark 12.3.11 The assumption in Theorem 12.3.10 that S be module-
finite over S is often satisfied. For example, it is satisfied if R is regular
(Theorem 9.2.3), if R is finitely generated over a field (Theorem 4.6.3), if R
is finitely generated over the integers (Corollary 4.6.5), or more generally, if
R is excellent.

12.4. Exercises

12.1 Let k be a field, t a variable over k and R = k[t5, t7, t11]. Prove that
the integral closure of R is k[t] and find the conductor of R.

12.2 Let (R,m) be an one-dimensional analytically unramified domain.
Prove that every ideal in R that is contained in R is integrally closed.

12.3 Suppose that R is an analytically unramified local domain of dimen-
sion at least two. Prove that R is integrally closed if and only if there
exists a regular sequence of length two in the conductor.

12.4 Let R be an analytically unramified local domain of dimension one.
Prove that the conductor is never contained in a proper principal
ideal.
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12.5 Let R be an analytically unramified local Cohen–Macaulay domain.
Prove or give a counterexample to following open question: can the
conductor be contained in an ideal generated by a system of param-
eters?

12.6 Let R be an analytically unramified Cohen–Macaulay local domain
that is not integrally closed. Prove that the conductor has height one
and that all prime ideals in R minimal over it have the same height.

12.7 Let R be an analytically unramified local domain of dimension one.
Prove that the conductor is an integrally closed ideal.

12.8 (Delfino [61]) Let R be an analytically unramified local domain of di-
mension one with conductor C and canonical module ωR ⊆ R. Prove
that equality occurs in Theorem 12.2.3 if and only if ωR/CωR is a
free (R/C)-module.

12.9 Let R be a Noetherian domain with finitely generated integral clo-
sure S. Let D be a derivation from R to R. (D induces a derivation,
which we still call D, from the field of fractions of R back into itself.)
If R contains Q, prove that D takes S back into S.

12.10 Let R be a Noetherian domain with module-finite integral closure S.
Let D be a derivation from R to R. Let C be the conductor of S to
R. Prove that D(C) ⊆ C.

12.11 Let R be a Noetherian local reduced one-dimensional ring. Prove that
the integral closure of R is a principal ideal ring.

12.12 Let R be a finitely generated domain over a field k. The goal of this
exercise is to prove that the conductor of R is computable (even if R
is not known) if the field of fractions L of R is separable over k. There
exists a computable subset x1, . . . , xn ∈ R such that A = k[x1, . . . , xn]
is a polynomial ring and such that R is module-finite over A (this is
the (computable) Noether normalization; use Exercise 15.6). Let K
be the field of fractions of A.
(i) Prove that for any basis of L over K, its dual basis (with respect

to trace) is computable.
(ii) Prove that a basis of L over K is computable, and moreover,

that there exists a computable basis S consisting of elements
of R.

(iii) With S as above, let T be its dual basis. Prove that there exists
a non-zero computable element c ∈ R such that for all t ∈ T ,
ct ∈ R.

(iv) Prove that c is an element of the conductor. (Cf. Theorem 3.1.3.)
12.13 (Corso, Huneke, Katz, Vasconcelos [45]) Let R be a semi-local one-

dimensional Noetherian domain such that R is module-finite over R.
(i) Let C be the conductor of R ⊆ R. Prove that HomR(C,R) = R.

(Hint: use that R is a principal ideal domain.)
(ii) Prove that for any ideal I in R, (I−1)−1 ⊆ I.
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The Briançon–Skoda Theorem

In this chapter we prove several basic theorems regarding the comparison
of powers of an ideal with the integral closure of their powers. Results of
this type are called the Briançon–Skoda Theorems, and we present several
versions: one via tight closure, one due to Lipman and Sathaye, and a more
general “uniform” version due to Huneke for broad classes of Noetherian rings.
The Briançon–Skoda Theorem has played an important role in the develop-
ment of many techniques in commutative algebra. These developments range
from the theorem of Lipman and Sathaye, Theorem 13.3.3, to contributing
to the development of tight closure, as well as Lipman’s development of ad-
joint ideals. We also prove a theorem due to Shiroh Itoh concerning the
intersection of integral closures of powers of ideals with minimal reductions
(Theorem 13.2.4).

For additional Briançon–Skoda type theorems, see the joint reduction ver-
sion 17.8.7 of Rees and Sally, Lipman’s adjoint version 18.2.3, or papers Hyry
and Villamayor [148]; Aberbach and Huneke [2] and [3]; and references therein.

Let Od = C{z1, . . . , zd} be the ring of convergent power series in d variables.
Let f ∈ Od be a non-unit (i.e., f vanishes at the origin). The Jacobian ideal
of f is J(f) = (∂f/∂z1, . . . , ∂f/∂zd)Od (see Definition 4.4.1). Since f ∈ J(f)
by Corollary 7.1.4, by Corollary 1.2.2, J(f) ⊆ J(f) + (f) is a reduction, so
that there is an integer k such that fk ∈ J(f). John Mather first raised the
following question:

Question 13.0.1 Is there an exponent k that works for all non-units f?

Briançon and Skoda [26] answered this question affirmatively by proving
that the dth power of f always lies in J(f), where d is the dimension of the
convergent power series ring. To prove this they proved a stronger result
concerning the integral closures of ideals which was later generalized to the
case of regular local rings by Lipman and Sathaye [194] as follows:

Theorem 13.3.3 Let R be a regular ring. Let I be any ideal of R that is
generated by l elements. Then for any n ≥ 0,

In+l ⊆ In+1.

Although it is not immediately apparent why this theorem answers the
question of Mather, it does indeed provide an answer. This is because Od
is a (regular) local ring of dimension d with an infinite residue field, so that
by Proposition 8.3.7 and Corollary 8.3.9 any ideal I in Od has a reduction J
generated by d elements, whence for all n ≥ 0, In+d = Jn+d ⊆ Jn+1 ⊆ In+1.
Thus the uniform value of k sought by Mather can be taken to be k = d.
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Lipman and Bernard Teissier proved in [195] that the theorem as above
holds for pseudo-rational rings, but only in the case where I is generated by
a regular sequence. As a consequence they obtained that for any ideal I in
a pseudo-rational local ring of dimension d, Id+n ⊆ In+1. The full strength
of Theorem 13.3.3 was later recovered for pseudo-rational rings by Aberbach
and Huneke in [4].

The main results are in Sections 13.2, 13.3 and 13.4. Since Section 13.2 re-
lies on tight closure, we have to develop the basics of tight closure in positive
prime characteristic. This is done in Section 13.1. There is another reason for
presenting tight closure: tight closure is basic for understanding integral clo-
sure. To present the most general Briançon–Skoda-type results of Section 13.4
we also need to develop the basics of test elements and F-finiteness, both parts
of tight closure. We do this in the latter part of Section 13.1.

13.1. Tight closure

In this section we review the definition of tight closure in positive prime
characteristic p. We also define test elements and F-finite rings and prove
that under some conditions test elements exist in reduced F-finite rings.

The Frobenius map is the endomorphism F : R → R defined by F (r) =
rp. For an ideal I in a ring of characteristic p, if q = pe, the ideal I [q] is
generated in R by the eth Frobenius power of I, namely by the qth powers of
elements of I.

Definition 13.1.1 Let R be a Noetherian ring of prime characteristic p > 0
and let I be an ideal of R. An element x ∈ R is said to be in the tight
closure I∗ of I if there is c ∈ Ro such that for all large q = pe, cxq ∈ I [q].

The definition of tight closure should be compared to the characterization
of integral closure in Corollary 6.8.12, which states that an element x ∈ I if
and only if there is an element c ∈ Ro such that for all large n, cxn ∈ In.

Some basic properties of tight closure are given in the following theorem.

Theorem 13.1.2 Let R be a Noetherian ring of characteristic p and let I
be an ideal.
(1) (I∗)∗ = I∗. If I1 ⊆ I2 ⊆ R, then I∗1 ⊆ I∗2 .
(2) If R is reduced or if I has positive height, then x ∈ R is in I∗ if and only

if there exists c ∈ Ro such that cxq ∈ I [q] for all q = pe.
(3) An element x ∈ R is in I∗ if and only if the image of x in R/P is in the

tight closure of (I + P )/P for every minimal prime P of R.
(4) I∗ ⊆ I.
(5) If I is tightly closed, then I : J is tightly closed for every ideal J .
(6) If R is a regular local ring then I∗ = I for every ideal I ⊆ R.

Proofs of the first five parts are a straightforward application of the defini-
tions and we leave them to the reader. To prove (6) we need a lemma:
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Lemma 13.1.3 (Kunz [179]) If R is a regular local ring of positive and
prime characteristic, then the Frobenius map is flat.

Proof: It suffices to prove that TorRi (M,S) = 0 for any i > 0, any finitely
generated R-module M , where S equals R but its R-module structure is
via the Frobenius map. As R is a regular local ring, M has a finite free
resolution. Applying the Frobenius homomorphism (that is, tensoring with
S over R) simply raises the entries of (any) matrix in the resolution, which
gives a map between consecutive free modules to the pth power. In particular,
applying Frobenius homomorphism changes neither the ranks of the maps
nor the depths of the ideals of minors since it only changes the minors up
to radical. The Buchsbaum–Eisenbud Criterion ([32]) then proves that the
ensuing complex is exact. Hence TorRi (M,S) = 0 for i > 0 and it follows that
the Frobenius homomorphism is flat.

Proof of part (6) of Theorem 13.1.2: An important consequence of the flatness
of the Frobenius homomorphism is that for all ideals I and elements x of the
ring, I [q] : xq = (I : x)[q]. More generally, if R → S is a flat homomorphism
and if I ⊆ R and x ∈ R, then (I :R x)S = (IS :S x). This follows by tensoring

the exact sequence 0 → R/(I : x)
x→R/I → R/(I, x) → 0 with S. Applying

this with the eth iteration of the Frobenius map proves I [q] : xq = (I : x)[q].
Let (R,m) be a regular local ring and suppose that x ∈ I∗ for some ideal

I of R. There exists a non-zero element c such that cxq ∈ I [q] for all large
q = pe. Hence c ∈ ∩q(I [q] : xq). The flatness of the Frobenius homomorphism
gives that I [q] : xq = (I : x)[q]. If (I : x) 6= R, then c ∈ ∩qmq = 0, a
contradiction. Hence x ∈ I.

This is enough tight closure background for Section 13.2.
In Section 13.4 we will need additional results about tight closure. We

develop those below.

Definition 13.1.4 Let R be a Noetherian ring of positive prime characteristic.
A test element is an element c ∈ Ro such that for every ideal I of R and
every x ∈ I∗ (the tight closure of I), cx ∈ I.

Observe that if x ∈ I∗, then xq ∈ (I [q])∗ for all q = pe, so that if c is a test
element, cxq ∈ I [q] for all q. In other words, c can be used to test whether x
is in the tight closure of I.

Test elements play a central role in the theory of tight closure. A key point
is that they exist in abundance. Heuristically, one should think as follows: If
c ∈ R and Rc is regular, then every ideal is tightly closed in Rc, which implies
that for every ideal I some power of c multiplies I∗ into I. The next theorem
shows that this power can be chosen uniformly, giving us a test element.
See [128] for a more general result.

Definition 13.1.5 A ring of characteristic p such that R1/p is finite as an
R-module is said to be F-finite.
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Theorem 13.1.6 ([125, Theorem 3.4]) Let R be an F-finite reduced ring of
prime characteristic p and let c be any non-zero element of R such that Rc is
regular. Then a power of c is a test element.

We need a lemma first.

Lemma 13.1.7 Let R be an F-finite regular Noetherian ring of characteristic
p. Let d ∈ R. For all large q = pe there exists an R-linear homomorphism
f : R1/q → R with f(d1/q) = 1.

Proof: We first do the case in which R is local: Let (R,m) be an F-finite
regular local ring of characteristic p. Since R is regular, the Frobenius map is
flat, and hence R1/q is a flat R-module. As R1/q is finitely presented and R is
local, it is actually free. Let d ∈ R be non-zero. For sufficiently large q = pe,
m

[q] does not contain d. Taking qth roots yields that d1/q /∈ mR1/q. Since
R1/q is free over R it follows that one may use d1/q as part of a free basis of
R1/q. In particular, there is an R-linear homomorphism ϕ : R1/q → R that
sends d1/q to 1.

Now let R be a regular (hence reduced) ring that is not necessarily local.
Taking pth roots commutes with localization, so that R1/q will be projective
over R for all q = pe. Fix a maximal ideal m of R. There will be a power of p,
say q = q(m), depending upon m, such that d /∈ m

[q], and so d1/q /∈ mR1/q. By

the local case done above, there is a homomorphism from R
1/q
m to Rm sending

d1/q to 1. Clearing denominators one sees that there is an element rm /∈ m

such that there is an R-linear map ϕm : R
1/q
rm → Rrm sending d1/q to 1. The

ideal generated by all such rm is not contained in any maximal ideal so that
there are finitely many of them, say r1 = rm1

, . . . , rk = rmk
, that generate

the unit ideal. Set q = max{q(mi)}. Let m be an arbitrary maximal ideal of
R. Some ri is not contained in m, say r = r1. As there is an Rr-linear map

from R
1/q1
r → Rr sending d1/q1 to 1, there is such a map from R

1/q1
m → Rm.

In particular, d /∈ m
[q], which proves the existence of a uniform q.

The existence of such a q proves that for each maximal ideal m of R there

are an element r = rm and an Rr-linear map from R
1/q
r → Rr sending d1/q

to 1. For such r, there is Nr ⊆ N for which there is an R-linear map ϕr
from R1/q → R sending d1/q to rNr . There exists a finite number of such r
generating the unit ideal. If N is an integer larger than the corresponding
Nr, we may express 1 =

∑
sir

N
i for some si ∈ R. Then ϕ =

∑
siϕri is an

R-linear map taking d1/q to 1.

Proof of Theorem 13.1.6: The ring Rc is regular. Lemma 13.1.7 proves that
for every non-zero element d ∈ R there is a sufficiently high power of p, say

Q, such that there exists an Rc-linear map from R
1/Q
c to Rc sending d

1/Q to
1. Lifting back to R one obtains an R-linear map from R1/Q to R sending
d1/Q to a power of c. Taking d = 1 yields an R-linear map from R1/Q to R
sending 1 to cN for some N . The embedding of R1/p into R1/Q composed
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with this R linear map yields an R-linear map ϕ from R1/p to R sending 1 to
cN . Relabel this power of c as c. Then there is an R-linear map ϕ from R1/p

to R sending 1 to c.
We claim that for any such c, c3 is a test element. Let I be an arbitrary

ideal of R and let z ∈ I∗. There is an element d ∈ Ro, such that for all q,
dzq ∈ I [q]. From the results of the paragraphs above, there are a power q′ of
p and an R-linear map f from R1/q′ → R sending d1/q

′

to cN for some N .
In this case, cNzq ∈ I [q] for all q. Simply take (q′)th roots of the equation
dzqq

′ ∈ I [qq
′] to obtain that d1/q

′

zq ∈ I [q]R1/q′. Applying f yields that
cNzq ∈ I [q] for all q. We need to prove that this power N can be chosen
independently of the element z and the ideal I. Choose N least with the
property that cNzq ∈ I [q] for all q. Write N = p(⌊N/p⌋)+ i. Taking pth roots
yields that c⌊N/p⌋+i/pzq ∈ I [q]R1/p for all q. Hence c⌊N/p⌋+1zq ∈ I [q]R1/p for
all q. Applying ϕ we obtain that c⌊N/p⌋+2zq ∈ I [q] for all q. As N was chosen
least, necessarily ⌊N/p⌋+ 2 ≥ N . It easily follows that N ≤ 3.

13.2. Briançon–Skoda via tight closure

In this section we prove a version of the Briançon–Skoda Theorem for rings
in positive prime characteristic via tight closure. The standard method of
reducing to characteristic p also gives the same version for rings containing a
field. However, the process of reduction to positive characteristic is beyond the
scope of this book. We refer the reader to [126] for a systematic development
of this technique.

A recurrent theme in studying powers of integrally closed ideals is that
stronger theorems with easier proofs can often be given in positive character-
istic by making use of the Frobenius homomorphism.

As an application we prove a characteristic p version of the Huneke–Itoh
Theorem connecting powers of a reduction generated by a regular sequence
and integral closure of powers; see Theorem 13.2.4. A corollary, proved in
Corollary 13.3.5, is that in a two-dimensional regular local ring an integrally
closed ideal with a two-generated reduction has reduction number one. By
Proposition 8.3.7 and Corollary 8.3.9 this means that whenever the residue
field of a two-dimensional regular local ring is infinite, then every integrally
closed ideal has reduction number one.

Theorem 13.2.1 Let R be a ring of characteristic p. Let I be any ideal
generated by l elements. Then for all n ≥ 0,

In+l ⊆ (In+1)∗.

In particular, if R is regular or if every ideal of R is tightly closed, then
In+l ⊆ In+1 for all n ≥ 0.

Proof: Write I = (a1, . . . , al). By Equation (8.1.6) in Proposition 8.1.5, for
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all h ≥ 0, I lh+nh ⊆ (ah1 , . . . , a
h
l )
n+1Ih(l−1).

Let z ∈ I l+n. There exists an element c ∈ Ro such that czN ∈ I(l+n)N

for all N ≫ 1, by Corollary 6.8.12. By the above remarks, this latter ideal
is contained in (aN1 , . . . , a

N
l )

n+1IN(l−1). Put N = q = pe. We obtain that
czq ∈ (In+1)[q] by ignoring the term IN(l−1) in the containment of the line
above. Hence z ∈ (In+1)∗ as claimed. The last statement follows by applying
Theorem 13.1.2 (6).

This proof is amazingly simple. As mentioned above, one can use reduction
to characteristic p to assert the validity of this theorem for regular local rings
containing a field. A consequence of this theorem is that for regular local
rings there is a fixed choice of l that works for all ideals:

Corollary 13.2.2 If R is a Noetherian local ring with an infinite residue
field and of dimension d, then for all n ≥ 0 and for all ideals I,

Id+n ⊆ (In+1)∗.

If R is regular, then Id+n ⊆ In+1.

Proof: Each ideal I has a d-generated reduction J by Proposition 8.3.7 and
Corollary 8.3.9. By Theorem 13.2.1, In+d = Jn+d ⊆ Jn+1 ⊆ In+1.

We end this section with a theorem of S. Itoh [150]:

Theorem 13.2.3 (Itoh [150]) Let (R,m) be a Noetherian local ring and let
x1, . . . , xr be a regular sequence in R. Set I = (x1, . . . , xr). Then for all
n ≥ 1,

(x1, . . . , xr)
n ∩ In+1 = (x1, . . . , xr)

nI.

This theorem was proved at the same time independently by Huneke in [139]
for rings that contain a field. Huneke’s proof uses characteristic p methods
and by the standard reduction to characteristic p gives the theorem for rings
containing fields, whereas Itoh’s proof is harder but works in full generality.
Itoh also proved a similar theorem for systems of parameters in formally
equidimensional local rings [149]. The two proofs illustrate a theme from this
chapter: often results have easy proofs in positive characteristic, and then by
reduction to positive characteristic can be claimed for rings containing fields.
However, full generality usually requires other methods. We only give the
characteristic p proof below, but of a more general statement:

Theorem 13.2.4 Let R be a Noetherian ring of positive and prime charac-
teristic p and let x1, . . . , xr be a regular sequence in R. Set I = (x1, . . . , xr).
Then for all n ≥ 1 and all j = 1, . . . , r,

(x1, . . . , xj)
n ∩ In+1 = (x1, . . . , xj)

nI.

Proof: It is clear that (x1, . . . , xj)
nI ⊆ (x1, . . . , xj)

n ∩ In+1. We need to
prove the reverse containment. It suffices to prove the opposite containment
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after localizing at an arbitrary associated prime of (x1, . . . , xj)
nI. Since finite

intersections, products and integral closures commute with localization, we
may assume R is local.

If A = (a1, . . . , aj) with ai ≥ 0, we will write xA to denote xa11 x
a2
2 · · ·xajj .

We let |A| = a1+ · · ·+aj . If q is an integer we write qA = (qa1, . . . , qaj). Let

z ∈ (x1, . . . , xj)
n ∩ In+1 and write z =

∑
|A|=n rAx

A.

Choose c ∈ Ro such that for all large N , czN ∈ (x1, . . . , xr)
N(n+1), which

is possible by Corollary 6.8.12. Apply this last equation with N = q for large
q = pe. We obtain that

czq =
∑

|A|=n
crqAx

qA ∈ (x1, . . . , xr)
q(n+1).

Hence crqA ∈ ((x1, . . . , xr)
q(n+1) + (xqB |n = |B|, B 6= A)) : xqA, which

is contained in (x1, . . . , xr)
q since x1, . . . , xr form a regular sequence (Exer-

cise 13.1). It follows that rA ∈ I by Corollary 6.8.12.

The reason why characteristic p is so useful in considering powers of ideals
is apparent in the proof above. If we were not in positive characteristic, then
when computing zq in the proof above we would get terms involving all mono-
mials in x1, . . . , xr of degree nq instead of those involving qth powers. Pro-
ceeding as in the proof we could then only conclude that crqA ∈ (x1, . . . , xr),
which does not come close to what we need.

13.3. The Lipman–Sathaye version

For general rings, i.e., rings that do not necessarily contain a field, proofs of
the Briançon–Skoda Theorem require different techniques. In this section we
prove the general version due to Lipman and Sathaye. We first observe:

Lemma 13.3.1 Let R be a Noetherian domain and let ai, ti ∈ R for 1 ≤ i ≤
n. Set S = R[a1t1 , . . . ,

an
tn
]. Then t1 · · · tn is contained in the Jacobian ideal

JS/R.

Proof: Let f : R[X1, . . . , Xn] → S be the R-homomorphism determined by
sending Xi to ai

ti
. Let P be the kernel of f . Inside P are the n elements

gi = tiXi−ai. Since the height of P is n and P is prime, the element t1 · · · tn
is in JS/R.

This lemma almost suffices to prove the Briançon–Skoda Theorem 13.3.3
of Lipman and Sathaye when applied to the extended Rees ring of an ideal I.
However, the powers obtained are off by one, so we need a different and more
difficult statement.

Lemma 13.3.2 Let R be a regular Noetherian domain with field of frac-
tions K. Let L be a finite separable field extension of K and S a finitely
generated R-algebra in L with integral closure T . Let 0 6= t ∈ R be such that
R/tR is regular. If tS ∩R 6= tR,then JT/R ⊆ tT .
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Proof: First observe that T is a finitely generated S-module by Theorem 9.2.3;
in particular T is a finitely generated R-module so that the Jacobian ideal
makes sense. We can then drop S from our discussion, as both the conclusion
and hypothesis deal with T .

It suffices to prove that (JT/R)p ⊆ tTp for every associated prime ideal p
of tT . Thus we may replace T by V = Tp, since (JT/R)p = JTp/R, where
p is an associated prime of tT . We can further replace R by Rp∩R, which
we relabel as R. In other words it suffices to prove that JV/R ⊆ tV . Note
that V is no longer finitely generated over R, but it is a localization of a
finitely generated R-algebra. Since R is universally catenary, the Dimension
Formula (Theorem B.5.1) applies, and hence V is a rank one discrete valuation
ring of residual transcendence degree d − 1 over R, where d = dim(R). Set
R′ = V ∩ K, a rank one discrete valuation with the same field of fractions
as R. By Lemma 4.4.8, JV/R = JV/R′JR′/R, so that it suffices to prove that
JR′/R ⊆ tR′. Note that tS ∩ R ⊆ tR′ ∩ R, so that tR′ ∩ R 6= tR. Thus
without loss of generality, we can replace V by R′ and assume that V is a
rank one discrete valuation ring with the same field of fractions as R. Using
Exercise 9.9 there is a finite sequence of regular local rings, R = R0 ⊆ R1 ⊆
R2 ⊆ · · · ⊆ Rn = V , where each Ri is the local ring of a closed point on the
blowup of the maximal ideal of Ri−1. Necessarily n ≥ 1 since tV ∩ R 6= tR.
Set Ji = JRi/Ri−1

for 1 ≤ i ≤ n. By Lemma 4.4.8, JV/R = JnJn−1 · · ·J1.
We need to describe the ideals Ji. Set di = dim(Ri), and let mi be

the center of V on Ri. Fix a regular system of parameters x1i, . . . , xdii
for mi such that xi1V = miV . Since these regular systems of parameters
form regular sequences, Ri+1 is a localization of the ring Ri[

x2i

x1i
, . . . ,

xdii

x1i
] ∼=

Ri[X2i, . . . , Xdii]/(x1iX2i−x2i, . . . , x1iXdii−xdii), the isomorphism following
from Corollary 5.5.9. It follows that Ji+1 is generated by the single element
xdi−1
1i , and hence

JV/R = JnJn−1 · · ·J1 =

n∏

i=1

xdi−1
1i V =

n∏

i=1

(mi)
di−1V.

We inductively define a sequence of ideals as follows: I0 = tR, and Ii+1 =
Ri+1 if Ii = Ri; if not Ii+1 = IiRi+1(mi)

−1Ri+1, which is an ideal in Ri+1. By
construction, tV = In

∏
(mi)

ǫiV where ǫi is 1 if Ii 6= Ri, and is 0 otherwise.
Since (mi)

di−1V ⊆ (mi)
ǫi in any case, to finish the proof of the lemma it is

enough to prove that In = Rn.
Let vi be the order valuation of the ring Ri. We need only to prove that

vn−1(In−1) ≤ 1 since then either In−1 = Rn−1 or else In−1 = mn−1. By
induction on j we prove more generally that vj(Ij) ≤ 1 for all j < n. For j = 0
this holds since R/tR is regular, and hence v0(t) = 1. If vj(Ij) = 0 for some j,
then this is true for all larger values, so assume that vj(Ij) = 1. If Ij = x1jRj,
then Ij+1 = Rj+1. If not, after relabeling we may assume that Ij = x2jRj. It
suffices to prove that Rj+1/(

x2j

x1j
)Rj+1 is regular. This follows at once from the
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isomorphism Rj+1
∼= Rj [X2j, . . . , Xdij ]/(x1jX2j−x2j, . . . , x1jXdjj −xdjj) by

noting that Rj+1/(x1j,
x2j

x1j
)Rj+1 is isomorphic to a polynomial ring in dj − 2

variables over the residue field of Rj .

We are ready to prove:

Theorem 13.3.3 (Lipman and Sathaye [194]) Let R be a regular ring. Let
I be any ideal of R that is generated by l elements. Then for any n ≥ 0,

In+l ⊆ In+1.

Proof: We may localize and assume that (R,m) is a regular local ring. Write
I = (a1, . . . , al) and set S = R[t−1, a1t, . . . , alt], the extended Rees algebra
of I. Set B = R[t−1] and note that B is a regular Noetherian domain and
S is a finitely generated B-algebra with the same field of fractions. Letting
u = t−1 we also observe that B/uB is regular. We can apply Lemma 13.3.2
to get that JS/B ⊆ uS. Note that S = R[u, a1u , . . . ,

al
u ] = B[a1u , . . . ,

al
u ]. Thus

by Lemma 13.3.1, ul ∈ JS/B.

Since JS/B ⊆ uS, it follows that tS = u−1S ⊆ S : JS/B ⊆ S : JS/B, where

the last containment is the content of Theorem 12.3.10, using Remark 12.3.11.
Hence JS/BtS ⊆ S. Therefore ul−1S ⊆ S. By Proposition 5.2.4, the (n+ l)th

graded piece of S is In+ltn+l, so that ul−1In+ltn+l = In+ltn+1 ⊆ S. It follows
that In+l ⊆ In+1.

Corollary 13.3.4 Let R be a regular ring of dimension d. Let I be any ideal
of R. Then for any n ≥ 0,

Id+n ⊆ In+1.

Proof: We may localize R to prove the statement and assume that R is local.
By Lemma 8.4.2, replacing R by R(t) does not change the dimension of R nor
the fact that it is regular. Moreover, R(t) has an infinite residue field. If we
prove the result for R(t), then

Id+n ⊆ Id+nR(t) ∩R ⊆ In+1R(t) ∩R = In+1,

the last equality holding since R(t) is faithfully flat over R. Hence we may
replace R by R(t) and assume the residue field is infinite.

We may replace I by a minimal reduction J of I; in this case Id+n = Jd+n,
while Jn+1 ⊆ In+1. But a minimal reduction is generated by at most d
elements by Proposition 8.3.7 and Corollary 8.3.9, finishing the proof.

By combining Itoh’s Theorem 13.2.3 with the Briançon–Skoda Theorem of
Lipman and Sathaye, the following corollary is almost immediate.

Corollary 13.3.5 Let (R,m) be a two-dimensional regular local ring, and let
x, y be a system of parameters of R. Set I = (x, y). Then I2 = (x, y)I = I2.

Proof: By Theorem 13.3.3, I2 ⊆ (x, y), so that I2 = I2 ∩ (x, y) = (x, y)I,
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the last equality coming from applying Theorem 13.2.3. Since (x, y)I ⊆ I2 ⊆
I2 = (x, y)I, equality holds throughout.

13.4. General version

In Corollary 13.3.4, we proved that if R is regular of dimension d, then for
every ideal I ⊆ R, Id+n ⊆ In+1 for all n ≥ 0. Can we remove the assumption
that R is regular? The answer is certainly “no” if we insist on keeping the
dimension d in the equation. For example, in the hypersurface z2 − x5 − y7 =
0, z is integral over (x, y)2, and the dimension of this hypersurface is 2. The
conclusion of Corollary 13.3.4 or even the conclusion of Theorem 13.3.3 with
n = 0 would give that z ∈ (x, y), which is false.

Remarkably, however, for “good” rings there is always a uniform bound k
such that for all ideals I, Ik+n ⊆ In+1 for all n ≥ 0. This result is due to
Huneke [140]. In this section we prove it assuming Huneke’s result concerning
the uniform Artin–Rees Theorem, a theorem that is beyond the scope of this
book. We write its statement as we use it below in Theorem 13.4.2. For
additional results on this topic, see [64], [219], [220], and [250].

The main result in this section is that for all ideals I of R and for all n ≥ 1,
In+k ⊆ In if R is a reduced Noetherian ring that is either local containing
the rational numbers or F-finite of positive prime characteristic p (recall that
F-finite means that R1/p is finite as an R-module). A more general result is
in [140].

Definition 13.4.1 Whenever a ring R has the property that given two finitely
generated R-modules N ⊆M there exists a positive integer k such that for all
n ≥ 1 and all ideals I, In+kM ∩N ⊆ InN , we say that R has the uniform
Artin–Rees property.

We now quote without proof a uniform Artin–Rees Theorem from [140]:

Theorem 13.4.2 (Huneke [140]) Let R be a Noetherian ring. Let N ⊆ M
be two finitely generated R-modules. If R satisfies any of the conditions below,
then there exists an integer k such that for all ideals I of R and for all n ≥ 1

In+kM ∩N ⊆ InN.

(1) R is essentially of finite type over a Noetherian local ring.
(2) R is a reduced ring of characteristic p and R is F-finite.
(3) R is essentially of finite type over Z .

In order to use the uniform Artin–Rees property, we need to understand
the existence of elements that uniformly multiply In+k into In. We codify
such elements in the following definition:

Definition 13.4.3 Let R be a Noetherian ring. We define Tk(R) = ∩n,I(In :

In+k), where the intersection is over all positive integers n and all ideals I of
R. We set T (R) = ∪kTk(R). (It is easy to see that as k increases, the ideals
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Tk(R) also increase.)

An element c ∈ T (R) if and only if there is an integer k such that for all

ideals I, cIn+k ⊆ In. When considering the existence of such elements, it is
natural to assume that R is reduced: the nilradical

√
0 of R is contained in

the integral closure of every ideal, so that c ∈ T (R) would imply that c
√
0 is

in every ideal of R. This is not a useful condition to work with if R is not
reduced. We use these elements as follows:

Theorem 13.4.4 Let R be a reduced ring. Assume that T (R) is not con-
tained in any minimal prime of R and in addition assume that R has the
uniform Artin–Rees property. Then there exists a positive integer k such that
for all ideals I of R, In+k ⊆ In.

Proof: Let I be an ideal of R and let m be an integer such that Tm(R) is
not in any minimal prime ideal. Choose an element c in Tm(R) not in any
minimal prime. Let l be an integer such that for all n ≥ 1 and all ideals I,
In+l ∩ (c) ⊆ In(c). Let y ∈ In+m+l for some n ≥ 1. Then cy ∈ (c) ∩ In+l ⊆
In(c) by the uniform Artin–Rees property. Therefore y is in In, which gives
the theorem with k = m+ l.

This simple proof shows that there are two crucial components involved
in proving a general Briançon–Skoda Theorem: the existence of elements in
T (R) that are in no minimal prime ideal and a uniform Artin–Rees property.

We next give some criteria for T (R) to not be zero. We first consider the
case of positive characteristic; our results rest on the theory of test elements.
See the latter part of Section 13.1 for the background on test elements.

Proposition 13.4.5 Let R be Noetherian reduced ring of finite Krull di-
mension and of prime characteristic p with an infinite residue field. If R is
F-finite, then T (R) ∩Ro 6= ∅.
Proof: By Corollary 13.2.2, setting d = dim(R), we know that for every ideal

I of R that is primary to a maximal ideal, In+d is contained in (In+1)∗. By
Theorem 13.1.6, R has a test element c. Then c(In+1)∗ ⊆ In+1 and hence c
is in Td−1(R). Consequently T (R) 6= 0.

We next prove several results concerning the existence of elements in T (R)
in the case R contains the rational numbers. These results rely on the theorem
of Lipman and Sathaye, Theorem 13.3.3.

Lemma 13.4.6 Let R be a Noetherian ring of dimension d. Let k be a
positive integer and let c be an element c not in any minimal prime ideal of
R. Assume that for every ideal I primary to a maximal ideal and that for all
n ≥ 1, cIn+k ⊆ In. Then Tk(R) ∩Ro 6= ∅. In particular, T (R) ∩Ro 6= ∅.
Proof: Let J be an arbitrary ideal of R. For all positive l and all maximal
ideals m, c(Jn+k) ⊆ c((J +ml)n+k) ⊆ (J +m

l)n ⊆ Jn+m
l. Since this is true
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for all l and all m, it follows that c(Jn+k) ⊆ Jn.

Theorem 13.4.7 Let R be a regular domain of finite Krull dimension with
quotient field K and having infinite residue fields. Assume that the character-
istic of K is 0. Furthermore, let S be a finitely generated R-algebra containing
R that is a domain. Then T (S) 6= 0.

Proof: Write S = R[x1, . . . , xs, u1, . . . , uk]. We may assume that x1, . . . , xs
form a transcendence basis of the quotient field L of S over K and that
ui are algebraic over K(x1, . . . , xs). Each ui satisfies a polynomial Qi(Ui)
of minimal degree (though not necessarily monic) whose coefficients are in
B = R[x1, . . . , xs], which is a regular ring. As the characteristic of K is 0 and
the polynomials Qi are minimal degree, the derivative of Qi(Ui) evaluated at

ui is non-zero. Set c equal to the image of
∏k
i=1

∂Qi

∂Ui
in S. Note that c 6= 0.

We will show that c ∈ T (S).
Let I be any ideal of S that is primary to a maximal ideal M of S.

Set h = dim(S), so by Theorem 8.7.3, I is integral over an ideal J gen-
erated by at most h + 1 = l elements, say a1, . . . , al. Consider the ring
T = S[t−1, a1t, . . . , alt], the extended Rees algebra of J . The field of fractions
L(t) of T is finite and separable over the fraction field of B[t−1] and T is a
finitely generated B[t]-algebra contained in K(t). Furthermore, B[t−1] is a
regular Noetherian domain. Thus we may apply Theorem 13.3.3 to obtain
that JT/B[t−1]T ⊆ T , where T is the integral closure of T . Write T as a ho-
momorphic image of B[t−1][U1, . . . , Uk, X1, . . . , Xl], where Ui goes to ui and
Xi goes to ait. Call this map f . The kernel of f contains the polynomials
Qi(Ui) and the polynomials Wi(Xi, U1, . . . , Uk) = t−1Xi − Ai(U1, . . . , Uk),
where Ai(U1, . . . , Uk) is any polynomial in B[U1, . . . , Uk] that maps to ai un-
der the map f .

Consider the Jacobian ∂(Q1,...,Qk,W1,...,Wl)
∂(U1,...,Uk,X1,...,Xl)

. The image in T of the determi-

nant of this lower triangular matrix is ct−l and is contained in J . In particular,
this element multiplies T into T .

By Proposition 5.2.4, T = S[t−1, ISt, . . . , InStn, . . .], where S is the integral
closure of S. Since ct−lT ⊆ T , we obtain that ct−l(Intn) ⊆ T , so that for

n ≥ 1, c(In+l) ⊆ Jn ⊆ In. We note that c does not depend upon the ideal I.

Hence for every ideal I in S that is primary to a maximal ideal, c(In+l) ⊆ In

for all n ≥ l. Using Lemma 13.4.6 we obtain that T (S) 6= 0.

Theorem 13.4.8 (Huneke [140]) Let R be a Noetherian reduced ring. Then
there exists a positive integer k such that for all ideals I of R and all n ∈ N,
In+k ⊆ In if R satisfies either of the following conditions:
(1) R is an analytically unramified Noetherian local ring containing Q.
(2) R is of prime characteristic p and R is F-finite.

Proof: We first prove (2). By Proposition 13.4.5, T (R) ∩ Ro 6= ∅, so by
Theorem 13.4.4, we need only to see that R satisfies the uniform Artin–Rees
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property. This follows from Theorem 13.4.2, proving (2).
We next assume that R is an analytically unramified Noetherian local ring

containing the rational numbers. We first make some observations. To prove
the result for a ring R we may replace R by any faithfully flat reduced ex-
tension S of R, for if we can prove that the theorem holds in S, then since
ideals are contracted from S and the integral closure of an ideal remains in the
integral closure of the same ideal under any homomorphism, we may simply
descend the statement of the theorem from S to R. We may thus replace R by
its completion. Note that R remains reduced as R is analytically unramified.
R satisfies the uniform Artin–Rees condition by the previous theorem, so it
only remains to prove that T (R) ∩Ro 6= ∅, as above.

First consider S = R/P , where P is a minimal prime of R. We may
apply Theorem 13.4.7: S satisfies the assumptions of that theorem because
S is module-finite over a regular local ring by the Cohen Structure Theorem.
Theorem 13.4.7 then gives that for all minimal primes P , T (R/P ) 6= 0. Since
there are only finitely many minimal primes, there exist an integer k and
elements cP /∈ P such that cP (In+k) ⊆ In+P for all such P . Choose elements
dP /∈ P such that dPP = 0. This choice is possible since R is reduced. Set
c =

∑
cP dP , where the sum ranges over all minimal prime ideals of R. Note

that c ∈ Ro. Moreover, cP dP (In+k) ⊆ dP (I
n + P ) ⊆ In. This holds for each

minimal prime P , and hence c(In+k) ⊆ In, proving that T (R) ∩Ro 6= ∅.
Huneke proved in [140, Theorem 4.13], that the conclusion of the theorem

above also holds if R is reduced and essentially of finite type over an excellent
Noetherian local ring or over Z.

13.5. Exercises

13.1 Let R be a Noetherian ring, let x1, . . . , xr form a regular sequence in R
and let I = (x1, . . . , xr) be an ideal. Prove that ((x1, . . . , xr)

q(n+1) +
(xqB |B1 + · · · + Br = n,B 6= A)) : xqA ⊆ (x1, . . . , xr)

q, where the
notation is as in Theorem 13.2.4.

13.2 Let R be a Noetherian local ring of characteristic p and let I be an
ideal generated by a regular sequence of length d. Suppose that It is
contained in the ideal generated by all the test elements of R. Prove
for all k ≥ 0, Id+k+t ⊆ Ik+1. (See [148] for generalizations of this
exercise.)

13.3 Let (R,m) be a Noetherian reduced d-dimensional ring of characteris-
tic p. Suppose that the set of all test elements generates an m-primary
ideal (this is called the test ideal). Assume that the residue field of
R is infinite. Prove that there exists an integer t such that if I ⊆ m

t,
then In+d ⊆ In for all n.

13.4 Let R be a regular local ring containing an infinite field of positive
characteristic. Let I be an ideal of R having analytic spread ℓ and
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let J be an arbitrary reduction of I. Set h = bight(I). Prove that for

all n ≥ 0, In+ℓ ⊆ Jn+1(Jℓ−h)min. (Hint: Prove that there exists an
element f 6= 0 such that for all q = pe, fJ (ℓ−1)q ⊆ (Jℓ−h)[q].)



14
Two-dimensional
regular local rings

This chapter presents the theory of integrally closed ideals in regular local
rings of dimension two. This theory was begun by Zariski in his classic pa-
per [322], and can be found in [324, Appendix 5]. Zariski’s motivation was
to give algebraic meaning to the idea of complete linear systems of curves
defined by base conditions in which the curves pass through prescribed base
points with given multiplicities. The set of base points includes infinitely near
points; we will discuss these notions toward the end of the chapter. The work
of Zariski can be broken into two parts: first the study of a class of ideals
called full ideals, and secondly the study of quadratic transformations.
The latter allows changing of rings and usage of induction. All integrally
closed ideals are full, but not vice versa. Zariski’s work was considerably en-
hanced and extended by Lipman. We present a reciprocity formula due to
Lipman, which compares different divisorial valuations on a two-dimensional
regular local ring. We also prove the famous Hoskin–Deligne Formula, which
expresses the co-length of an integrally closed ideal in terms of the orders of
the transforms of the ideal at infinitely near points. Our treatment follows
that of [138]. For different approaches and generalizations see [183], [52], [57],
[53], [191], [192], and [237].

We begin with a definition and the statements of the two main results of
Zariski regarding the structure of integrally closed ideals in two-dimensional
regular local rings. These results are proved later in this chapter.

Definition 14.0.1 An ideal I is simple if I 6= J ·K, for any proper ideals
J,K. We write J | I if I = JK for some ideal K.

Theorem 14.4.4 (Zariski) In a two-dimensional regular local ring products
of integrally closed ideals are integrally closed.

Theorem 14.4.8 (Zariski) Let (R,m) be a two-dimensional regular local ring.
Then every non-zero integrally closed ideal I in R can be written uniquely
(except for ordering) as

I = al11 · · ·almm Ik11 · · · Iknn ,

where I1, . . . , In are simple m-primary integrally closed ideals, a1, . . . , am are
pairwise relatively prime irreducible elements of R, and l1, . . . , lm, k1, . . . , kn
are positive integers.
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14.1. Full ideals

Let (R,m, k) be a two-dimensional regular local ring with m = (x, y). Recall
that the order of m, denoted ordm( ), is the function that assigns to each
non-zero r ∈ R the largest integer k such that r ∈ m

k. For any non-zero
ideal I, ordm(I) = min{ord(r) | r ∈ I} = max{k | I ⊆ m

k}. In this chapter, by
abuse of notation we will denote ordm( ) also as ordR( ). When R is known
from the context, we will simply write ord( ).

Remarks 14.1.1 We will use freely the facts below.
(1) R is a unique factorization domain.
(2) Every finitely generated R-module M has finite projective dimension at

most two. In particular, if I is m-primary, then depth(R/I) = 0, and the
Auslander–Buchsbaum Formula shows that pdR(R/I) = 2. In this case,
the resolution looks like:

0 −→ Rn−1 −→ Rn −→ R −→ R/I −→ 0.
(To see that the last rank is n−1, tensor with the field of fractions of R.)
The resolution is minimal if and only if n = µ(I).

(3) grm(R)
∼= k[X, Y ] is a polynomial ring.

(4) The order function ord is a valuation by Theorem 6.7.9 (because grm(R)
is a domain).

(5) If ord(f) = n, then by f∗ we denote f +m
n+1 ∈ m

n/mn+1 ∈ grm(R). We
call f∗ the leading form of f .

(6) The greatest common divisor of the elements in

I +m
ord(I)+1

mord(I)+1
⊆ m

ord(I)

mord(I)+1
⊆ grm(R) ∼= k[X, Y ],

is called the content of I, and is denoted c(I). Note that c(I) is a
homogeneous polynomial in two variables, of degree at most ord(I). It is
uniquely determined up to a unit multiple.
For example, c(x, y) = 1, c(x2, xy3, y4) = X2, and c(xy2, x2y, y4, x4) =
XY .

(7) If I and J are non-zero ideals in R, then c(IJ) = c(I) · c(J) (as grm(R)
is a unique factorization domain).

(8) Let x ∈ m \ m
2, and let I be an m-primary ideal. Then R′ = R/(x) is

a one-dimensional regular local ring, so that λ( R
I+(x) ) = ordR′(I ′), where

I ′ = IR′. Consider the exact sequences

0 −→ I : m

I
−→I : x

I
−→ I : x

I : m
−→ 0,

0 −→ I : x

I
−→ R

I

x−→ R

I
−→ R

I + (x)
−→ 0.

Because length is additive on exact sequences, we get

ord(I) ≤ ordR′(I ′) = λ
( R

I + (x)

)
= λ

(I : x

I

)

= λ
(I : m

I

)
+ λ

( I : x

I : m

)
. (14.1.2)
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Lemma 14.1.3 Let (R,m, k) be a two-dimensional regular local ring, and
let I be an m-primary ideal of R. Then
(1) λ( I:mI ) = µ(I)− 1.
(2) µ(I) ≤ ord(I) + 1.
(3) For any x ∈ m \m2,

µ(I)− 1 ≤ ord(I) ≤ ordR′(I ′) = λ

(
R

I + (x)

)
= µ(I)− 1 + λ

(
I : x

I : m

)
.

Proof: We compute TorR2 (k, R/I) first using the resolution of k, then using
the resolution of R/I. Let m = (x, y). Then

0 −→ R

[
y
−x

]

−−−→R2 [x y ]−−−−−−→R −→ k −→ 0

is the projective resolution of k. Tensoring this resolution with R/I shows
that TorR2 (k, R/I)

∼= (I : m)/I. On the other hand, Remark 14.1.1 (2) shows
that the k-vector space dimension of TorR2 (k, R/I), which is the second Betti
number of R/I, is exactly one less than the minimal number of generators
of I. This proves (1).

A minimal free resolution of R/I has the form

0 −→ Rn−1 A−→Rn −→ R −→ R/I −→ 0,

where n = µ(I). The Hilbert–Burch Theorem A.4.2 gives that I = In−1(A).
In particular, ord(I) ≥ n− 1, since the entries of A are contained in m. This
proves (2).

Then by Inequalities (14.1.2), for any x ∈ m \ m
2, µ(I) − 1 ≤ ord(I) ≤

ordR′(I ′) = λ
(

R
I+(x)

)
= µ(I)− 1 + λ

(
I:x
I:m

)
, which proves (3).

Theorem 14.1.4 Let (R,m) be a two-dimensional regular local ring and let
I be an m-primary ideal.
(1) If x ∈ m \ m

2, then I : x = I : m if and only if µ(I) − 1 = λ( R
I+(x) ) =

ord(I). If x ∈ m
2, then I : x = I : m if and only if I = m.

(2) If x ∈ R is such that I : m = I : x, then µ(I) = ord(I) + 1.
(3) If µ(I) = ord(I)+1 and the residue field of R is infinite, then there exists

an element x ∈ m \m2 such that I : m = I : x.

Proof: By Lemma 14.1.3 (3), if x ∈ m \ m
2, I : x = I : m if and only if

µ(I)− 1 = λ( R
I+(x) ) = ord(I).

Suppose that x ∈ m
2 and that I : m = I : x. Since I is m-primary, there

exists e ∈ N such that me ⊆ I. Then I : m2 ⊆ I : x = I : m ⊆ I : m2, proving
that I : m = I : m2. Hence by induction, I : mc = I : m = R, which occurs
only if I = m. Conversely, if I = m, then I : x = R = I : m, which finishes
the proof of (1).

Suppose that x ∈ R such that I : m = I : x. If x ∈ R \ m, then I : m = I,
whence by induction for all n, I : mn = I, which contradicts the assumption
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that I is m-primary. So necessarily x ∈ m, and then the two parts of (1) prove
that µ(I) = ord(I) + 1. This proves (2).

To finish the proof, suppose that the residue field of R is infinite. Then there
are infinitely many linear forms in grm(R) that do not divide c(I). Choose any
x ∈ m\m2 whose leading form is one of these linear forms. Then there is f ∈ I
such that f 6∈ m

ord(I)+1 and such that the leading form of x does not divide
the leading form of f . Then ord(I) = ord(f) = ordR′(f + I) = ordR′(I ′),
where R′ = R/(x) and I ′ = IR′. By Lemma 14.1.3 (3) then µ(I) = ord(I)+1
implies that I : x = I : m, proving (3).

Definition 14.1.5 Let (R,m) be a two-dimensional regular local ring. If I is
an m-primary ideal such that there exists an element x ∈ R with I : m = I : x,
we say that I is full. (If R/m is infinite, this is the same as m-full, as in
Exercise 10.12.)

Full ideals play an important role throughout the rest of this chapter, so
understanding equivalent conditions for an ideal to be full is critical. The
next proposition summarizes some of these equivalent conditions. We then
prove that integrally closed ideals are full when the residue field is infinite.

Proposition 14.1.6 Let (R,m) be a two-dimensional regular local ring and
let I be an m-primary ideal. Then the following are equivalent for x ∈ m\m2:
(1) I : m = I : x.
(2) mI : x = I.

Proof: Assume (1). Clearly I ⊆ mI : x. To prove the opposite inclusion let
u ∈ mI : x. Write m = (x, y) for some y and ux = xi1+yi2 for some i1, i2 ∈ I.
Then x(u − i1) = yi2. Since x, y form a regular sequence, there exists an
element t ∈ R such that xt = i2 and yt = u− i1. But then t ∈ I : x = I : m,
giving that yt ∈ I and therefore u ∈ I, proving (2). Next assume (2). Since
I : m ⊆ I : x in any case, let u ∈ I : x. Clearly mu ⊆ mI : x, so that (2)
implies mu ⊆ I, and thus u ∈ I : m, proving (1).

If the residue field of R is infinite, then the existence of an element x ∈ m\m2

such that I satisfies the two conditions of Proposition 14.1.6 is equivalent to
the condition that µ(I) = ord(I) + 1, by Theorem 14.1.4 (2) and (3). An
important point to understand is which x satisfy these conditions.

Proposition 14.1.7 Let (R,m) be a two-dimensional regular local ring. Let
I be an m-primary ideal such that µ(I) = ord(I)+1, and let x ∈ m\m2. Then
the following are equivalent:
(1) λ( R

I+(x) ) = ord(I).

(2) I : x = I : m.
(3) mI : x = I.
(4) I is not contained in (x) +m

ord(I)+1.
(5) The leading form x∗ of x in grm(R) does not divide c(I).
(6) m

ord(I) ⊆ I + (x).
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(7) For all n ≥ 0, mn+ord(I) = Imn + xn+1
m

ord(I)−1.

Proof: (1) and (2) are equivalent by Theorem 14.1.4 (1). (2) and (3) are
equivalent by Proposition 14.1.6. Observe that x∗ does not divide c(I) if and
only if I is not contained in (x)+m

ord(I)+1, which holds if and only if ord(I) =
λ( R

I+(x) ) since R/(x) is a principal ideal domain, which holds if and only if

m
ord(I) and I have the same image in R/(x). This establishes the equivalence

of (1), (4), (5) and (6). Clearly (7) with n = 0 implies (6). Now assume that
(6) holds. Let r = ord(I). Since R is a regular local ring, xR ∩ m

r = xmr−1,
hence m

r ⊆ (I+xR) ∩ m
r = I+xR ∩ m

r = I+xmr−1 ⊆ m
r, and so equality

holds. This proves (7) in the case n = 0. If (7) holds for n, then m
n+r+1 =

Imn+1 + xn+1
m
r ⊆ Imn+1 + xn+1(I +xmr−1) = Imn+1 + xn+2

m
r−1, which

proves (7).

Theorem 14.1.8 Let (R,m) be a two-dimensional regular local ring with
infinite residue field and let I be an m-primary ideal. If I = I, then I is full.

Proof: (Cf. Exercise 10.11.) By the valuative criterion of integral closure,
Theorem 6.8.3, or by the existence of Rees valuations, I = ∩IV ∩ R, as
V varies over all Noetherian Q(R)-valuation domains containing R. Since
I is m-primary, R/I is Artinian, so a finite intersection suffices. Namely,
I = ∩ti=1IVi ∩ R, where V1, . . . , Vt are Noetherian valuation rings as above.
Without loss of generality mVi 6= Vi for all i. By Lemma 6.3.3 (2) there exists
x ∈ m such that xVi = mVi for all i = 1, . . . , t. We claim that I : x = I : m.

That I : m ⊆ I : x is obvious. Let u ∈ I : x, so that xu ∈ I. Then muVi =
xuVi ⊆ IVi for all i, so that mu ⊆ ∩i(IVi) ∩ R = I, whence I : x = I : m.
Thus I is full.

Example 14.1.9 Let m = (x, y).
(1) I = (x2y, x5, y5) is not full (and hence not integrally closed) since µ(I) =

3 6= 4 = ord(I) + 1.
(2) Integrally closed ideals are full, but the converse does not hold. For

example, let I1 = (x2, xy4, y5) and I2 = (x2, xy3, y5). Then µ(Ij) =
ord(Ij)+1 = 3, for j = 1, 2, so that by Theorem 14.1.4 (3), at least if the
residue field is infinite, both Ij are full. However, the integral closures
of I1 and I2 are the same, and so at least one of the two ideals is not
integrally closed.

We are now in a position to start a proof of Zariski’s two theorems by
proving analogs for full ideals. The first theorem that products of integrally
closed ideals remain integrally closed is true even when we replace “integrally
closed” by “full”. The second theorem concerning unique factorization is no
longer valid for full ideals, but a part of it does remain true if we simply con-
centrate on divisibility by the maximal ideal. The uniqueness of factorization
of integrally closed ideals into simple integrally closed ideals has two parts.
The first part is cancellation: if R is a two-dimensional regular local ring and
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I, J,K are integrally closed ideals, then IJ = IK implies that J = K. This
part is easy to prove: because I is faithful, by the Determinant Trick IJ = IK
implies that J and K have the same integral closure, and as J and K are both
integrally closed, they are equal. The second and far more difficult part is
divisibility: if a simple integrally closed ideal I divides the product of two
integrally closed ideals, it must divide one of them. We will prove that this is
true for I = m, and even for the product of full ideals.

Theorem 14.1.10 Let (R,m) be a two-dimensional regular local ring and
let I and J be full m-primary ideals. Let x ∈ m \ m

2. If I : x = I : m and
J : x = J : m, then IJ : x = IJ : m.

If the residue field is infinite and if I and J are full, then IJ is full.

Proof: Assume that I : x = I : m and J : x = J : m. Since x 6∈ m
2, R/(x)

is a discrete valuation ring of rank one, and so there exist f ∈ I and g ∈ J
such that (I+(x))/(x) = (f, x)/(x) and (J+(x))/(x) = (g, x)/(x). Therefore
I ⊆ (f, x), whence I = (f) + (x) ∩ I = (f) + x(I : x), and similarly, J =
(g) + x(I : x). It follows that IJ = (fg, gx(I : x), fx(J : x), x2(I : x)(J : x)).
Let u ∈ IJ : x. Then xu ∈ IJ , which implies that there is an equation

xu = fga+ gxb+ fxc+ x2d

with a ∈ R, b ∈ (I : x), c ∈ (J : x), and d ∈ (I : x)(J : x). Then
x(u − gb − fc − xd) ∈ (fg) which implies that u − gb − fc − xd ∈ (fg). As
(I : x) = (I : m) and (J : x) = (J : m) we obtain that um ⊆ gI + fJ + IJ ⊆
IJ , proving that IJ : x = IJ : m.

Now assume that the residue field is infinite and that I and J are full. There
exists x ∈ R such that I : x = I : m. By Theorem 14.1.4 (2), µ(I) = ord(I)+1.
Similarly, µ(J) = ord(J) + 1. As the residue field is infinite, there exists
z ∈ m\m2 whose leading form in grm(R) does not divide c(I) and c(J). Then
by Proposition 14.1.7, I : z = I : m and J : z = J : m, whence by the first
part IJ is full.

Corollary 14.1.11 Let (R,m) be a two-dimensional regular local ring and
let I be an m-primary full ideal. Then mI : m = I. In particular, if I and J
are m-primary full ideals and mI = mJ , then I = J .

Proof: Since I is full, there is an element x ∈ m such that I : x = I : m. If
x ∈ m

2, then by Theorem 14.1.4 (1), I = m, so clearly mI : m = I. Thus we
may assume that x ∈ m \m2. Then by Proposition 14.1.6, I = mI : x. Hence
I ⊆ mI : m ⊆ mI : x = I gives the required equality.

If mI = mJ , then J ⊆ mJ : m = mI : m = I, and by symmetry I ⊆ J ,
whence I = J .

Proposition 14.1.12 Let (R,m) be a two-dimensional regular local ring and
let I be an m-primary full ideal. Then the following are equivalent.
(1) I = m(I : m).
(2) I = mJ for some ideal J .
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(3) deg(c(I)) < ord(I).

Proof: Obviously (1) implies (2). Assume (2). By Remark 14.1.1 (7), c(I) =
c(m) · c(J) = c(J), forcing deg(c(I)) = deg(c(J)) ≤ ord(J) < ord(I), which
proves (3). Assume that deg c(I) < ord(I). Since I is full, there exists x ∈ m

such that I : x = I : m. By Theorem 14.1.4 (3) and by Lemma 14.1.3,
λ( I:mI ) = µ(I) − 1 = ord(I). The exact sequence 0 → I

m(I:m) → I:m
m(I:m) →

I:m
I → 0 then shows that

λ

(
I

m(I : m)

)
+ ord(I) = λ

(
I : m

m(I : m)

)
= µ(I : m) ≤ ord(I : m) + 1,

where the last inequality is by Lemma 14.1.3 (2) and the equality before
that is by Nakayama’s Lemma. If m(I : m) 6= I, then since in any case
ord(I) ≥ ord(I : m), necessarily λ( I

m(I:m)
) = 1 and ord(I) = ord(I : m). From

λ( I
m(I:m) ) = 1 we deduce that there is f ∈ I such that I = (f) + m(I : m).

From ord(I) = ord(I : m) we deduce that ord(m(I : m)) = ord(m) + ord(I :
m) = 1+ord(I), and so m(I : m) ⊆ m

ord(I)+1. It follows that c(I) = f∗, which
means that deg c(I) = ord(f) = ord(I), which contradicts the assumption
and proves (1).

In the example I = (x2y, xy2, x4, y4), ord(I) = 3, µ(I) = 4. By Theo-
rem 14.1.4 (3) this implies, if the residue field is infinite, that I is full. Since
c(I) = (XY ), deg c(I) = 2 < 3 = ord(I). Therefore I = m(I : m), and this
further factors as I = m · (xy, x3, y3) = m · (x, y2) · (y, x2).
Corollary 14.1.13 Let (R,m) be a two-dimensional regular local ring with
infinite residue field. Let I and J be full m-primary ideals. If m | IJ , then
m | I or m |J .
Proof: By Theorem 14.1.10, IJ is full. By Proposition 14.1.12, m | IJ implies
that deg(c(IJ)) < ord(IJ). Hence deg(c(I)) + deg(c(J)) < ord(I) + ord(J).
Either deg(c(I)) < ord(I) or deg(c(J)) < ord(J), and another application of
Proposition 14.1.12 shows that either m | I or m |J .

14.2. Quadratic transformations

In this section we discuss the ideal theory of quadratic transformations. Ge-
ometrically we are blowing up the spectrum of the ring at a closed point and
looking at various affine pieces of this blowup. We have used this in past
chapters, most extensively in Chapter 10. However, in the special case we
are considering of a two-dimensional regular local ring, this process can be
described quite simply.

Throughout this section we let (R,m) be a two-dimensional regular local
ring and x ∈ m \ m

2. We set S = R[mx ] =
⋃
n≥0

mn

xn . We refer to S as
a quadratic transformation of R. The localization of S at a height two
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maximal ideal that contains mS is called a local quadratic transformation
of R. This notation is not totally consistent with existing literature, which
often refers to the localization as a quadratic transformation of R, and may
also allow localization at a height one prime ideal of S.

We begin with some easy observations. First, if t is an indeterminate over

R, then S = R[ yx ]
∼= R[t]

P for some height one prime ideal P of R[t]. Since R is a
unique factorization domain, so is R[t], therefore P is principal. As xt−y ∈ P
and is irreducible, P = (xt−y). (See Corollary 5.5.9 for a more general result.)
Clearly xS = mS and for any n ∈ N, xnS ∩ R = m

nS ∩ R = m
n.

Ideals crucial for proofs of the theorems in this chapter are those that are
contracted from some quadratic transformation.

Definition 14.2.1 Let (R,m) be a two-dimensional regular local ring, and
I an ideal of R. If for some x ∈ m \ m2, IR[m

x
] ∩ R = I, then we say that I

is contracted from the quadratic transformation R[mx ]. We refer to I as a
contracted ideal if there exists a quadratic transformation from which I is
contracted.

Proposition 14.2.2 Let (R,m) be a two-dimensional regular local ring and
let I be an m-primary ideal. The following are equivalent.
(1) I is full.
(2) I is contracted.

Moreover, if I satisfies either of these conditions and if x ∈ m \m2, then I
is contracted from R[m

x
] if and only if I : x = I : m, and this holds if and only

if x∗ does not divide c(I).

Proof: First assume that I is contracted, i.e., that there exists x ∈ m \ m
2

such that IR[mx ] ∩ R = I. To prove that I is full, it suffices to prove that
I : x ⊆ I : m. Suppose that ax ∈ I for some a ∈ R. Then am ⊆ amR[m

x
]∩R =

axR[mx ] ∩R ⊆ IR[mx ] ∩R = I, which proves that I is full.
Conversely suppose that I is full. By definition there exists an element

x ∈ R such that I : m = I : x. Necessarily x ∈ m. If x ∈ m
2, then by

Theorem 14.1.4, I = m, whence I is contracted from the quadratic trans-
formation R[mz ], for every z ∈ m \ m

2. So we may assume that x 6∈ m
2.

Let u ∈ IR[mx ] ∩ R. Since R[mx ] = ∪nm
n

xn , there exists a non-negative inte-

ger n such that u ∈ I · mn

xn . Choose the smallest n with this property. If
n = 0, then u ∈ I, which is what we need to prove. By way of contradic-
tion, suppose that n > 0 and choose y such that m = (x, y). We have that
xnu ∈ m

nI = xmn−1I + ynI and we can write x(xn−1u− v) = ynw for some
w ∈ I and v ∈ m

n−1I. As x, yn are a regular sequence, there exists an element
t such that xn−1u − v = ynt and xt = w ∈ I. Hence t ∈ I : x = I : m, so
that ynt = yn−1(yt) ∈ m

n−1I. Consequently, xn−1u ∈ m
n−1I, implying that

u ∈ I · mn−1

xn−1 and contradicting the choice of n.
This also proves the first equivalence in the last part. By Theorem 14.1.4,

the two equivalent assumptions on I imply that µ(I) = ord(I)+1, so the last
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equivalence follows from Proposition 14.1.7.

Corollary 14.2.3 Let (R,m) be a two-dimensional regular local ring and
let I1, . . . , In be m-primary ideals. If x ∈ m \ m

2 and if I1, . . . , In are all
contracted from R[mx ], then I1 · · · In is contracted from R[mx ]. If the residue
field is infinite and if I1, . . . , In are all contracted, then I1 · · · In is contracted.

Proof: By Proposition 14.2.2, an ideal is contracted if and only if it is full.
By Theorem 14.1.10, the product of full ideals I1, . . . , In in both cases is full,
and hence contracted.

We determine the structure of a quadratic transformation in more detail.
Let k be the residue field of R and let S = R[mx ] for some x ∈ m \ m2. Then
SpecS is the disjoint union of Spec(S/xS) and Spec(Sx), i.e., the set of prime
ideals containing x and the set of prime ideals not containing x.

Since S ∼= R[t]
(xt−y) , then S/xS

∼= k[t], so that xS = mS is a prime ideal in S

and the maximal ideals in S contracting to m are in one-to-one correspondence
with irreducible polynomials in k[t]. If f ∈ S has an irreducible image in k[t],
then (x, f) is a maximal ideal in S, of height 2, so that S localized at (x, f)
is a regular local ring of dimension two. This proves that for all prime ideals
Q in S that contain x, SQ is regular.

Next consider Spec(Sx): since R ⊆ S ⊆ Rx, we see that Sx = Rx, and
Spec(Sx) = Spec(Rx). But Rx is a principal ideal domain, so Sx is also
regular.

In particular, for all Q ∈ SpecS, SQ is regular, so that S is regular. It is
also a domain since it is contained in the field of fractions of R. It follows
that S is a unique factorization domain.

If p ∈ SpecR, ht p = 1, and x 6∈ p, then px ∈ Spec(Rx) = Spec(Sx). The
prime ideal in S corresponding to this prime is pRx ∩ S. We analyze which
maximal ideals of S contain this height one prime.

Since R is a unique factorization domain, p = zR for some z. Of course,
S is also a unique factorization domain and we wish to find the generator of
pRx ∩ S. Fix ord(z) = r, write z = zr(x, y) + zr+1, where ord(zr+1) ≥ r + 1
and zr(x, y) is a homogeneous polynomial in x, y over R of degree r with
every non-zero coefficient a unit. Hence z

xr ∈ pRx ∩ S. Let α ∈ pRx ∩ S.
Then α = a

xn for some a ∈ m
n. Then xnα = a ∈ pRx ∩ R = p = (z). Thus

a ∈ (z) ∩ m
n = zmn−r, so that α = a

xn ⊆ zmn−r

xn S = z
xr S. This proves that

z
xr S = pRx ∩ S.
All the height two maximal ideals of S contain xS (as dimSx = dimRx =

1), and S/xS = S/mS ∼= k[t]. In S we may write

z

xr
=
zr(x, y)

xr
+
zr+1

xr
= zr

(
1,
y

x

)
+ x

( zr+1

xr+1

)
.

As S ∼= R[t]
(xt−y) under identification of y

x
with t, then S

pS+xS
is a homomorphic
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image of
S

( z
xr , x)S

=
S

(zr(1,
y
x
), x)S

∼= k[t]

(zr(1, t))
.

Hence there exist only finitely many maximal ideals containing ( zxr , x)S, which
correspond to the irreducible factors of zr(1, t).

However, zr(1, t) could be a unit — this occurs exactly when zr(x, y) = xr.
In this case, pRx ∩ S is a height one maximal ideal of S.

For a specific example, consider S = R[ y
x
], z = x2 + y3. Let y′ = y

x
. Then

in S, z = x2 + (y′)3x3 = x2 · (1 + (y′)3x), so (z)Rx ∩ S = (1 + (y′)3x)S is a
height one maximal ideal of S.

The discrete valuation ring of rank one obtained by localizing S at the
height one prime ideal xS is exactly the order valuation ordR of R, by Exam-
ple 10.3.1.

This example illustrates a very important theme — the divisorial valuation
rings with respect to a two-dimensional regular local ring (R,m), centered on
the maximal ideal of R, are obtained by finitely many successive quadratic
transformations. They are the discrete valuation rings of rank one associated
to the adic valuation with respect to the maximal ideal in the last quadratic
transformation in the sequence. In Section 14.5 we prove a correspondence
between two-dimensional regular local rings T with R ⊆ T ⊆ K and discrete
K-valuations of rank one centered on the maximal ideal of R.

14.3. The transform of an ideal

Let S be a unique factorization domain. Every ideal J in S can be written in
the form J = aK, where K is an ideal of height at least two (if K = S, we
say that the height of K is infinity). The element a is unique up to associates,
i.e., the ideal generated by a is unique since it is exactly the intersection of
the primary components of J having height one. The ideal K is also clearly
unique. When S is a unique factorization domain, such as a regular local ring,
then a factors uniquely (up to associates and order) into irreducibles. Unique
factorization of J occurs only rarely; the case of two-dimensional regular local
rings is proved in the following section.

Definition 14.3.1 Let R be a two-dimensional regular local ring and let I be
an m-primary ideal of R. Let S be a unique factorization domain containing
R. The transform of I in S is the unique ideal IS in S of height at least two
such that IS = aIS for some a ∈ S.

Example 14.3.2 Let R be a two-dimensional regular local ring, and let I
be an m-primary ideal of R. Write m = (x, y) and let S be the quadratic
transformation S = R[ y

x
]. Suppose that ord(I) = r. We can write IS = xrI ′,

where I ′ is an ideal of S. We claim that I ′ has height at least two, and
therefore is the transform of I in S. For if I ′ has height one, then it is
contained either in xS or in a height one prime Q of S of the form qRx ∩ S
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where q is a height one prime of R. If I ′ ⊆ xS, then I ⊆ xr+1S ∩R = m
r+1,

a contradiction. But if I ′ ⊆ Q then I ⊆ Q ∩ R = q, which contradicts the
assumption that I is m-primary.

Example 14.3.3 Let I = (xy, x3, y3) ⊆ k[x, y](x,y) = R. We let m be the
maximal ideal of R and identify grm(R) with k[X, Y ] as usual. The leading
form of x + y does not divide c(I) = XY , µ(I) = 3 = ord(I) + 1, so by
Proposition 14.1.7, I : (x + y) = I : m. Hence by Proposition 14.2.2, I is
contracted from S = R[ m

x+y
]. Write x′ = x

x+y
. Then IS = (x + y)2(x′ −

(x′)2, (x′)3(x+y), (x+y)(1−x′)3)S, hence IS = (x′− (x′)2, (x′)3(x+y), (x+
y)(1 − x′)3). The maximal ideals of S that contain IS bifurcate into two
groups — those containing x′ and those containing 1− x′. There are exactly
two such maximal ideals, (x′, x+ y) and (1− x′, x+ y).

A crucial point in our arguments is that the co-length of the transform of
an integrally closed m-primary ideal drops under quadratic transformations:

Lemma 14.3.4 Let (R,m) be a two-dimensional regular local ring and let
I be an integrally closed m-primary ideal of R. Suppose that x ∈ m \m2 such
that I is contracted from S = R[m

x
]. Then there is an R-module isomorphism

m
ord(I)/I ∼= S/IS.

In particular, λR(R/I) > λT (T/I
T ) for every local quadratic transforma-

tion T that is a localization of S.

Proof: Let r = ord(I). We know that mrS = xrS and that IS = xrIS, so to
prove the displayed isomorphism, it is enough to prove that mr/I ∼= m

rS/IS.
We prove that the natural map from m

r/I to m
rS/IS is an isomorphism. It is

injective because IS∩m
r = IS∩R∩m

r = I ∩m
r = I. By Proposition 14.2.2,

since I is contracted from S, I : x = I : m, hence by Theorem 14.1.4 (2)
and Proposition 14.1.7, mn+r = Imn + xn+1

m
r−1 for all n ≥ 0. An element

in m
rS is of the form a/xn for some n and some a ∈ m

r+n. Then we may
write a =

∑
ijbj + xn+1c, where ij ∈ I, bj ∈ m

n and c ∈ m
r−1. Then

a
xn =

∑
ij
bj
xn + xc ∈ IS + m

r, which proves surjectivity of the natural map
m
r/I → m

rS/IS.
The last statement of the lemma follows as λS(S/I

S) ≤ λR(S/I
S) =

λR(m
r/I) = λR(R/I)− λR(R/m

r) = λR(R/I)−
(
r+1
2

)
< λR(R/I).

Before applying this theory to integrally closed ideals, we need one more
fact about the transform of an ideal. This requires the concept of the inverse
transform of an ideal.

Definition 14.3.5 Let (R,m) be a two-dimensional regular local ring and let
S = R[ y

x
] be a quadratic transformation of R, where m = (x, y). Let J be an

ideal of S. The inverse transform of J is defined as follows. There is a least
integer a such that xaJ is extended from an ideal in R. We set I = xaJ ∩R
and call it the inverse transform of J .
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In the definition, I is the largest ideal of R whose extension is xaJ , as we
explain next. By assumption, xaJ = KS for some ideal K of R. Then K ⊆
xaJ ∩ R = I, and xaJ = KS ⊆ IS ⊆ xaJ gives equality throughout. Note
in particular that the inverse transform of an ideal in S is then contracted.
Moreover, if the height of J is two, then the height of the inverse transform
of J is also two.

Example 14.3.6 S = R[mx ],m = (x, y), let J ′ = ((y′)2 + x3, x4), where
y′ = y

x
. We compute the inverse transform of J ′: x2 ·J ′ = (y2+x5, x6)S. The

inverse transform is x2J ′ ∩ R ⊇ (y2 + x5, x6). These ideals are not equal as
(y2+x5, x6) is not full. In fact, x2J ′∩R = (y2+x5, x6, x5y) = (y2+x5, xy2, y3).

Proposition 14.3.7 Let (R,m) be a two-dimensional regular local ring and
I a simple full m-primary ideal of R that is different from m. Let x ∈ m \m2

such that I is contracted from S = R[mx ]. Then IS is contained in a unique
maximal ideal N of S and ISSN is simple.

Proof: We first prove that IS is simple. Suppose that there are proper ideals
J ′ and K ′ in S such that IS = J ′K ′. Let J (respectively K) be the inverse
transform of J ′ (respectively K ′), and choose integers a and b least such that
xaJ ′ = JS and xbK ′ = KS. Then xa+bIS = (xaJ ′)(xbK ′) = JKS. It
follows that ma+bIS = JKm

rS, where r = ord(I) (since IS = m
rIS). Since

I, J,K, and m are contracted from S, it follows by Proposition 14.2.2 and
Theorem 14.1.10, that the products of any of these ideals are contracted from
S as well. Thus m

a+bI = JKm
r. By Proposition 14.2.2, any products of

I, J,K and m are full as well. By Corollary 14.1.11, we can cancel the powers
of the maximal ideal from this equation. Hence either I = JKm

c or Imc = JK
for some non-negative c. In the first case or if c = 0 in the second case, the
simplicity of I gives that either J or K is R, and in the remaining case m

divides either J or K by Corollary 14.1.13. If, for example, m divides J , say
J = mL, then xaJ ′ = mLS = xLS implying that xa−1J ′ = LS, contradicting
the least choice of a. Hence IS is simple.

Since IS has height two, there are only finitely many maximal ideals of S
that contain it, say N1, . . . , Nt. Let q1, . . . , qt be the primary components of
IS corresponding to these primes. The Chinese Remainder Theorem shows
that IS = q1 · · · qt. Since IS is simple, necessarily t = 1, and so there is a
unique maximal ideal N containing IS. But if ISN were a product of two ideals,
so would IS be a product since IS is N -primary. Thus IS simple implies that
ISN is simple.

14.4. Zariski’s theorems

In this section we prove the two Zariski’s theorems stated in the introduction
to the chapter. The proof of the second theorem is simpler when the residue
field is infinite, so we prove that case first. The general case is proved at the
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end of the section. Namely, the proofs rely on full ideals, and full ideals can be
manipulated more easily if the residue field is infinite. By Lemma 8.4.2, if X is
a variable over a two-dimensional regular local ring (R,m), then R(X) is a two-
dimensional regular local ring with maximal ideal mR(X) and with infinite
residue field R(X)/mR(X) = (R/m)(X). Furthermore, by Lemma 8.4.2, for
any ideal I in R, I is integrally closed if and only if IR(X) is integrally closed.

Here is an easy consequence of the fact that integrally closed ideals are full:

Lemma 14.4.1 Let I be an integrally closed m-primary ideal in a two-
dimensional regular local ring (R,m). Then Imn is integrally closed for all
n ≥ 0.

Proof: As above, via Lemma 8.4.2, we may assume that R/m is infinite. It
suffices to prove the theorem for n = 1 by induction. We know that I is full by
Theorem 14.1.8, and Theorem 14.1.10 then shows that mI is also full. Since
the residue field is infinite, we may choose x ∈ m \ m2 such that x∗ does not
divide c(I). By Exercise 14.13, c(mI) = c(mI), so c(mI) = c(m)c(I) = c(I),
and x∗ also does not divide c(mI). But mI is full by Theorem 14.1.8, hence by
Proposition 14.2.2, mI : x = mI : m. By Corollary 6.8.7 then mI : x = I = I.

Let u ∈ mI. Going modulo xR we obtain a discrete valuation ring of rank
one so that u ∈ mI + xR, as every ideal is integrally closed in a discrete
valuation ring of rank one. Hence

u ∈ (mI+xR)∩mI = mI+xR∩mI = mI+x(mI : m) = mI+xI = mI.

Example 14.4.2 Let I = (x2, xy4, y5). Then I is full but I 6= I, since
xy3 ∈ I \ I. Consider the quadratic transformation S = R[my ]. Set x′ = x

y .

Then IS = ((x′)2y2, x′y5, y5) = y2 · IS, so that IS = ((x′)2, y3) and IS is
not full, let alone integrally closed. However, in the next proposition we will
prove that the transform of an integrally closed ideal is still integrally closed.

Proposition 14.4.3 Let R be a two-dimensional regular local ring, and let I
be an m-primary ideal of R. Suppose that I is integrally closed and x ∈ m\m2

such that I is contracted from S = R[mx ]. Then IS is integrally closed.

Proof: By Proposition 1.5.2, since S is integrally closed (being regular), to

check IS = IS, it is enough to prove that IS = xord(I)IS is integrally closed.
Hence it suffices to prove that IS = IS. Let u

xa ∈ IS, with u ∈ m
a. Then

u ∈ xaIS ⊆ xaIS = maIS and therefore u ∈ maIS ∩ R. It suffices to
prove that u ∈ m

aI. Set J = m
aI. Note that J is m-primary. There is an

equation un+ s1u
n−1+ · · ·+ sn = 0 for some si ∈ J iS = ∪t J

imt

xt . By clearing

denominators, there exists t ≥ 0 such that xtu ∈ mtJ = mt+aI = m
t+aI, the

last equality coming from Lemma 14.4.1. Since m
t+aI is contracted from S

by Corollary 14.2.3, it follows by Proposition 14.2.2 that u ∈ m
t+aI : xt =

m
t+aI : mt. By Corollary 6.8.7 then, u ∈ maI, and by Lemma 14.4.1, u ∈ maI,

which proves the proposition.
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Note that the proof above shows that if J is an m-primary integrally closed
ideal in R that is contracted from S, then JS ∩R = J .

We can now prove the first main theorem of Zariski that products of in-
tegrally closed ideals are integrally closed. Conceptually the proof is fairly
straightforward. We induct on the co-length of one of the ideals and pass to
a quadratic transformation of the ring.

Theorem 14.4.4 (Zariski) Let (R,m) be a two-dimensional regular local
ring and let I and J be integrally closed ideals in R. Then IJ is integrally
closed.

Proof: By Lemma 8.4.2, without loss of generality the residue field of R is
infinite. By unique factorization we may write I = aI ′ and J = bJ ′ for some
a, b ∈ R and some ideals I ′, J ′ in R that are either m-primary or R. By
Proposition 1.5.2 I ′ and J ′ are integrally closed ideals, and if I ′J ′ is integrally
closed, so is IJ . Thus it suffices to prove that I ′J ′ is integrally closed. By
changing notation, we may thus assume that ht I, htJ ≥ 2. If either I or J
is R, then clearly the theorem follows. So we may assume that both I and J
have height 2, so that they are both m-primary.

We use induction on λ(R/I) to prove the theorem. If λ(R/I) = 1, then
I = m. We proved in Lemma 14.4.1 that mJ is integrally closed. We may
thus assume that λ(R/I) > 1.

By Theorem 14.1.8, the ideals I and J are full since they are integrally
closed. As the residue field is infinite, we may choose x ∈ m \ m

2 such that
x∗ does not divide c(IJ) = c(IJ) (Exercise 14.13). Proposition 14.2.2 then
gives that IJ and IJ are contracted from S = R[mx ]. To prove IJ = IJ , it

suffices to prove ISJS = ISJS, since contractions of integrally closed ideals
are integrally closed. To prove this equality, it is enough to prove that for all
maximal ideals N in S, setting T = SN , ITJT = ITJT .

Both IS and JS are integrally closed by Proposition 14.4.3, hence their
localizations IT and JT are integrally closed. By Lemma 14.3.4, the co-length
of IT in T is strictly smaller than the co-length of I in R, so the induction
gives ITJT = ITJT .

This theorem fails in higher dimensions, see Exercises 1.14 and 1.13.

Example 14.4.5 Let m = (x, y) and I = (x2 + y3) + m
4. We saw in

Example 1.3.3 that I is integrally closed. This can be easily checked using
the results above. First note that I is full since ord(I) = 2 and µ(I) = 3.
As c(I) = X2 and Y does not divide X2, we consider S = R[m

y
], and set

x′ = x
y , x = x′y. Then IS = (y2(x′)2 + y3, (x′)2y3) = y2IS, so that IS =

((x′)2 + y, (x′)2y). But
√
IS = (x′, y), and we let R1 = S(x′,y), I1 = ISR1.

Set y1 = y + (x′)2. Then y1 6∈ m
2
1, and I1 = (y1, (x

′)4) is integrally closed.
Since I is contracted from S, it follows that I is integrally closed.

Before proving Zariski’s second main theorem, that integrally closed ideals
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factor uniquely up to order into simple integrally closed ideals, there are
several easy observations which make the proof below more transparent.

(1) In a Noetherian ring, every ideal I is a product of simple ideals. This
is clear from the usual Noetherian argument of looking at a maximal
counterexample.

(2) If I is integrally closed and I = J1 · · ·Jn, then
I = J1 · · ·Jn ⊆ J1J2 · · ·Jn ⊆ J1 · · · · · Jn = I = I

so I = J1 · · ·Jn. We can repeat such factorization for each non-simple
J i. If I is not zero, the procedure has to stop as I is not contained in all
powers of m. Hence every integrally closed ideal is a product of integrally
closed simple ideals.

(3) Cancellation holds for integrally closed ideals in a domain: If IJ =
IK, I 6= 0, the determinant trick implies that J = K . If J = J, K = K,
we then can cancel the I from IJ = IK.

Theorem 14.4.6 (Zariski) Let (R,m) be a two-dimensional regular local
ring. Then every non-zero integrally closed ideal I in R can be written as

I = al11 · · ·almm Ik11 · · · Iknn ,

where I1, . . . , In are simple m-primary integrally closed ideals, a1, . . . , am are
pairwise relatively prime irreducible elements of R, and l1, . . . , lm, k1, . . . , kn
are positive integers.

If the residue field is infinite, this decomposition is unique up to ordering.

In this theorem the residue field is infinite, the general result is in Theo-
rem 14.4.8.

Proof: Let I be an integrally closed ideal in R. We may write I = aJ , where
J is integrally closed and height two. The ideal generated by a is clearly
unique, and the factors of a are unique up to unit multiples as R is a unique
factorization domain. Hence it suffices to assume that I has height two. By
Remark (2) above, we can factor I into a product of simple integrally closed
ideals, so only the uniqueness needs to be proved.

Since we have cancellation, an easy induction shows that it suffices to prove:

Claim: If I |J1 · · ·Jn and I, J1, . . . , Jn are simple integrally closed ideals, then
I = Ji for some i.

To prove this claim, we use induction on λ(R/I). If λ(R/I) = 1 then I = m,
and m |J1 · · ·Jn. By Corollary 14.1.13, m |Ji for some i, and then m = Ji as
Ji is simple. Hence we may assume that λ(R/I) > 1. Choose an x ∈ m \ m2

such that x∗ does not divide c(IJ1 · · ·Jn). This is possible since the residue
field is infinite. Set S = R[mx ]. By Corollary 14.2.3 it follows that all of the
ideals I, Jj and all possible products of these ideals are contracted from S.
Write IK = J1 · · ·Jn. Set r = ord(I), ri = ord(Ji), and ord(K) = s. Then
ord(I) + ord(K) = ord(J1 · · ·Jn) =

∑n
i=1 ord(Ji), and r + s = r1 + · · · +

rn. Extending the ideals to S we see that IS = xrI ′, KS = xsK ′, JiS =
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xriJ ′
i , where I ′, K ′, J ′

i are the transforms of I,K, Ji, respectively. Then
I ′ ·K ′ = J ′

1 · · ·J ′
n in S. We know that I ′ is a simple integrally closed ideal by

Propositions 14.3.7 and 14.4.3, and that there exists a unique maximal ideal
N containing I ′. Localize at N to get (I ′)N · (K ′)N = (J ′

1)N · · · (J ′
n)N . Since

I ′ is simple (I ′)N is also simple by Proposition 14.3.7, and likewise either
(J ′
i)N is simple or (J ′

i)N = SN . But the co-length of (I ′)N is strictly less than
the co-length of I by Lemma 14.3.4. By induction there exists an integer i
such that (I ′)N | (J ′

i)N , and hence (I ′)N = (J ′
i)N since (J ′

i)N is simple. Thus
I ′ = (I ′)N ∩S = (J ′

i)N ∩S = J ′
i as N is the unique prime containing I ′ and J ′

i .
Multiplying by xr+ri yields xri ·(xrI ′) = xr ·(xriJ ′

i), so that m
ri ·IS = m

r ·JiS.
Thus mriI = m

r−iIS ∩R = m
rJiS ∩R = m

rJi. Since I and Ji are integrally
closed, we can cancel powers of m (using Corollary 14.1.11), and then by
simplicity we get that I = Ji.

Both of Zariski’s theorems are valid without the assumption of an infinite
residue field, but removing this assumption necessitates technicalities that
make the uniqueness of decomposition less transparent. The goal of the rest
of this section is to prove Zariski’s second theorem without the infinite residue
field assumption.

Lemma 14.4.7 Let (R,m) be a Noetherian local domain and let I be a simple
integrally closed m-primary ideal. If X is a variable over R, then IR[X ]mR[X]

is also simple.

Proof: Let v1, . . . , vr be the Rees valuations of I. For each i = 1, . . . , r,
let wi be the Gauss extension of vi to the field of fractions of R(X) as in
Remark 6.1.3. Then wi is positive on mR[X ] and zero on R[X ] \mR[X ], so it
is non-negative on R(X). By Proposition 10.4.9, RV (IR[X ]) = {w1, . . . , wr},
and hence since Rees valuations localize (Proposition 10.4.1), RV (IR(X)) =
{w1, . . . , wr}.

If IR(X) is not simple, write IR(X) = JK for some proper ideals J and
K in R(X). As in the reductions (1)–(3) on page 281 we may assume that
J and K are integrally closed. By Proposition 10.4.5, RV (J),RV (K) ⊆
RV (JK) = RV (IR(X)) = {w1, . . . , wr}. Hence J = {u ∈ R(X) |wi(u) ≥
wi(J), i = 1, . . . , r}, which is an ideal in R(X) extended from R. In other
words, J = (J ∩ R)R(X), and similarly, K = (K ∩ R)R(X). Thus (J ∩
R)(K ∩R)R(X) = JK = IR(X) and (J ∩R)(K ∩R) ⊆ I, so that by faithful
flatness (J∩R)(K∩R) = I. Since I is simple, either J∩R = R or K∩R = R,
whence either J = R(X) or K = R(X).

With this we can prove Zariski’s uniqueness of factorization of integrally
closed ideals in general:

Theorem 14.4.8 (Zariski) Let (R,m) be a two-dimensional regular local
ring. Then every non-zero integrally closed ideal I in R can be written uniquely(was 14.4.9)
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(except for ordering)

I = al11 · · ·almm Ik11 · · · Iknn ,

where I1, . . . , In are simple m-primary integrally closed ideals, a1, . . . , am are
pairwise relatively prime irreducible elements of R, and l1, . . . , lm, k1, . . . , kn
are positive integers.

Proof: By Theorem 14.4.6 it suffices to prove the uniqueness. As in the proof
of that theorem, it suffices to prove the case where I is m-primary. Suppose
that I = I1 · · · In = J1 · · ·Jm are two decompositions of I into products of
simple m-primary integrally closed ideals I1, . . . , In, J1, . . . , Jm. Let X be an
indeterminate over R, and let R(X) = R[X ]mR[X]. By Lemma 14.4.7, each
IjR(X), JjR(X) is simple, and also integrally closed and mR(X)-primary by
Lemma 8.4.2, and by faithful flatness, IR(X) = (I1R(X)) · · · (InR(X)) =
(J1R(X)) · · · (JmR(X)). By Theorem 14.4.6, since R(X) has an infinite
residue field, n = m, and after reindexing, for each j = 1, . . . , n, IjR(X) =
JjR(X). But then Ij = Jj for each j, which proves uniqueness.

This fundamental theorem of two-dimensional regular local rings fails in
higher dimension.

Example 14.4.9 (Lipman [191]) Let X, Y, Z variables over a field k and
R = k[X, Y, Z]. One can show that the ideals I = (X3, Y 3, Z3, XY,XZ, YZ),(was 14.4.10)

J1 = (X2, Y, Z), J2 = (X, Y 2, Z) and J3 = (X, Y, Z2) are integrally closed and
simple, and that (X, Y, Z)I = J1J2J3. However, these factors are definitely
not equal, so that unique factorization fails in three-dimensional regular rings.
However, Lipman has shown that some things can be recovered! See [191]
for generalizations of the factorization of integrally closed ideals in higher
dimension.

Proposition 14.4.10 Let (R,m) be a two-dimensional regular local ring and
let I be a simple integrally closed m-primary ideal in R. Then I has only one
Rees valuation.(was 14.4.8)

If I 6= m and x ∈ m \ m
2 such that I is contracted from S = R[mx ], then

RV (I) = RV (IS).

Proof: Let X be a variable over R. By Lemma 14.4.7, IR(X) is simple,
primary to the maximal ideal of R(X), by Lemma 8.4.2 it is integrally closed,
and by Proposition 10.4.9, the number of Rees valuations of I is the same
as the number of Rees valuations of IR(X). Thus the hypotheses on I are
satisfied also for IR(X), and if we prove that IR(X) has only one Rees valu-
ation, the first part would be proved. Thus by possibly first passing to R(X)
we may assume that the residue field is infinite, in which case I is full (Theo-
rem 14.1.8) and there exists x ∈ m \m2 such that the leading form of x does
not divide c(I), whence by Proposition 14.2.2, I is contracted from S = R[mx ].

We proceed by induction on λ(R/I). If this is 1, then I = m, and the only
Rees valuation of m is the m-adic valuation (established in Example 10.3.1).
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Now suppose that λ(R/I) > 1. By Proposition 14.3.7, IS is contained in only
one maximal ideal of S, call it N , and ISSN is simple. By Proposition 14.4.3,
ISSN is integrally closed. By Lemma 14.3.4, λ(SN/I

S
N ) < λ(R/I). Thus by

induction IS has only one Rees valuation. Let V be the corresponding Rees
valuation ring, and letW = SxS . We already know thatW is the unique Rees
valuation ring of m and of xS. By Proposition 10.4.8, the only Rees valuation
rings of IS = xord(I)IS are V and W . For any n ≥ 1, by Corollary 14.2.3,
In is contracted from S, and by Theorem 14.4.4, In and (IS)n are integrally
closed. Thus

In = In = InS ∩R = InV ∩ InW ∩R = InV ∩m
n ord I .

It remains to prove that InV ∩R ⊆ m
n ord I . If not, then b = n ord I−ord(InV ∩

R) is positive, and In and m
b(InV ∩R) have the same orders. Also, mb(InV ∩

R) ⊆ (InV ∩R) ∩m
n ord I = In, so that deg(c(In)) ≤ deg(c(mb(InV ∩R))) =

deg(c(InV ∩R)) ≤ ord(InV ∩R) < ord(In). But then by Proposition 14.1.12,
In = mJ for some ideal J , whence by unique factorization of integrally closed
ideals, I = mJ ′ for some ideal J ′. But this contradicts the assumption that I
is simple.

14.5. A formula of Hoskin and Deligne

Let K be a field. In this section we will study from a more abstract point
of view the set of two-dimensional regular local rings with field of fractions
K. Such objects will be called points. For any point T we denote its unique
maximal ideals as mT . A basic definition is the following one.

Definition 14.5.1 A point T is infinitely near to R, written T ≻ R, if
there exists a sequence

R = R0 ⊆ R1 ⊆ · · · ⊆ Rn = T

such that for each i = 1, . . . , n, Ri is a local quadratic transformation of Ri−1.

In fact, every point T containing R with mR ⊆ mT is infinitely near to R:

Theorem 14.5.2 (Abhyankar [6, p. 343, Theorem 3]) Let R ⊆ T be two-
dimensional regular local rings with the same field of fractions. Then there
exists a unique sequence R = R0 ⊆ R1 ⊆ · · · ⊆ Rn = T such that for each
i = 1, . . . , n, Ri is a local quadratic transform of Ri−1.

Proof: Without loss of generality R 6= T . Note that mR ⊆ mT by the
dimension inequality (Theorem B.2.5). A consequence of the conclusion is
that there exists x ∈ mR such that xT = mRT . Indeed in some sense this is
the crucial point.

By Theorem 8.8.1, if R 6= T , the analytic spread of mRT is at most one. As
T is integrally closed, all principal ideals are integrally closed. In particular,
mRT is a principal ideal, and hence there exists x0 ∈ m0 such that m0T = x0T ,
where we have relabeled m0 = mR.
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We have that R[m0

x0
] ⊆ T . Let m1 = mT ∩ R[m0

x0
]. Set R1 = (R[m0

x0
])m1

, so
R1 ⊆ T , and R1 has a maximal ideal m1R1 which by abuse of notation we
call m1. If m1 has height 1, then R1 is a Noetherian discrete valuation ring,
hence T = R1, a contradiction. So necessarily R1 is again a two-dimensional
regular local ring.

We claim that the ring R1 just constructed is unique. Suppose not. Then
there exists another local quadratic transformation R[m0

y ]Q ⊆ T , where Q =

mT ∩ R[m0

y ]. We will prove that R1 ⊆ R[m0

y ]Q, and by symmetry it will
follow that these two rings are equal. Note that m0T = x0T = yT . Therefore
x0

y is a unit in T . Then x0

y cannot be in QR[m0

y ]Q, which means that x0

y

is a unit in R[m0

y
]Q. Hence y

x0
∈ R[m0

y
]Q, proving R[

m0

x0
] ⊆ R[m0

y
]Q. Then

m1 = mT ∩R[m0

x0
] = mT ∩R[m0

y
]Q ∩R[m0

x0
] = QR[m0

y
]Q ∩R[m0

x0
], which forces

R1 = R[m0

x0
]m1

⊆ R[m0

y ]Q, as claimed. It follows that R1 is the unique local
quadratic transformation in T .

By repeating this construction we get a unique chain of rings R = R0 ⊆
R1 ⊆ · · · ⊆ Rn · · · ⊆ T such that Ri+1 is a local quadratic transformation of
Ri. We need to prove Rn = T for some n. If not, set V = ∪iRi. If V is not a
valuation domain, there exists an element z in the common field of fractions of
R and T such that z /∈ V and 1

z
/∈ V . We can write z = a

b
with a, b ∈ R0, and

necessarily both a, b ∈ m0. Hence a = a1x0, b = b1x0 with a1, b1 ∈ R1. Again
by necessity, a1, b1 ∈ m1. Choose x1 ∈ R1 such that m1T = x1T and repeat
this process. We successively obtain elements ai, bi ∈ mi such that z = ai

bi
and ai−1 = aixi−1, bi−1 = bixi−1 with mi−1T = xi−1T and xi−1 ∈ mi−1, for
all i ≥ 1. But in T , this gives an increasing chain of ideals, a0T ⊆ a1T ⊆
a2T ⊆ · · · that cannot stop since at every step aiT ⊆ miai+1T ⊆ mTai+1T .
This contradiction proves that V is a valuation domain. Any ring containing
a valuation domain and sharing the same field of fractions is also a valuation
domain, so in particular T is a valuation domain, which is a contradiction.
So necessarily the chain must be finite.

Definition 14.5.3 Let R be a point and I a non-zero ideal of R. The point
basis of I, is the set {ordT (IT )}T≻R of non-negative integers. A base point
of I is a point T ≻ R such that ordT (I

T ) 6= 0, i.e., such that IT 6= T .

Observe that if T ≻ S and S ≻ R, then for any ideal I in R, (IS)T = IT .
Our main goal in this section to prove a classic formula of Hoskin and

Deligne that gives the length of an m-primary ideal I in a point R in terms of
the point basis of I. We will follow notes of Jugal Verma that are based on
the thesis of Vijay Kodiyalam [173]. See also [156] and [155].

Theorem 14.5.4 (Hoskin–Deligne Formula) Let (R,m) be a regular local
ring of dimension two and with infinite residue field, and let I be an integrally
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closed m-primary ideal of R. Then (with
(
1
2

)
= 0)

λR

(
R

I

)
=
∑

T≻R

(
ordT (I

T ) + 1

2

)
[κ(mT ) : κ(mR)].

Proof: In Section 14.2 we showed that if T ≻ R, then the residue field of T is
a finite algebraic extension of the residue field of R. The degree of this field
extension is denoted by [κ(mT ) : κ(mR)].

We first prove the case I = m
n. (Since m is integrally closed, so is mn, say

by Theorem 14.4.4.) The only base point of I is just R, since if T ≻ R and
T 6= R, then m

T = T . Thus the sum on the right side of the display is simply(
ordR(IR)+1

2

)
[κ(mR) : κ(mR)], which is

(
n+1
2

)
= λ(R/mn).

We proceed with the general case by induction on λ(R/I). If this is 1, then
I = m, and this case has been proved.

Now let λ(R/I) > 1. Choose x ∈ m \ m
2 such that I is contracted from

S = R[m
x
]. By Proposition 14.4.3, IS is integrally closed ideal, and by Exam-

ple 14.3.2, IS has height at least two. If IS = S, then IS = m
nS for some

n, so since I is contracted from S, I = m
n, and this case has been proved.

So we may assume that IS is a proper ideal in S. Then necessarily it has
height two. Let Q1, . . . , Qt be the maximal ideals of S that contain IS. Set
Ti = SQi

. Then Ti ≻ R and ITi is an integrally closed mTi
-primary ideal in

Ti. Moreover, λR(Ti/I
Ti) = λTi

(Ti/I
Ti) · [κ(mTi

) : κ(mR)]. By the Chinese
Remainder Theorem, S/IS ∼=

∏
i Ti/I

Ti , where Ti = SQi
for i = 1, . . . , t.

Combining these remarks, Lemma 14.3.4, and induction, gives the following
sequence of equalities:

λR

(
R

I

)
= λR

(
R

mord(I)

)
+ λR

(
m

ord(I)

I

)

=

(
ord(I) + 1

2

)
+ λR

(
S

IS

)

=

(
ord(I) + 1

2

)
+
∑

Ti

λR

(
Ti
ITi

)

=

(
ord(I) + 1

2

)
+
∑

Ti

λTi

(
Ti
ITi

)
[κ(mTi

) : κ(mR)]

=

(
ord(I) + 1

2

)
+
∑

Ti

∑

T≻Ti

λTi

(
T

IT

)
[κ(mT ) : κ(mTi

)] · [κ(mTi
) : κ(mR)]

=

(
ord(I) + 1

2

)
[κ(mR) : κ(mR)] +

∑

Ti

∑

T≻Ti

λTi

(
T

IT

)
[κ(mT ) : κ(mR)].

Let T be the set of all T as above with IT 6= T , together with the point R. It
remains to prove that no T ∈ T appears twice in the last line in the display
and that T equals the set of all base points of I. The non-repetition holds
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by Theorem 14.5.2— for each T that is infinitely near to R there is a unique
sequence of quadratic transformations between R and T .

Certainly each T ∈ T is infinitely near to R. Now let T ≻ R. We know from
Theorem 14.5.2 that T dominates a unique local quadratic transformation
of R. This local quadratic transformation is obtained as follows: choose
z ∈ m such that ordR(z) = ordR(m). Then R[m

z
] ⊆ T . The maximal ideal

of T contracts to a prime ideal Q in R[mz ], and the unique local quadratic
transformation in question is exactly (R[m

z
])Q. Suppose that x

z
∈ mT . As

I is integrally closed, it is full, and as the residue field is integrally closed,
by Theorem 14.1.4, µ(I) = ord(I) + 1. Then since I is contracted from S,
by Propositions 14.2.2 and 14.1.7, m

r = I + xmr−1. Thus we can write
zr = a + xb for some a ∈ I and b ∈ m

r−1. In T we may then write 1 =
a
zr

+ (x
z
)( b
zr−1 ), showing that 1 ∈ IT + mT , a contradiction. So necessarily

x
z 6∈ mT . Then

z
x ∈ T , which means that S ⊆ T . If IS 6⊆ mT ∩S, then IT = T ,

contradicting the assumption that T is a base point of I. So necessarily the
maximal ideal of T must contract to one of the Qi, so T is infinitely near to
Ti for some i, whence T ∈ T.

14.6. Simple integrally closed ideals

The purpose of this section is to elucidate the correspondence between diviso-
rial valuations and simple integrally closed ideals in a two-dimensional regular
local ring. For more information about this correspondence and related topics
see [78], [79], [50], [53], and [94].

Throughout this section we work with a two-dimensional regular local ring
(R,m) with an infinite residue field. (This is not a severe restriction, by
Lemmas 8.4.2 and 14.4.7.) By Proposition 14.4.10 we already know that
every simple m-primary integrally closed ideal has a unique Rees valuation.
If the ideal is I, we denote its unique Rees valuation by vI .

The goal of this section is to relate the values of vI(J) and vJ (I) whenever
I and J are simple m-primary integrally closed ideals. We need some more
notation.

Since we assume that the residue field is infinite, I has a minimal two-
generated reduction (Proposition 8.3.7 and Corollary 8.3.9). So let (a, b) be
a minimal reduction of I. Set A = R[ b

a
] and B = R[ I

a
]. Since I is integral

over (a, b), it follows that B is integral over A. By Theorem 14.4.4, B =⋃
n
In

an
=
⋃
n
In

an
= B, so B is integrally closed, and is thus the integral closure

of A. We established that I has only one Rees valuation, namely vI . Thus
by Theorem 10.2.2 (3), there is a unique prime ideal P in B that is minimal
over aB. By the same theorem, BP is the valuation ring corresponding to vI ,
i.e., BP is the (unique) Rees valuation of I. The elements a, b form a regular
sequence in R, hence A ∼= R[X ]/(aX − b), where X is an indeterminate
over R. In particular, A/mA ∼= (R/m)[X ] and mA is a prime ideal. Thus
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W = A \ mA is a multiplicatively closed subset of A and W−1A is a one-
dimensional Noetherian local domain with integral closure W−1B. Since P
contains aB, it contains b = a ba , hence it containsmB. But P is the only prime
ideal in B minimal over aB, hence it is the only prime ideal in B minimal over
mB, so that W−1B = BP , whence the integral closure of W−1A is exactly
the valuation ring corresponding to vI . In particular, by Proposition 4.8.5,
the residue field of vI is finite over the residue field of W−1A. We denote the
degree of this extension by ∆( vI). Set C =W−1A.

Proposition 14.6.1 (Lipman [187, 21.4])) With notation as above, for all
r ∈ C, vI(r)∆( vI) = λC(C/rC).

Proof: Let V be the Rees valuation ring of I. With notation above, V = BP =
W−1B, and it is the integral closure of C. We know that vI(r) = λV (V/rV ).
Since R is a regular local ring and C is a finitely generated R-algebra contained
in the field of fractions of R, by Theorem 9.2.2, V is a finitely generated
C-module. Thus we have the following exact sequence of finite-length C-
modules:

0 → C ∩ rV
rC

→ C

rC
→ V

rV
→ V

C
→ 0.

If r is in the conductor of C, then the first module is rV
rC

∼= V
C , so that

λC(C/rC) = λC(V/rV ). It follows that for an arbitrary r ∈ C, if s is any
non-zero element of the conductor of C,

λC

(
C

rC

)
= λC

(
C

srC

)
− λC

(
rC

srC

)
= λC

(
C

srC

)
− λC

(
C

sC

)

= λC

(
V

srV

)
− λC

(
V

sV

)
= λC

(
V

srV

)
− λC

(
rV

srV

)

= λC

(
V

rV

)
.

Thus

vI(r) = λV (V/rV ) = λC(V/rV )λκ(mC)(κ(mV )) = λC(C/rC)∆( vI),

which finishes the proof.

With this we can present a proof of Lipman’s reciprocity theorem:

Theorem 14.6.2 (Lipman [187, Proposition 21.4]) Let (R,m) be a two-
dimensional regular local ring with infinite residue field. Let I and J be two
m-primary simple integrally closed ideals. Then

vJ (I)∆( vJ ) = vI(J)∆( vI).

Proof: Since the residue field is infinite, there are minimal reductions (a, b)
of I and (c, d) of J .

We will prove the theorem by proving that vI(J)∆( vI) and vJ(I)∆( vJ )
both equal the length of the ring R(X, Y )/(bX − a, dY − c), where X, Y are
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variables and R(X, Y ) is the polynomial ring R[X, Y ] localized at the ideal
mR[X, Y ]. By symmetry it suffices to show that the length of this ring is
equal to vI(J)∆( vI).

Let v′ be the Gauss extension of vI as in Remark 6.1.3 to the field of frac-
tions of R[Y ]. Namely, if a0, . . . , an ∈ R, then v′(a0 + a1Y + · · ·+ anY

n) =
min{ vI(a0), . . . , vI(an)}, and this extends to a valuation on the field of frac-
tions. Let R′ = R[Y ]mR[Y ]. By Proposition 10.4.9, v′ is the unique Rees
valuation of IR′. By Lemma 14.4.7, IR′ is a simple ideal. As in Lemma 8.4.2,
R′ is a two-dimensional regular local ring, its maximal ideal is mR′, IR′ is
integrally closed and primary to the maximal ideal, and (a, b)R′ is a minimal
reduction of IR′. The construction above Proposition 14.6.1, with IR′ in place
of I, gives a one-dimensional local domain C′ = (R′[X ]/(bX − a))mR′[X] =
R(X, Y )/(bX − a) = C(Y ) whose integral closure is the valuation ring corre-
sponding to v′. Thus ∆(v′) = λκ(mC′ )(κ(mC′′)) = λκ(mC)(κ(mC)) = ∆( vI).
(Here, mA denotes the unique maximal ideal of the ring A.) Since (c, d)R′ is
a reduction of JR′, by Proposition 6.8.1, v′(JR′) = v′((c, d)R′) = v′(cY − d),
so by Proposition 14.6.1,

vI(J)∆( vI) = v′(J)∆(v′) = v′(cY − d)∆(v′) = λC′(C′/(cY − d)C′)

= λ(R(X, Y )/(bX − a, cY − d)).

Discussion 14.6.3 This proof, while quite simple, does hide some of the
basic geometry which makes the result more apparent. Namely, as Lipman
explains in [187, (21.4)], Theorem 14.6.2 comes down to the fact that for the
exceptional divisors D1 and D2 generated by I and J on a desingularization
dominating the blowup of IJ , D1 ·D2 = D2 ·D1. The proof we give basically
computes the intersection multiplicity of two “generic” curves, one defined by
a generic element of a minimal reduction of I and one defined by a generic
element of a minimal reduction of J .

Remark 14.6.4 If the residue field R/m is algebraically closed, then for any
simple m-primary integrally closed ideal I, ∆( vI) = 1. Here is a proof. If
I = m, then R[ b

a
] is integrally closed, so indeed ∆( vI) = 1. Now suppose

that I 6= m. Since the residue field is infinite, there exists x ∈ m \ m
2 such

that x∗ does not divide c(I), so that by Proposition 14.2.2, I is contracted
from S = R[mx ]. By Propositions 14.3.7 and 14.4.3, the transform IS = I

xr S
is simple, integrally closed, and contained in a unique maximal ideal N of S.
Both I and IS have only one Rees valuation, and the two are identical. By
construction, S/N is algebraic overR/m, but since R/m is algebraically closed,
S/N = R/m. If (a, b) is a minimal reduction of I, then ( a

xr ,
b
xr ) is a minimal

reduction of IS, and so the residue field of S[a/x
r

b/xr ] localized at the extension

of N equals the residue field of R[ab ] localized at the extension of m. Thus
∆( vI) = ∆( vIS ). By Lemma 14.3.4, we may use induction on λR(R/I) to
conclude that ∆( vIS ) = 1. This proves the claim, and the following corollary:

Corollary 14.6.5 Let (R,m) be a two-dimensional regular local ring with al-
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gebraically closed residue field. Let I and J be two m-primary simple integrally
closed ideals. Then

vJ(I) = vI(J).

14.7. Exercises

14.1 (J. Watanabe [320])Let (R,m) be a two-dimensional regular local ring
and let I be an m-primary ideal. Prove that I is full if and only if
for all ideals J containing I, µ(J) ≤ µ(I). (For one direction see
Exercise 10.13; see also basically full ideals in [114, Theorem 2.12].)

14.2* Let (R,m) be a three-dimensional regular local ring. Prove or give a
counterexample to the claim in Exercise 14.1. (This is open.)

14.3 Let (R,m) be a two-dimensional regular local ring and let I be a full
m-primary ideal. Prove that I : m is also full.

14.4 Let (R,m) be a two-dimensional regular local ring and let I be a full
m-primary ideal. Prove that I = m

ord(I)−deg c(I) · J for some ideal J
such that m does not divide J .

14.5 Let (R,m) be a two-dimensional regular local ring. Give an example
of three m-primary full ideals I, J , and K such that IJ = IK but
J 6= K.

14.6 Let R be a two-dimensional regular local ring. Suppose that I is
a simple integrally closed ideal. Prove that c(I) is a power of an
irreducible polynomial.

14.7 Let R be a two-dimensional regular local ring with maximal ideal
(x, y). Prove that (x3, xy3, x2y, y4) is integrally closed and find its
factorization into simple integrally closed ideals.

14.8 Let (R,m) be a two-dimensional regular local ring and I an integrally
closed ideal in R. Let (a, b) be a reduction of I. Prove that (a, b)I =
I2, i.e., that the reduction number of I is 1.

14.9 Let (R,m) be a two-dimensional regular local ring with m = (x, y).
For n ∈ N set J = (xn, yn) and I = (xn, xn−1y, yn). Find the reduc-
tion number of rJ(I).

14.10 Let (R,m, k) be a two-dimensional regular local ring of characteristic p
that contains a copy of its residue field k. Write m = (x, y). Let u ∈ k.
Set I = (xp + uyp) + m

p+2. Prove that I is integrally closed if and
only if u1/p is not in k.

14.11 Let (R,m) be a two-dimensional regular local ring. Let f be a non-
zero element of R of order r. Prove that the ideal (f) + m

r+2 is
integrally closed if and only if (f) +m

n is integrally closed for all n.
14.12 Let R be a Cohen–Macaulay local ring with infinite residue field (of

arbitrary dimension). Assume that R satisfies Serre’s condition (R2).
Let I be a height two integrally closed ideal having analytic spread
two. Prove that Ik is integrally closed for all k ≥ 1.
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14.13 Let I be an ideal in a two-dimensional regular local ring. Prove that
c(I) = c(I).

14.14 Let (R,m) be a two-dimensional regular local ring with infinite residue
field, and let I be an m-primary integrally closed ideal. Prove that
e(I) =

∑
T≻R ordT (I

T )2 · [κ(mT ) : κ(mR)].
14.15 Let I be an m-primary ideal in a two-dimensional regular local ring

(R,m). Prove that c(I) = 1 if and only if I = m
n for some n.

14.16 Let I be an m-primary ideal in a two-dimensional regular local ring
(R,m). Let x ∈ m, and set S = R[mx ]. Prove that IS ∩R = Imn : xn

for all sufficiently large n.
14.17 Let R = k[X, Y ](X,Y ), where k is a field and X and Y are variables

over k. Set I = ((Y 2−X3)2, XY 4, X2Y 3, X5Y,X7)R. Prove that I is
integrally closed, and find its factorization into simple integrally closed
ideals. Do the same for the ideal J = (X2−Y 4, X2Y +Y 5, XY 3). De-
scribe the valuations associated to the simple integrally closed ideals
in the factorizations of I and J .

14.18 Let R be a two-dimensional regular local ring. Let v be a divisorial
valuation with respect to R. Let I = (a, b) be an ideal of height
two such that v(a) = v(b) and such that the image of a/b in k(v) is
transcendental over k. Prove that v is a Rees valuation of I.

14.19 Let R = k[XY Z, X3Z, Y 2Z] ⊆ k[X, Y, Z] = S. Prove that R and
S have the same field of fractions. Let m = (XY Z, X3Z, Y 2Z)R.
Prove that mS = Z · (XY,X3, Y 2)S is not principal. Conclude that
there is no r ∈ m \m2 such that R[m

r
] is contained in S.
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Computing integral closure

Is the integral closure of rings and of ideals computable? In principle it is,
but in practice often not due to the limitations of computers and the essential
combinatorics that must enter into most calculations of integral closure. In
this chapter we present some algorithms for computing the integral closure
of ideals and rings. We do not require knowledge of the theory of Gröbner
bases, but we make several claims in the chapter that can be either taken on
faith or be proved using elementary knowledge of Gröbner bases. A recent
book by Vasconcelos [309] is largely devoted to the theory of computations of
integral closure.

In order to compute the integral closure of an ideal, by Proposition 1.1.5
it suffices to compute the integral closure of the ideal modulo each minimal
prime, lift the closures to the ring, and intersect these finitely many ideals.
Lifts, intersections, and finding minimal prime ideals are all computable oper-
ations: lifts and intersections are easily computable on any symbolic algebra
computer package, but finding the minimal prime ideals is a harder, more
time-consuming, task. See Exercise 15.17 for issues relating to finding min-
imal prime ideals. But in any case, the computation of the integral closure
of an ideal reduces to the computation of the integral closure of an integral
domain. Thus for the purposes of the computation of the integral closure of
ideals we may assume that all rings are integral domains.

The computation of the integral closure of a ring in an overring also reduces to the

computation of integral closures of rings in overrings that are domains; however, a

necessary step is also the computation of the intersection of two subrings, which is not

so readily computable.

So let R be an integral domain and I an ideal. By Proposition 5.2.4, the
integral closure of the Rees ring R[It] is

R ⊕ IR ⊕ I2R ⊕ I3R ⊕ · · · ,
where R is the integral closure of R. Reading off the degree one component

IR of this graded ring gives the integral closure of IR. By Proposition 1.6.1,

the desired result I is the intersection of IR with R. For computable rings
R, R is a module-finite extension of R (see Chapter 4). In this case the
intersection of an ideal in R with R is a readily computable operation, say
via an elimination order with Gröbner bases. Thus it is computationally
no loss of generality if we compute the integral closure of R[It] in order to
compute the integral closure of the ideal I. However, this method at the same
time computes the integral closures of all the powers of I, much more than
what may be asked, and so the method may not be the most efficient. This



294 15. Computing integral closure

method is so slow that it is, in practice, often unusable. The search for more
efficient general algorithms continues. For special ideals, such as monomial
ideals, there do exist more efficient algorithms. In this chapter we present the
general algorithm, as well as specialized algorithms for restricted classes of
ideals.

Without the Noetherian assumption on the ring we cannot expect the com-
putation to terminate (see Exercise 15.2), and naturally, to establish any
algorithms we need to assume that the starting ring is computable. Examples
of computable rings are Q, finite fields, Z, and finitely generated extensions
of these. The algorithms proceed by building proper extensions contained
in the integral closure, and then repeating the procedure on the extension.
When the integral closure is a module-finite extension, which is the case for
computable rings (see Chapter 4), this procedure must terminate. Some of
the algorithms are also concerned with finding upper bounds on the number
of steps needed to compute the integral closure. In particular, Stolzenberg’s
and Vasconcelos’s second methods do this (see Sections 15.1 and the end of
Section 15.3).

A Noetherian integral domain is integrally closed if and only if it satisfies
Serre’s conditions (R1) and (S2) (Theorem 4.5.3). Thus part of the computa-
tion of the integral closure means building extensions that satisfy at least one
of these two conditions. Stolzenberg’s procedure (see Section 15.1) first con-
structs a module-finite extension satisfying (R1), and Vasconcelos’s second
algorithm, given in Section 15.3, first constructs a module-finite extension
satisfying (S2).

An algorithm for computing the integral closure of ideals and domains
has been implemented in the symbolic algebra program Singular [101] and
Macaulay2 [98]. We provide sample codes for Singular, for Macaulay2, and
for CoCoA [36] in Section 15.2.

15.1. Method of Stolzenberg

Perhaps the oldest method for computing the integral closure is for cyclic
extensions of Z and developed by Dedekind [59] in 1899. There are many
explicit algorithms for computing special integral closures of this kind, for
example by [11], [12]; [185]; [269]; [276]; [291]; or [292]. Our interest lies in
providing algorithms for the integral closure of general computable integral
domains, such as affine domains. In this section we briefly review the oldest
such method. We do not give all the details, but point out the general idea
and computational issues involved. This method was obtained by Stolzen-
berg [278] for affine domains that are separable over the base field. Stolzen-
berg’s procedure is computable, but not effectively so (see comments below).
His method was shortly after expanded on by Seidenberg [265], [266], with
rudiments already in [263]: the separability assumption was removed, but the
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computational impracticality stayed. Both Stolzenberg and Seidenberg were
also concerned with an a priori bound on the number of steps needed in the
procedure, in the constructive spirit of Kronecker, and more concretely fol-
lowing Hermann [118]. We present an outline of these procedures, up to slight
modifications. Another, computationally more practical modification, is due
to Gianni and Trager [90].

The main steps of Stolzenberg’s procedure for computing the integral clo-
sure of an affine domain R are as follows (details are explained further below):
(1) Find a Noether normalization A of R.
(2) Find a non-zero element c ∈ A in the conductor of R.
(3) Find a module-finite extension of R that satisfies Serre’s condition (R1).
(4) Compute a primary decomposition of cA and cR.
(5) Under the assumption that R satisfies (R1), find the integral closure of R.

How does one carry out these steps? Noether normalization and primary
decompositions are algorithmic (see exercises at the end of this chapter); and
conductors and their computability are discussed in Chapter 12. Seidenberg’s
solutions to (4) and (5) are described below. The following lemma provides a
method for solving (4):

Lemma 15.1.1 Let R be a Noetherian domain, and P a prime ideal of
height one in R such that RP is not a Noetherian valuation ring. Let a, b ∈ R
be part of a minimal generating set of PRP . Assume that R contains infinitely
many units u1, u2, . . . such that for all i 6= j, ui − uj is also a unit. Then
there exists an integer i such that a/(uib + a) is integral over RP and is
not in RP . In fact, there exists an integer N such that whenever {ui | i =
1, . . . , N + 1} ∪ {ui − uj | 1 ≤ i < j ≤ N + 1} consists of units, then for some
i ∈ {1, . . . , N + 1}, a/(uib+ a) is integral over RP and is not in RP .

Proof: As RP is local and one-dimensional, by Theorem 4.9.2 and Proposi-
tion 6.8.14, there exist only finitely many discrete valuations of rank one that
determine the integral closure of R. Let N be the number of these valuations.
For any such valuation v, if v(a) 6= v(b), then v(a/(uib + a)) ≥ 0. If instead
v(a) = v(b), either v(a/(uib + a)) ≥ 0 or v(a/(uib + a)) < 0. Assume that
there is no i such that v(a/(uib+a)) ≥ 0 for all v. By the pigeonhole principle,
since there are only finitely many valuations v, there exist i 6= j such that for
some v, v(a/(uib+ a)), v(a/(ujb+ a)) < 0. Necessarily also v(a) = v(b), and
without loss of generality v(ujb + a) ≥ v(uib + a) > v(a). Then there exists
d in the field of fractions of R such that v(d) > 0 and uib + a = da. Then
ujb = (uj/ui)(uib) = (uj/ui)a(d−1), whence ujb+a = a(1+(uj/ui)(d−1)).
It follows that v(1 + (uj/ui)(d − 1)) > 0, whence v(1 − uj/ui) > 0. Hence
ui − uj is not a unit in the valuation ring of v, contradicting the assumption
that there is no ui such that v(a/(uib+ a)) ≥ 0 for all v.

Thus necessarily for some i, v(a/(uib + a)) ≥ 0 for all v. By the choice
of the v, this means that a/(uib + a) ∈ RP . However, a/(uib + a) is not in
RP as otherwise for some r ∈ RP , a = r(uib + a). If r is a unit in RP , then
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b ∈ ruibRP = (1 − r)aRP ⊆ aRP , contradicting the choice of a, b, and if r
is in PRP , then a ∈ (1 − r)aRP = ruibRP ⊆ bRP , again contradicting the
choice of a, b.

Thus if R does not satisfy (R1), by the lemma above, after clearing denom-
inators, there exists r ∈ R \R. Repeating the construction with R[r] in place
of R creates an ascending chain of domains between R and R. Under the
assumption that R is a localization of an affine domain, or more generally,
whenever R is module-finite over R, the procedure has to stop, and it stops
at a module-finite extension of R inside R that satisfies (R1).

How can we use the lemma above? First of all, we can algorithmically
compute the Jacobian ideal J ofR over the underlying field k. IfR is separable
over k, as Stolzenberg assumed, then by Theorem 3.2.7 and by the Jacobian
criterion 4.4.9, J is not zero, so that J must have height at least 1. Again by
the Jacobian criterion, for any prime ideal P in R with J 6⊆ P , RP is regular.
Thus there are at most finitely many prime ideals P of height one, all minimal
over J , for which the condition (R1) fails. By Proposition 4.1.3, such prime
ideals are locally not principal. If one has a way of finding enough units and
of checking integrality of an element over R, then by the lemma above one
can recursively construct a strictly larger module-finite extension of R in the
field of fractions. A repetition of this construction either determines that this
larger ring satisfies (R1), or constructs a larger module-finite extension ring
yet. As the integral closures of computable rings are module-finite extensions,
this procedure must stop in finitely many steps. In short, if one has a way
of finding enough units and of checking integrality of an element over R, by
above one can construct a module-finite extension of R with the same field of
fractions that satisfies (R1).

Below is one way of checking integrality that applies in Stolzenberg’s pro-
cedure with A being a Noether normalization of the given R:

Lemma 15.1.2 Let A be a unique factorization domain, K its field of frac-
tions, and L a finite field extension of K. Let S be a basis of L over K.
Assume that one can effectively express elements of L as K-linear combina-
tions of elements of S, that one can effectively factor elements in A and can
express elements of K as fractions of elements in A. Then there exists an
effective criterion for determining integrality of elements of L over A.

Proof: Let ϕ : L→ HomK(L, L) be the map taking each α to multiplication
by α. This map is injective, so that the minimal polynomials of α and of
ϕ(α) are the same. As for every s ∈ S, α · s can be effectively written as a
K-linear combination of the elements of S, the characteristic polynomial of
ϕ(α) can thus also be effectively computed. Let f be a non-zero A-multiple
of this polynomial all of whose coefficients are in A. Then f(α) = 0. Since
factorization of f is effective, one can effectively decide if α satisfies a monic
polynomial with coefficients in A.
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Thus given an affine domain R with enough units, one can compute an affine
domain module-finite over R and with the same field of fractions that satisfies
(R1). The integral closure can then be computed via primary decomposition:

Lemma 15.1.3 (Stolzenberg [278]; Seidenberg [265]) Let R be a locally
formally equidimensional Noetherian domain. Let c be a non-zero element in
the conductor of the integral closure of R to R. Let I be the intersection of
the minimal components of cR.
(1) Then I/c ⊆ R.
(2) Suppose that R satisfies Serre’s condition (R1). Then R = I/c. In

particular, if cR has no embedded prime ideals, then R is integrally closed.

Proof: (1) As R ⊆ R/c, R is module-finite over R. Let Q be a prime ideal
in R that is of height one. By Proposition 4.8.6 (formally equidimensional
assumption and Theorem B.5.1), P = Q ∩R has height one. If c is not in Q,
then I/c ⊆ RQ. If c ∈ Q, then c ∈ P , and necessarily P is one of the minimal
primes over cR. By assumption I is in the P -primary component of cR. Thus
I ⊆ cRP ∩R ⊆ cRQ. It follows that I/c ⊆ RQ for every prime ideal Q of R of
height one, so that as R is a Krull domain (Theorem 4.10.5), I/c ⊆ R. This
proves (1).

(2) Suppose that R satisfies (R1). Let α ∈ R. Then d = cα ∈ R. Let
P be a prime ideal in R minimal over cR. By assumption, RP is integrally
closed, so d/c = α ∈ RP , and hence d ∈ cRP ∩R. Thus d is in every minimal
component of cR, which proves that R ⊆ I/c.

With this, a fuller description of Stolzenberg’s procedure for deciding nor-
mality and computing the integral closure of affine domains, up to minor
modifications, is as follows:

Description of Stolzenberg’s procedure Let R be a finitely generated
domain k[x1, . . . , xn] over a field k such that the field of fractions K of R
is separable over k. By Theorem 4.2.2, there is a Noether normalization A
of R such that R is integral over A and K is separable over Q(A). (This
is computable; see Exercise 15.6.) There is also a constructively obtained
element r ∈ R and a polynomial f in one variable with coefficients in A
such that Q(R) = Q(A)(r) and such that f is a minimal polynomial of r
over Q(A). Let D be the discriminant of f . (Recall that the discriminant
is defined to be

∏
i<j(αi − αj), where f(x) =

∏
i(x − αi) in an algebraic

closure. Another way to compute D is up to sign the norm of f ′(r), the
formal derivative of f at r; see [212].) By Theorem 12.1.1, f ′(r)R ⊆ R. As
f is separable, D/f ′(r) ∈ R, so that DR ⊆ R. If D is a unit in A, then R
is integrally closed. So assume that D is not a unit in A. Let P1, . . . , Pl be
the prime ideals in A minimal over DA. Let S be the complement in A of
P1 ∪ · · · ∪Pl. Then S−1A is a one-dimensional semilocal unique factorization
domain, and S−1R is a module-finite extension of S−1A. (Stolzenberg does
not address the computability of localized rings.) By Lemma 15.1.2, checking
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integrality over A is effective, assuming that factorization in A is effective.
But A is a polynomial ring over a field, and there are algorithms for factoring
in polynomial rings (see the book [317] by von zur Gathen and Gerhard;
or the tutorial on page 38 of [175]). Thus checking integrality over S−1A
is effective. Under the additional assumption that R has sufficiently many
units ui as in Lemma 15.1.1, one can construct a module-finite extension of
S−1R in the field of fractions that satisfies (R1) by repeated application of
Lemma 15.1.1. The constructive part comes from Lemma 15.1.2, and from
the fact that the search for a unit ui ends after a predetermined number of
steps. Suppose that s is in the integral closure of S−1R but is not in S−1R.
By clearing denominators (which is computable) we may also assume that s
is integral over R. This procedure builds a module-finite extension of R that
is integrally closed after localization at all prime ideals of height 1. In other
words, a module-finite extension of R contained in R that satisfies Serre’s
condition (R1) is computable. This reduces to the case where R satisfies
(R1). Now compute the primary decomposition of DR (see Exercises 15.15–
15.17), and set I to be the intersection of the minimal components of DR.
By Lemma 15.1.3, I/D is the integral closure of R.

Without the additional assumption above on the existence of sufficiently
many units, one first adjoins to k infinitely many variables ui to form a new
field k(u1, u2, . . .) (actually, adjoining one variable u suffices), then proceed
with the procedure as above to compute the integral closure of this larger
ring, and then obtain the integral closure of R by computable elimination
theory. However, this adjunction of variables is not effective computationally,
and makes the procedure unpractical.

Seidenberg’s method is similar to Stolzenberg’s, with the improvement that
the separable assumption be removed. As before, write R = k[x1, . . . , xn].
One first passes to a finite purely inseparable extension K of the base field k
such that K(x1, . . . , xn) is separable over K. This extension K is computable:
one simply analyzes the minimal polynomials of the generating set of R over k.
Seidenberg then filters k ⊆ K as k = k0 ⊆ k1 ⊆ · · · ⊆ kl = K such that for
each i, either ki ⊆ ki−1(x1, . . . , xn) or ki and ki−1(x1, . . . , xn) are linearly
independent over ki−1. Then the point is to construct an integral closure of
ki−1[x1, . . . , xn] from the integral closure of ki[x1, . . . , xn], which can be done
via elimination.

15.2. Some computations

In Sections 2.4 and 4.5 we proved some criteria for whether a computable ring
is integrally closed. In this section we give simple sample codes in symbolic
computer algebra systems CoCoA, Macaulay2, and Singular for determining
normality of a ring.

We use the criterion of normality of domains from Corollary 4.5.8: if R is a
finitely generated algebra over a perfect field and J is an ideal in R such that
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V (J) is the singular locus of R, then R is normal if and only if J has grade
at least two.

Grade of an (arbitrary) ideal J can be computed as the least integer l for
which ExtlR(R/J,R) is non-zero. Thus J has grade at least two if and only if
Ext0R(R/J,R) and Ext1R(R/J,R) are both zero, which is a computable prob-
lem in computable rings. Explicitly, Ext0R(R/J,R) = HomR(R/J,R) = 0 : J ,
which is a simple colon computation. Also, the computation of Ext1R(R/J,R)
is feasible. Here is a way to determine if Ext1R(R/J,R) is zero after it has
been established that Ext0R(R/J,R) is zero. Namely, if Ext0R(R/J,R) = 0,
then J contains a non-zerodivisor. The finding of a non-zerodivisor is com-
putable: in an integral domain, choose any non-zero element x of J . Once a
non-zerodivisor x ∈ J is known, the following simple computation determines
if J has grade at least two, i.e., if Ext1R(R/J,R) is zero: by Theorem A.4.1,

Ext1R(R/J,R)
∼= Ext0R/xR(R/J,R/xR)

∼= (x):J
(x) , so that the grade of J is ex-

actly one if and only if the ideal (x) : J is strictly bigger than (x), and the
grade of J is at least two if and only if (x) : J = (x).

In the three symbolic computer packages CoCoA, Macaulay2, and Singular,
such a computation can be carried out quite fast. Below is the very simple
example R = (Z/3Z)[a, b, c, d]/(a2d− b2c) of an equidimensional affine domain
worked out in each of the three packages. The three languages differ, but the
code below is self-explanatory.

The first example is CoCoA code:

Use A ::= Z/(3)[abcd];
I := Ideal(a^2d-b^2c);
M := Jacobian([a^2d-b^2c]);
J := Minors(Dim(A) - Dim(A/I),M);
L := Ideal(J) + I;
L;
I : Ideal(a^2);
(Ideal(a^2) + I) : L;

The element a2 is in L. As the answer to input I : Ideal(a^2); is the
ideal I itself, the image L(A/I) of L in A/I has grade at least one, but as
the answer to the input (Ideal(a^2) + I) : L; contains abc, which is not
in (a2) + I, L(A/I) has grade exactly one. Thus by the Jacobian criterion,
the ring (Z/3Z)[a, b, c, d]/(a2d− b2c) is not integrally closed.

Macaulay2 code for the same example is as follows:

R = ZZ/3[a,b,c,d]/(a^2*d-b^2*c)
J = minors_1 jacobian R
ann a^2
ideal a^2 : J

and the Singular code for the same procedure is:

ring R =3,(a,b,c,d), dp;
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ideal I = a^2*d-b^2*c;
ideal J = jacob(I);
ideal L = I + J;
print (L);
quotient(I, a^2);
quotient(ideal(a^2) + I, J);

Thus CoCoA, Macaulay2, and Singular can easily detect that the ring
(Z/3Z)[a, b, c, d]/(a2d− b2c) is not integrally closed.

We have enough theory to compute the integral closure of this ring as

well. Observe that R = k[a,b,c,d]
(a2d−b2c)

∼= A = k[x, y, x2t, y2t] ⊆ k[x, y, t], where

x, y and t are variables over k. The Jacobian matrix of R over k is a 1 × 4
matrix [2ad,−2bc,−b2, a2], so that the Jacobian ideal is (2ad,−2bc,−b2, a2)R.
Alternately, J = (2xy2t, 2yx2t, x2, y2)A, and

√
J = (x, y)A. By Lemma 2.4.3,

HomR(
√
J,

√
J) =

1

x

(
x(x, y)R :R (x, y)

)

∼= 1

x

(
(x(x, y)A :A x) ∩ (x(x, y)A :A y)

)

=
1

x

(
(x, y)A ∩

(
(x) + (x2A :A y)

))

=
1

x

(
(x, y)A ∩ (x, yx2t)

)
=

1

x
(x, yx2t) = 1A+ xytA.

Thus by Lemma 2.1.8, the integral closure of A in its field of fractions contains
xyt, which is not in A. Set S = A[xyt] = k[x, y, x2t, y2t, xyt]. As S is integral
over A and has the same field of fractions as A, the integral closure of A is
the same as the integral closure of S. Thus it suffices to compute the integral
closure of S. However, S is integrally closed. To prove this, we compute the
radical of the Jacobian ideal. A presentation of S over k is as follows:

S ∼= k[a, b, c, d, e]

(a2d− b2c, ae− bc, be− da, e2 − dc)
=

k[a, b, c, d, e]

(ae− bc, be− da, e2 − dc)
.

As the dimension of S is the same as the dimension of A (which is 3), the
height of (ae− bc, be− da, e2 − dc) is two. The Jacobian matrix of S over k is



e −c −b 0 a
−d e 0 −a b
0 0 −d −c 2e


 ,

and the ideal of 2×2 minors of this contains a2, b2, c2, d2, e2− cd. The radical
of this ideal is generated by a, b, c, d, e, which is also clearly the radical of the

Jacobian ideal. Clearly a is a non-zerodivisor in S, and S/aS = k[b,c,d,e]
(bc,be,e2−dc) ,

so that d is a non-zerodivisor on this ring. Thus a, d is a regular sequence in
the radical of the Jacobian ideal, so that the Jacobian ideal has grade at least
two. By Theorem 4.4.9, S satisfies (R1) and (S2), so that by Theorem 4.5.3,
S is normal.
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Another method to determine the normality of S is via Lemma 2.4.3:

HomS(I, I) ∼=
1

a
(aI :S I)

=
1

a
(I ∩ (aI :S b) ∩ (aI :S c) ∩ (aI :S d) ∩ (aI :S e))

=
1

a
(I ∩ (a, c, e)S ∩ (a, b)S) =

1

a
(a, bc, be)S = S,

so that by Theorem 15.3.2, S is integrally closed and so is the integral closure
of A. As xyt in field of fractions of A corresponds to bc/a in the field of
fractions of R, this proves that the integral closure of R is R[bc/a].

Incidentally, by Proposition 5.2.4, from this example one can read off the
integral closure of (x2, y2)nk[x, y]: it is the component of S of t-degree n,
which is the ideal (x, y)2nk[x, y].

Singular and Macaulay2 have automated such calculations to compute in-
tegral closures. The algorithms are based on the work of Grauert and Rem-
mert [96], [97], and rediscovered by de Jong [60], which we describe in the next
section. Singular was the first program to implement integral closure, and a
description of the necessary algorithms as implemented in Singular is in [58]
and [100]. Here is the Singular syntax for computing the integral closure of
the ring (Z/3Z)[a, b, c, d]/(a2d− b2c):

LIB "normal.lib";
ring R =3,(a,b,c,d), dp;
ideal I = a2*d -b^2*c;
list J = normal(I);
def A = J[1]; setring A; norid;

To this Singular returns:

// ’normal’ created a list of 1 ring(s).
// nor[1+1] is the delta-invariant in case of choose=wd.
// To see the rings, type (if the name of your list is nor):

show( nor);
// To access the 1-such that ring and map
// (similar for the others), type:

def R = nor[1]; setring R; norid; normap;
// R/norid is the 1-such that ring of the normalization and
// normap the map from the original basering to R/norid
norid[1]=T(3)*T(4)-T(5)^2
norid[2]=T(1)*T(4)-T(2)*T(5)
norid[3]=T(2)*T(3)-T(1)*T(5)

The last lines say that the integral closure of (Z/3Z)[a, b, c, d]/(a2d− b2c) is

(Z/3Z)[T1, T2, T3, T4, T5]

(T3T4 − T 2
5 , T1T4 − T2T5, T2T3 − T1T5)

.

Perhaps this is not too informative as the connections between the Ti and
a, b, c, d are not obvious. However, normap; produces more information:
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> normap;
normap[1]=T(1)
normap[2]=T(2)
normap[3]=T(3)
normap[4]=T(4)

from which one reads that a is identified with T1, b with T2, c with T3, and d
with T4. Thus the integral closure of (Z/3Z)[a, b, c, d]/(a

2d−b2c) is generated
by one extra element, namely T5, and from the defining relations of the integral
closure we see that T5 = ad/b = bc/a.

The command in Macaulay2 for computing the integral closure of rings is
integralClosure(R). For the ring above, Macaulay2 returns

i1 : R = ZZ/3[a,b,c,d]/(a^2*d-b^2*c)

o1 = R

o1 : QuotientRing

i2 : integralClosure(R)

ZZ
-- [w , a, b, c, d]
3 0

o2 = --------------------------------
2

(w b - a*d, w a - b*c, w - c*d)
0 0 0

o2 : QuotientRing

In this example the integral closure can be immediately read off. We give
another example in which the answer is not so immediate; one then needs to
type in extra commands to get more information:

i11 : S = ZZ/3[x,y]/(x^2-y^3)

o11 = S

o11 : QuotientRing

i2 : integralClosure(S)

ZZ
o12 = -- [w ]

3 0

o12 : PolynomialRing

from which it is not obvious how w0 was derived from the elements of S. How-
ever, the commands ICfractions and ICmap provide the extra information:
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i13 : ICfractions S

o13 = | x/y |}
1 1

o13 : Matrix frac(S) <--- Frac(S)

i14 : ICmap S

ZZ 3 2
o14 = map(-- [w ],S,{w , w })

3 0 0 0

ZZ
o14 : RingMap -- [w ] <--- S

3 0

This says that w0 = x/y.

Thus with Singular and Macaulay2 one can in principle compute the integral
closures of affine domains, and in particular of Rees algebras of ideals in
affine domains. This then constructs, as described at the beginning of this
chapter, the integral closures of ideals in affine domains. As remarked earlier,
passage to Rees algebras at the same time computes the integral closures
of all the powers of the ideal, which is very time-consuming. Singular has
also implemented a way to compute the integral closure of a few powers of
one ideal. In particular, it is possible to compute the integral closure of
the ideal itself without necessarily computing the integral closures of all the
powers. This is correspondingly faster. However, as mentioned before, these
computations tend to be very time- and memory-consuming.

Here is a worked example:

LIB "reesclos.lib";
ring R =0,(a,b,c), dp;
ideal I = a2-b5,ac2,b2c;
list J = normalI(I,2);
J[1]; // J[1] is the integral closure of I

The function normalI(I [,n]]) above uses the following syntax: I is an
ideal, and n is an optional integer. Then normalI(I [,n]]) computes the
integral closures of I, I2, . . . , In. If n is not given or is zero, this command
computes the integral closures of all the powers of I. For the example above,
Singular returns

_[1]=-b5+a2
_[2]=ac2
_[3]=b2c
_[4]=abc

and for the integral closure of I2 it returns:
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> J[2];
_[1]=b10-2a2b5+a4
_[2]=-ab5c2+a3c2
_[3]=a2c4
_[4]=-b7c+a2b2c
_[5]=ab2c3
_[6]=b4c2
_[7]=-ab6c+a3bc
_[8]=a2bc3
_[9]=ab3c2
_[10]=a2b2c2

15.3. General algorithms

We present general algorithms for computing the integral closure of ideals.
The first one is based on the work of Grauert and Remmert [96], [97], and
is due to de Jong [60]. This algorithm is the basis of Singular’s automation.
The second algorithm is a modification of de Jong’s algorithm due to Lipman’s
work. The last two algorithms are due to Vasconcelos.

An important ingredient for the computations in this section, as well as
in the previous one, is Lemma 2.4.3: for any ideals I and J in a domain R,
HomR(I, J) can be identified with with the R-submodule 1

x (xJ :R I) of Q(R),
where x is an arbitrary non-zero element of I.

Lemma 15.3.1 Let J be an integrally closed non-zero ideal in a Noetherian
domain R. As submodules of the field of fractions K,

HomR(J,R) ∩R = HomR(J, J).

Proof: Let f ∈ HomR(J,R)∩R. Write fn = r0+r1f+· · ·+rn−1f
n−1 for some

ri ∈ R. Then for all x ∈ J , (fx)n = r0x
n + r1x

n−1(fx) + · · ·+ rn−1x(fx)
n−1

is an equation of integral dependence of the element fx ∈ R over J . Thus
fx ∈ J = J , so f ∈ HomR(J, J). Conversely, if f ∈ K such that fJ ⊆ J ,
then by Lemma 2.1.8, f ∈ R, and certainly fJ ⊆ R.

We note that in the current computer implementations, this lemma is ap-
plied with J being a radical ideal.

With the lemma, Proposition 2.4.9 can be made computationally more rea-
sonable: instead of computing (I · I−1)−1 for all ideals in R it suffices to
compute it for one I:

Theorem 15.3.2 (Grauert and Remmert [96]) Let R be a Noetherian in-
tegral domain and J a non-zero integrally closed ideal of R such that V (J)
contains the non-normal locus of R. Then the following are equivalent:
(1) R is integrally closed.
(2) For all non-zero fractional ideals I of R, HomR(I, I) = R.
(3) For all non-zero ideals I of R, HomR(I, I) = R.
(4) HomR(J, J) = R.
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Proof: As for all I, R ⊆ HomR(I, I), by Lemma 2.1.8 or by Proposition 2.4.8,
(1) implies (2). Certainly (2) implies (3) and (3) implies (4). Now assume
condition (4). We will prove that R is integrally closed. Let f ∈ R. Set
L = R :R f . A prime ideal P of R contains L if and only if f 6∈ RP .
Thus V (L) is contained in the non-normal locus of R. Thus there exists an
integer d such that Jd ⊆ L. Then fJd ⊆ fL, and by the definition of L,
fL ⊆ R. Thus fJd ⊆ R. Let e be least non-negative integer such that
fJe ⊆ R. If e is positive, there exists r ∈ Je−1 such that fr is not in R. But
fr ∈ R∩HomR(J,R), so that by the previous lemma, fr ∈ HomR(J, J) = R,
contradicting the choice of r. Thus necessarily e is not positive, so that e = 0,
i.e., f ∈ R.

By the Jacobian criterion (Theorem 4.4.9), the non-normal locus is com-
putable when R is a finitely generated algebra over a perfect field k. Namely,
I as in (4) of the theorem above can be taken to be any non-zero integrally
closed ideal contained in the radical of the Jacobian ideal of R/k, and then
R is integrally closed if and only if HomR(I, I) = R. Furthermore, by the
theorem above, normality of a ring is computable also in other contexts, say
if R is a finitely generated algebra over any regular ring, such as over Z (see
Exercise 4.5).

Theorem 15.3.2 provides a criterion for determining whether a Noetherian
domain with a known ideal defining the singular locus is integrally closed, and
as observed by de Jong [60], it also indicates an algorithm for computing
the integral closure of computable rings as follows:
(1) Compute HomR(I, I) for a single computable ideal I satisfying condi-

tion (4). Then R is integrally closed if and only if HomR(I, I) equals R,
in which case stop the procedure.

(2) If R is not integrally closed, by Theorem 15.3.2, HomR(I, I) 6= R. By
Lemma 2.1.8, any element of HomR(I, I) is integral over R. (It may
not be the case that the ring HomR(I, I) is the integral closure of R
(see Exercise 15.5).) Choose any finite non-empty set of elements of
HomR(I, I) that are not in R; adjoin those to R to obtain a new affine
ring R′.

(3) Repeat the computation of HomR′(I ′, I ′) for the new ring R′ and its
corresponding new ideal I ′.

By Theorem 4.6.3, the integral closure of R is a finitely generated R-module,
so this procedure must stop eventually, and the final ring is necessarily the
integral closure of R.

Here is one catch: to apply the algorithm and the theorem above, one has to
compute an ideal I satisfying condition (4) of Theorem 15.3.2. If R is essen-
tially of finite type over a perfect field, I can be taken to be the radical or the
integral closure of the Jacobian ideal (see the Jacobian criterion 4.4.9). Once
the Jacobian ideal is computed, one needs to find some integrally closed ideal
between it and its radical before computing Hom. This adds a computational
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difficulty. To compute the integral closure of the ideal, in general one has to
compute the integral closure of its Rees algebra and then read off the degree
one component, but this makes the computation of the integral closure of an
algebra successively more and more complex. Thus in general the theorem
above should be applied with the radical of J rather than with the integral
closure. Several methods of computing the radicals are in the exercises.

However, there are cases when we can avoid the computation of either the
radical or the integral closure, as follows:

Theorem 15.3.3 (Lipman [186]) Let R be an integral domain that is essen-
tially of finite type over a field of characteristic 0. Let J be the Jacobian ideal
for R over this field. Then the following are equivalent:
(1) R is integrally closed.
(2) HomR(J

−1, J−1) = R.
(3) For all prime ideals P in R of grade 1, HomR(J

−1, J−1)RP = RP .

Proof: By Proposition 2.4.9, the only new implication is that (3) implies
(1). It suffices to prove that for every prime ideal P in R of grade 1, RP
is a discrete valuation ring of rank one. By Lemma 2.4.6 and the assump-
tion, (JJ−1)−1RP = RP . Thus by the same proof as in Proposition 2.4.9,
JJ−1RP = RP and JRP is principal. Now we apply Lipman’s theorem
from [186] whose proof we do not provide here: JRP is principal if and only
if RP is regular. Hence RP is a regular local ring. As it has depth one, it is
a discrete valuation ring of rank one.

It follows that in characteristic zero this gives a simpler algorithm for com-
puting the integral closure of ideals: the Jacobian ideal is computable, and
there is no need to compute its integral closure or its radical.

We comment that the characteristic zero assumption is necessary. Mat-
sumoto [201, page 404] gave the following example: R = k[X, Y ]/(Xp+Y p+1),
where k is field of prime characteristic p. Here J = JR/k = Y pR, J−1 = 1

Y pR,

Hom(J−1, J−1) = R does not contain R properly even though R is a proper
extension of R (for example, X/Y ∈ R and is not in R).

A third algorithm for computing the integral closure of an affine domain R
in characteristic zero was given by Vasconcelos [306]. Here are the steps:
(1) Compute a Noether normalization A of R (see Exercise 15.6).
(2) The process that yields A also yields a presentation of R as an A-module.

Then compute R∗∗ = HomA(HomA(R,A), A). This is actually a subring
of R that satisfies (S2), see Exercises 15.9 and 15.12.

(3) If R satisfies (R1), so does R∗∗ (see Exercise 15.11), hence R∗∗ is the
integral closure of R. If, however, R does not satisfy (R1), then in char-
acteristic zero one can apply Theorem 15.3.3 to find a proper extension
of R contained in R. Then one repeats the procedure with this proper
extension in place of R.
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Note that Vasconcelos’s algorithm does not require the computation of the
radical of an ideal, but instead it requires the Noether normalization and
the double dual rings. The characteristic zero assumption is necessary to
guarantee the computation of R.

In a later paper [308], Vasconcelos gave yet another algorithm for computing
the integral closure of affine domains in characteristic zero, and at the same
time gave an a priori upper bound on the number of steps needed to compute
the integral closure. We give an outline of his method. Input is an integral
domain R that is finitely generated over a field k of characteristic zero.
(1) Compute a Noether normalization A′ of R (see Exercise 15.6), and an

element r ∈ R such that Q(A′)(r) = Q(R). (The last condition is the
Primitive Element Theorem 3.1.1.) Set A = A′[r]. Then A is Gorenstein,
A ⊆ R is module-finite, and A and R have the same field of fractions.

(2) Set R1 = HomA(HomA(R,A), A). As before, R1 is a subring of R that
contains R and satisfies Serre’s condition (S2).

(3) If R1 6= R, i.e., if R1 is not integrally closed, compute a proper ex-
tension R′

1 of R1 contained in R (possibly use Theorem 15.3.3). Set
R2 = HomA(HomA(R

′
1, A), A).

One gets a filtration
R(R1 (R2 ( · · · ⊆ R,

where each Ri satisfies Serre’s condition (S2).
All the algorithms for computing the integral closure rely on the finite

generation of R over R to claim that the procedure must stop at some Rn = R.
Vasconcelos [308] gives an a priori bound on the number of Ri needed in
the construction above. Namely, let J be the Jacobian ideal of A over k.
By Theorem 13.3.3, J is in the conductor ideal of R. (We may not know
the conductor ideal prior to constructing R, but we can readily compute the
Jacobian ideal.) Note that as A = k[x1, . . . , xd+1]/(f), where x1, . . . , xd+1 are
variables over k, J is the ideal in A generated by all the partial derivatives
of f . Vasconcelos proved [308, Theorem 2.2] that the number of Ri needed is
at most

∑
htP=1 λ(AP /JAP ). (See Exercises 15.13 and 15.14.)

These algorithms above do not form an exhaustive list; a few more are
presented through the exercises at the end of the chapters, and some other
relevant papers on effective computation of the integral closure are listed here:
[304]; [299]; [24], [25]; [41]; [62]; [302].

15.4. Monomial ideals

Recall Proposition 1.4.9: for a monomial ideal in k[X1, . . . , Xd] generated by
elements of degree at most N , the integral closure is generated by monomials
of degree at most N + d − 1. There are only finitely many monomials in
k[X1, . . . , Xd] of degree at most N + d − 1, whence to compute the integral
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closure of monomial ideals it suffices to check if any of these finitely many
monomials satisfy an equation of integral dependence.

So the problem of computing the integral closure of a monomial ideal I re-
duces to the problem of determining when a given monomial Xn1

1 Xn2
2 · · ·Xnd

d

is integral over I. For this, if I is generated by elements X
vj1
1 X

vj2
2 · · ·Xvjd

d ,
j = 1, . . . , l, as in equation (1.4.5), one needs to find non-negative rational
numbers c1, . . . , cd such that

(n1, n2, . . . , nd) ≥
∑

j

cj(vj1, vj2, . . . , vjd),
∑

j

cj = 1.

This is now phrased as a linear programming problem, and algorithms exist
for solving them.

In general, if d and N are large, the number of monomials to be tested for
integrality over I can be very large. For a restricted class of monomial ideals
there is a smaller number of monomials to be tested:

Proposition 15.4.1 Let I be a monomial ideal in k[X1, . . . , Xd] that is
primary to (X1, . . . , Xm), m ≤ d. Then I is integrally closed if and only
if none of the finitely many monomials in the set ((I : (X1, . . . , Xm)) ∩
k[X1, . . . , Xm]) \ I is integral over I.

Proof: Let S be the set of monomials in ((I : (X1, . . . , Xm))∩k[X1, . . . , Xm])
that are not in I. This is a finite set. If I is integrally closed, none of the
elements of S is integral over I. If I 6= I, as integral closure of monomial ideals
is monomial (see Proposition 1.4.2 or Corollary 5.2.3), there is a monomial
r ∈ I \ I. Without loss of generality r ∈ k[X1, . . . , Xm]. Some monomial
multiple r′ of r is in S and in I, which proves the converse.

One can algorithmically and easily compute the finite set of monomials in
(I : (X1, . . . , Xm)) ∩ k[X1, . . . , Xm] that are not in I. The number of these
monomials is in general much smaller than the number of monomials of degree
at most N + d− 1 that are not in I.

Another solution to the computation of integral closures of monomial ideals
was provided by Bruns and Koch in [30] and implemented in Normaliz [31].
As in the beginning of this chapter, the computation is first converted to the
computation of the integral closure of the Rees algebra of the ideal. We reit-
erate: for a monomial ideal I in R = k[X1, . . . , Xd] generated by monomials
Xv

1 , . . . , Xv
s , if t is a variable over R, the Rees algebra R[It] of I is a k-algebra

generated over k by the monomials Xv
1t, . . . , Xv

st, and by X1, . . . , Xn. The
integral closure of I is the set of all elements of the integral closure of R[It]
whose t-degree is 1. By Theorem 2.3.2, the integral closure of R[It], which is
the integral closure of R[It] in R[t], is a monomial algebra. Thus the integral
closure of I is generated by the monomial generators of R[It] of t-degree 1.
As before, monomials correspond to their exponent vectors, so the problem
of computing the integral closure of R[It] can be converted to a problem on
exponent vectors. We explain next how Normaliz solves that, without linear
programming.
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Again, v1, . . . , vs are the exponent vectors of a monomial generating set of I.
Let E be the subset of Nd+1 consisting of the d+s vectors (v11, . . . , v1d, 1), . . . ,
(vs1, . . . , vsd, 1) and (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1, 0). The mono-
mial algebra R[It] is generated over k by Xµ as µ varies over elements of E.

In general, given a finite subset E ∈ Nd+1 (or even in Zd+1), if T =
k[Xµ |µ ∈ E], by Corollary 2.3.7, the exponent vectors of the monomials
in the integral closure of T are precisely the elements of ZE ∩Q≥0E.

By Carathéodory’s Theorem (A.2.1), it suffices to find elements of ZE ∩
(Q≥0µ1+ · · ·+Q≥0µr), where µ1, . . . , µr form a maximal linearly independent
set in E. Naturally, Z≥0µ1 + · · ·+ Z≥0µr are exponents of elements of T , so
they do not add anything in constructing the integral closure of T , and we
may ignore them. In fact, by subtracting the positive integer multiples of
the monomials µ1, . . . , µr, it is easy to see that the integral closure of T is
generated, in exponent form, by {c1µ1+ · · ·+ crµr ∈ ZE | ci ∈ Q, 0 ≤ ci < 1},
as {µ1, . . . , µr} vary over the linearly independent subsets in E. By linear
independence, these monomials are in one-to-one natural correspondence with
ZE/(Zµ1 + · · · + Zµr). But by the fundamental theorem of finite abelian
groups, the latter set is a computable finite set, and therefore ZE ∩ Q≥0E
and T are computable.

This is the theoretical basis of the program Normaliz by Bruns and Koch
for computing the integral closure of monomial algebras and ideals. See also
Exercise 2.18. The program Normaliz also provides optimizing features, such
as finding maximally linearly independent subsets of {v1, . . . , vs} that cor-
respond to a triangulation of the Newton polyhedron Q≥0E into simplicial
cones. The algorithm is described in more detail in [30].

15.5. Exercises

15.1 (Gianni and Trager [90]) Let R be a Noetherian domain such that
R is module-finite over R. Let t ∈ R :R R, t 6= 0. Prove that if
R is not integrally closed, then the ring HomR(

√
tR,

√
tR) properly

contains R. (This exercise, together with the conductor constructions
in Section 12.3, gives a modified algorithm for computing the integral
closure of affine algebras.)

15.2 Let R be the (non-Noetherian) ring Z[X1, X2, . . .]/(X1 −X i
i | i ≥ 1).

Prove that the integral closure of X2R is not finitely generated.
15.3 (Criterion for integral dependence. See Proposition 3.1.3 in [100];

background on Gröbner bases needed.) Let k be a field, X1, . . . , Xn

variables over k, I ideal in k[X], and r, f1, . . . , fm ∈ k[X]. Prove that
r is integral over k[f1, . . . , fm] modulo I if and only if for variables
Y1, . . . , Ym, Z, under the lexicographic ordering X1 > · · · > Xn >
Z > Y1 > · · · > Ym, the Gröbner basis for the ideal (Z − r, Y1 −
f1, . . . , Ym − fm) + I in k[X, Y , Z] contains an element whose initial
monomial is a power of Z.
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15.4 (Criterion for integral dependence; background on Gröbner bases
needed.) Let R be a Noetherian ring, X1, . . . , Xn variables over R,
and I an ideal in R[X]. Assume that there is some term ordering on
R[X] in which any non-trivial monomial on the Xi is greater than
elements of R. Prove that R[X]/I is integral over R if and only if
(X1, . . . , Xn) lies in the radical of the initial ideal of I.

15.5 Let k = Z/2Z, and R = k[x,y,z]
(x4+x3y+(1+z)x2y2+zxy3+z2y4) .

(i) Prove that R is an integral domain.
(ii) Find the Jacobian ideal J of R over k.
(iii) Compute S = HomR(

√
J,

√
J).

(iv) Prove that x
y is in the quotient field of R and is integral over R.

(v) Prove that x
y is not in S. (Thus Theorem 15.3.2 in general

requires more than one step in the construction of the integral
closure of the ring.)

(vi) Compute T = HomR(J, J). Show that x
y
is in T .

(vii) Compute R.
15.6 Write an algorithm for finding a Noether normalization A of an affine

domain R over a field k. In case R is separable over k, R should be
separable algebraic over A.

15.7 LetR be a domain essentially of finite type over a field of characteristic
0. Let J be the Jacobian ideal for the extension R over this field. Then
the following are equivalent:
(i) R is integrally closed.
(ii) HomR(J,R) = R.
(iii) For all prime ideals P in R of grade 1, HomR(J,R)RP = RP .
(iv) HomR(J, J) = R, and for any/some/all non-zero x ∈ J , xR :R

(xR :R J) = R.
(v) HomR(J, J) = R, and for any/some/all non-zero elements x ∈

J , HomR(xR :R J, xR :R J) = R.
15.8 (Swanson and Villamayor [284]) Let R be a ring, d a positive integer,

a1, . . . , ad ∈ R, X a variable over R, and

S = R[X ]

/(
Xd −

d−1∑

i=0

ad−iX
i

)
.

Then S is a finitely generated free R-module that is a ring, with basis
{1, X, . . . , Xd−1}.
(i) For each n ≥ d, find a closed form expression for Xn as an

R-linear combination of the given basis elements.
(ii) For any f, g ∈ S written as R-linear combinations of the given

basis elements, find a closed form expression for fg as an R-
linear combination of the given basis elements.



15.5. Exercises 311

Towards Vasconcelos’s criterion
15.9 Let R be a Noetherian domain that satisfies Serre’s condition (S2),

and let M be a finitely generated R-module. Prove that for every
prime ideal P of R, either (HomR(M,R))P is zero or the depth of
MP is greater than or equal to min{2, htP}.

15.10 Let R be an integral domain and M a finitely generated R-module.
(i) Suppose that M is a torsion-free R-module and that for all P ∈

SpecR depthMP ≥ min{htP, 2}. Prove that M = ∩htP=1MP ,
where the intersection is taken in the vector space MR\{0}.

(ii) Suppose that R satisfies (S2) and is Gorenstein after localization
at all height one prime ideals. Prove that if M is torsion-free,
then HomR(HomR(M,R), R) = ∩htP=1MP , where the intersec-
tion is taken in the vector space MR\{0}.

15.11 Let R be a locally formally equidimensional Noetherian domain satis-
fying Serre’s condition (R1). Let S be a ring contained in the field of
fractions and R and module-finite over R. Prove that S satisfies (R1).

15.12 Let A ⊆ R be Noetherian domains, with R module-finite over A.
Prove that HomA(HomA(R,A), A) is an algebra between R and R.

15.13 Let A be a Noetherian integral domain that satisfies (S2) and is
Gorenstein after localization at any height one prime ideal. Assume
that A is module-finite over A.
(i) Let R be a ring between A and A. Prove that

HomA(HomA(R,A), A) = HomA(annA(R/A), A).

(ii) Let A ⊆ R ⊆ R′ ⊆ A be rings such that R and R′ satisfy (S2).
Prove that R = R′ if and only if ann(R/A) = ann(R′/A).

15.14 Let R be a Noetherian integral domain.
(i) Prove that the only proper ideals I in R satisfying I = (I−1)−1

have grade at most 1.
(ii) Assume that R is Cohen–Macaulay and that R is module-finite

over R. Let J = R :R R. Prove that the only ideals I in R
containing J and satisfying I = (I−1)−1 lie in height one prime
ideals associated to J . Prove that any chain of such ideals I has
length at most

∑
htP=1 λ(RP /JRP ).

Computation of radicals, associated primes, primary components
15.15 (Contraction of localization of an ideal, see Proposition 3.7 in Gianni,

Trager and Zacharias [91]. Background on Gröbner bases needed.)
Let A be an integral domain and (p) ⊆ A a principal prime ideal in
A. Write an algorithm that for any ideal I in the polynomial ring
A[X ] in variable X over A computes an element s ∈ A \ (p) such that
IA(p)[X ] ∩ A[X ] = IAs[X ] ∩ A[X ]. In particular, IA(p)[X ] ∩ A[X ] is
computable.

15.16 (Determination of primality, following [91]) Let A[X ] be a Noetherian
ring, X a variable over A, and P an ideal in R = A[X ].



312 15. Computing integral closure

(i) Prove that P is a prime (respectively primary) ideal in R if and
only if P ∩ A is a prime (respectively primary) ideal in A and
the image of P in A/P ∩ A is a prime (respectively primary)
ideal.

(ii) Let A be an integral domain and P ∩A = 0. Let K be the field
of fractions of A. Then P is a prime (respectively primary) ideal
if and only if PK[X ] is a prime (respectively primary) ideal in
K[X ] and P = PK[X ] ∩K[X ].

(iii) Assuming that irreducibility of polynomials in polynomial rings
over fields or Z is algorithmic, write an outline of an algorithm
to decide whether an ideal in such a ring is a prime ideal.

15.17 Let R be an Noetherian ring and I an ideal in R.
(i) Let x be an element of R. Let n be such that for all m ≥ n,

I : xn = I : xm. Then I = (I : xn)∩(I+(xn)). Thus a (possibly
redundant) primary decomposition of I can be obtained from
primary decompositions of I : xn and I + (xn).

(ii) Prove that for any element x ∈ R, Ass(R/I) ⊆ Ass(R/(I :
x)) ∪ Ass(R/(I + (x))).

(iii) Assuming that finding a zero-divisor modulo an ideal in R is
algorithmic, write an outline of an algorithm to find all the min-
imal prime ideals.

(iv) Assuming that finding a zero-divisor modulo an ideal in R is
algorithmic, write an outline of an algorithm to find a primary
decomposition of an ideal.

Another algorithm for computing some of the associated primes of an ideal is
to first compute the radical of the ideal and then find the associated primes
of the radical. Below are some methods for computing the radical. For more
on computability of primary decompositions and radicals, see Hermann [118];
Gianni, Trager and Zacharias [91]; Eisenbud, Huneke and Vasconcelos [70];
and Shimoyama and Yokoyama [270].
15.18 (Krick and Logar [176]) Let k be a field, X1, . . . , Xn variables over k,

and I a zero-dimensional ideal in k[X1, . . . , Xn]. For each j = 1, . . . , n,
set Fjk[Xj] = I ∩k[Xj ]. Let Gj be the square-free part of Fj (so that√
(Fj) = (Gj)).

(i) Suppose that k has characteristic 0. Prove that
√
I = I +

(G1, . . . , Gn). In particular, conclude that (G1, . . . , Gn) is a rad-
ical ideal. (Hint: Exercise 3.14.)

(ii) Give an example in positive prime characteristic in which
√
I 6=

I + (G1, . . . , Gn).
15.19 Let k be a field, X1, . . . , Xn variables over k, and I an ideal in k[X].

(i) Prove that there is an algorithmic way of finding a subset S of
{X1, . . . , Xn} such that I ∩ k[S] = 0, and the cardinality of S is
maximal possible.



15.5. Exercises 313

(ii) (Background on Gröbner bases needed.) Let S be as above and
set T = {X1, . . . , Xn}\S. Prove that there is an algorithmic way
of finding h ∈ k[S] such that Ik(S)[T ] ∩ k[X] = I : h = I : h2.

(iii) Prove that
√
I =

√
Ik(S)[T ] ∩

√
I + hk[X].

(iv) Conclude that
√
I is computable in polynomial rings over fields.

15.20 (Eisenbud, Huneke, Vasconcelos [70, Theorem 2.1]) Let R be an
equidimensional ring of dimension d that is finitely generated over a
field k and that has no embedded primes. In case the characteristic
p of k is positive, also assume that R, as a module over one of its
Noether normalizations, has rank strictly less than p.
(i) Let X1, . . . , Xn be variables over k and let f1, . . . , fn−d be a reg-

ular sequence in k[X]. Suppose that R = k[X]/(f1, . . . , fn−d),
and that A = k[X] ⊆ R is its Noether normalization. Let D be
the determinant of the matrix ( ∂fi∂Xj

)j>d. Prove that the radical

of (f1, . . . , fn−d) equals (f1, . . . , fn−d) : D.
(ii) Prove that if R is generically a complete intersection, then the

nilradical of R equals 0 : J , where J is the Jacobian ideal of R.
15.21 (Corso, Huneke, Vasconcelos [44]) Let X, Y, Z,W variables over a field

k of characteristic 0, R = k[[X, Y, Z,W ]], and I = (X2 − XY, Y 2 −
XY,Z2−ZW,W 2−ZW ). Prove that I = I+(XZ−Y Z−XW+YW )
is not a binomial ideal and that

√
I = (X − Y, Z −W ).

15.22 ([44]) Let R be a polynomial ring over a field k of characteristic 0, and
I an ideal in R all of whose minimal primes have the same height. Let
J be the ideal in R that is the preimage of the Jacobian ideal of R/I.
(i) Prove that if I is integrally closed, then IJ : J = I.
(ii) Assume that I is generically a complete intersection. Prove that

if IJ : J = I, then I is integrally closed. (Hint: Exercise 15.20.)
15.23 (Matsumoto [201]) Suppose that radicals can be computed in Z and

in polynomial rings over finite fields. Let R = Z[X] be a polynomial
ring over Z, and I an ideal in R. The point of this exercise is to
prove that the radical of I can be computed. Certainly I ∩ Z can be
computed with Gröbner bases. Let m generate the radical of I ∩ Z.
(i) Suppose that m 6= 0. By simple exhaustion or by more so-

phisticated techniques, one can compute a prime decomposi-
tion of m = p1 · · · pl for some positive integers p1, . . . , pl. Set
Ii = I : (p1 · · · p̂i · · · pl)N , where N is a very large (and com-
putable) integer. Let ϕi : R → (Z/piZ)[X] be the natural map.
Prove that

√
I = ∩li=1

√
Ii and that

√
Ii = ϕ−1

i

√
(ϕi(Ii)).

(ii) Suppose that m = 0. Let G be a Gröbner basis of I and let g be
the product of the leading coefficients of elements of G. Thus g
is a non-zero element of Z. Prove that

√
I =

√
I : g∞∩√I + gR,

and that
√
I : g∞ = Z[X] ∩ IQ[X].

(iii) Prove that
√
I is computable.
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15.24 Write an algorithm to compute the normalization of a domain that is
finitely generated over Z.

15.25 Let R be subalgebra of a polynomial ring k[X1, . . . , Xn] generated
over k by finitely many monomials. Give an upper bound on the
degrees of the monomial generators of R in terms of the degrees of
the monomial generators of R.
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Integral dependence of modules

Integral dependence of rings and ideals can be extended to modules. This was
first done by Zariski and Samuel for modules contained in overfields in [324,
Appendix 4], and later extended to general modules by Rees in [241] and even
later by Eisenbud, Huneke and Ulrich [69]. The integral closures by Rees and
by Eisenbud et al. do not agree on all rings and modules, e.g., if the ring is
not an integral domain. A further discussion of the definitions is at the end
of Section 16.2 and in the exercises.

We will be working with Rees’s definition.
Once the definition is established, many properties of integral closure that

we have established for ideals can also be proved for the integral closure of
modules. In the first four sections we develop the basic notions. In Sec-
tion 16.5, we define the Buchsbaum–Rim multiplicity, and use it to give a
criterion for reduction of modules, generalizing Rees’s Theorem 11.3.1. We
follow the work in [271] in this section. Much of the chapter is based on the
work of Rees [241], and Kirby and Rees [167]. We also work from Katz [164].
In Section 16.6, we present Rees’s result that certain conditions on the heights
appearing in a Koszul complex are equivalent to acyclicity of the Koszul com-
plex up to integral closure. This can be viewed as a generalization of Serre’s
result on the depth sensitivity of the Koszul complex, with depth being re-
placed by height, and it can be also viewed as a generalization of Ratliff’s
Theorem 5.4.1. A more general acyclicity criterion is proved in Section 16.8,
based on some results from tight closure.

16.1. Definitions

Definition 16.1.1 (Rees [241]) Let R be a Noetherian ring and N ⊆M an
inclusion of finitely generated R-modules. An element x ∈ M is said to be
integral over N if for every minimal prime ideal P in R and every valuation
ring V between R/P and κ(P ), the image of x in MP /PMP can be written as∑m
i=1 vini, where for each i, vi ∈ V and ni lies in the canonical image of N

inside MP /PMP .

When R is a domain, then for any ring V between R and the field of fractions
of R, the extension of scalars MV is well-defined: it is the V -submodule
of MR\(0) generated by elements vm, as v varies over V and m over M . In
other words, x ∈ M is integral over N if and only if for every P ∈ MinR,
the image of x in MP /PMP is in N+PM

PM V , as V varies over κ(P )-valuation
domains containing R/P .
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When R is an integral domain and M is the free R-module Rr, then
for the integral dependence of x ∈ M over N one has to check for every
Q(R)-valuation ring V containing R whether x ∈ NV , where NV is the V -
submodule of V r generated by N . In particular, if M = R is an integral
domain, then N is an ideal, and by Proposition 6.8.2, the integral dependence
of elements of the domain R over an ideal is a special case of the integral
dependence of modules. If N ⊆ M ⊆ L are finitely generated R-modules,
an element x ∈ M may be integral over N as an element of L but not as an
element of M . This difference between the integral closure of ideals and the
integral closure of modules is illustrated in the example below.

Example 16.1.2 Let k be a field, X a variable over k, and R = k[X ]/(X2).
Let I be the ideal generated by X . As I is nilpotent, all the elements of I are
integral over the zero subideal. Thus X ∈ I is integral over 0 as an element
of the module R. However, X is not integral over 0 as an element of the
module I, because in I ⊗R κ(XR) ∼= k, the image of I is non-zero, but the
image of the zero submodule is of course zero.

It is easy to see that the set of all elements of M that are integral over N
forms an R-submodule ofM containingN . This module is called the integral
closure of N in M .

There are other possible definitions of integral dependence; see Discus-
sion 16.2.4 below. We have chosen to use Rees’s original definition. Every
choice of definition has its own problems.

To check whether an element x ofM is integral over a submodule N reduces
to checking whether for each minimal prime ideal P of R, the image of x in
the (R/P )-module MP

PMP
is integral over the image of N . Thus it is no loss of

generality to restrict the attention to the case where R is an integral domain,
and to replace M and N by their images in MR\(0), so that we may assume
that M is torsion-free.

If R is an integral domain and M is a torsion-free R-module, then by the
definition

the integral closure of N in M = ∩
V
(NV ) ∩M,

as V varies over the valuation rings between R and the field of fractions of R.

Definition 16.1.3 Let R be a Noetherian ring and N ⊆ M ⊆ L inclusions
of finitely generated R-modules. N is said to be a reduction of M in L if
for all P ∈ MinR and all κ(P )-valuation rings V containing R/P , the image
of M in L ⊗ κ(P ) lies in the V -span of the image of N . We say that N is a
reduction of M if N is a reduction of M in M .

Here is another indication that the integral closure of modules generalizes
the integral closure of ideals:

Lemma 16.1.4 Let R be a Noetherian ring, N ⊆M ⊆ L modules.
(1) If N ⊆M is a reduction in M , then N is a reduction of M in L.



16.2. Using symmetric algebras 317

(2) If N ⊆ M is a reduction in L, then the integral closure of N in L con-
tains M .

(3) If J ⊆ I are ideals in R such that J ⊆ I is a reduction of modules, then
the (ideal) integral closure of J (in R) contains I.

Proof: If the image of M in M ⊗ κ(P ) lies in the V -span of the image of N ,
then the image of M in L⊗ κ(P ) lies in the V -span of the image of N . This
proves (1), and (2) follows. If J ⊆ I is a reduction of modules, then by (1),
J ⊆ I is a reduction of modules in R, so that for all P ∈ MinR, J(R/P ) ⊆
I(R/P ) is a reduction of modules in R/P . This means that for all minimal
prime ideals P in R and all κ(P )-valuation rings V containing R/P , JV = IV
in κ(P ). Thus by Proposition 6.8.2, J(R/P ) ⊆ I(R/P ) is a reduction of ideals,
whence by Proposition 1.1.5, J ⊆ I is a reduction of ideals.

16.2. Using symmetric algebras

In this section we connect the theory of the integral closure of modules and
the theory of the integral closure of ideals (see Theorem 16.2.3).

Recall the definition of the tensor algebra of an R-module M :

TR(M) =
∑

n≥0

M
⊗n
,

where M⊗n denotes the n-fold tensor product of M (as R-module). By convention,

M⊗0 = R, M⊗1 = M . For any x ∈ M⊗n and y ∈ M⊗m, x ⊗ y ∈ M⊗(n+m). This

makes TR(M) into an N-graded ring that need not be commutative.

Fix a commutative ring R and an R-module M . Let I be the two-sided ideal in

TR(M) generated by all elements of the form m1⊗m2 −m2 ⊗m1, as m1,m2 vary over

elements ofM . Define symmetric algebra SymR(M) ofM to be SymR(M) = TR(M)/I.

This is a commutative ring with identity, and is the largest commutative quotient of

TR(M). As I is a homogeneous ideal, SymR(M) is N-graded. Note that SymR(M)

is generated over R by M , so that if R is Noetherian and M finitely generated, then

SymR(M) is Noetherian as well. As an example, SymR(Rn) is a polynomial algebra

in n variables over R. If M is an ideal of R, SymR(M) is the usual symmetric algebra

of the ideal M .

If N ⊆ M , SymR(N) need not be contained in SymR(M).

Definition 16.2.1 When M is an R-submodule of an R-module F , we de-
note by SF (M) the image of SymR(M) in SymR(F ) under the natural map in-
duced by the inclusionM ⊆ F . When F is understood, we simply write S(M).
When F is a free R-module we write R(M) = SF (M). If the free module F
needs to be specified, then we will write RF (M).

The ring SF (M) is N-graded, with [SF (M)]0 = R, [SF (M)]1 = M . If
N ⊆ M ⊆ F , then SF (N) ⊆ SF (M) ⊆ SymR(F ). If F is free, then R(M)
does not have R-torsion as R(M) is a subring of the polynomial ring SymR(F )
over R.

There may be non-isomorphic RF (M) as F varies over finitely generated
free R-modules containing M (see Exercise 16.16).
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A special case of RF (M) is when F = R and M = I is an ideal. In this
case R(I) is the Rees algebra R[It] of I. Thus R(M) may be viewed as a
Rees algebra of the module M. The following generalizes Theorem 5.1.4:

Lemma 16.2.2 Let R be a Noetherian ring, F = Rr a finitely generated
free R-module and M an R-submodule of F .
(1) There is a one-to-one inclusion-preserving correspondence between associ-

ated primes of RF (M) and associated primes of R, given by contraction.
(2) For all P ∈ MinR, P SymR(F )∩RF (M) is a minimal prime in RF (M),

all the minimal primes of RF (M) are obtained in this way. Furthermore,
RF/PF (

M+PF
PF

) ∼= RF (M)/(P SymR(F ) ∩RF (M)).
(3) dimRF (M) = sup{ht(m/P ) + rk(M ⊗R κ(P )) |P ∈ MinR, P ⊆ m ∈

SpecR}.
(4) If ht(ann(F/M)) > 0, then dimRF (M) = dimR + r.

Proof: As R ⊆ RF (M) ⊆ SymR(F ), every associated prime of R is contracted
from an associated prime of RF (M), and every associated prime of RF (M)
is contracted from an associated prime of SymR(F ). But SymR(F ) is a poly-
nomial ring over R, so this correspondence is one-to-one. This proves (1).
Under the natural surjection SymR(F ) → SymR/P (F/PF ), RF (M) maps

onto RF/PF (
M+PF
PF

) and the kernel is P SymR(F )∩RF (M). This proves (2).
As in the proof of (1) above, every prime ideal in R is contracted from

a prime ideal in RF (M). Thus to prove (3), without loss of generality R
is a Noetherian local integral domain. Let m be its maximal ideal and K
its field of fractions. Then it suffices to prove that dim(RF (M)) = htm +
rk(MR\(0)). Set L = FR\(0), and r = rk(MR\(0)). As MR\(0) is a free finitely
generated K-module contained in L, it follows that ht(MRL(MR\(0))) = r.
Let Q = MRL(MR\(0)) ∩ RF (M). As MRF (M) ⊆ Q, by Theorem B.2.2,
htQ ≥ r. Furthermore, Q∩R = 0 and RF (M)/Q = R, so that dimRF (M) ≥
htm+ r. By the Dimension Inequality B.2.5, dimRF (M) = max{htQ′ |Q′ ∈
Spec(RF (M))} ≤ dimR+ tr.degRRF (M) = htm+ r. This proves (3).

The last claim follows from (3) since for every minimal prime P of R, P
does not contain ann(F/M), and so rk(M ⊗R κ(P )) = rk(F ⊗R κ(P )) = r.

How does R(M) behave under extensions by scalars? By definition, it is
clear that if R is an integral domain, F is free, M ⊆ F , and V is any ring
between R and the field of fractions of R, then RFV (MV ) = (R(M))V .

Theorem 16.2.3 (Rees [241]) Let R be a Noetherian ring, and let N ⊆M
be R-modules contained in a finitely generated free R-module F . Then the
following are equivalent:
(1) N ⊆M is a reduction of modules in F .
(2) R(N) ⊆ R(M) is an integral extension of rings.
(3) NR(M) ⊆MR(M) is an integral extension of ideals.
(4) MR(M) ⊆

√
NR(M).



16.2. Using symmetric algebras 319

Proof: (2) and (3) are equivalent by Proposition 2.3.8, and (3) and (4) are
equivalent by first passing modulo minimal prime ideals and then using Propo-
sition 1.6.4.

Assume (1). By definition, for every P ∈ Min(R), the image of M in the
(R/P )-module F/PF is in the integral closure of the image of N . Suppose
that (1) implies (3) under the additional assumption that R is an integral
domain. Then

N + PF

PF
RF/PF

(
M + PF

PF

)
⊆ M + PF

PF
RF/PF

(
M + PF

PF

)

is an integral extension of ideals. By Lemma 16.2.2 (2), for all minimal
prime ideals Q of R(M), N(R(M)/Q) ⊆ M(R(M)/Q) is an integral ex-
tension of ideals, so that by Proposition 1.1.5, NR(M) ⊆ MR(M) is an
integral extension of ideals. Thus it suffices to prove that (1) implies (3)
under the additional assumption that R be an integral domain. Let W be
any valuation ring between R(M) and its total ring of fractions. By Proposi-
tion 6.3.7, V =W ∩ K is a K-valuation ring containing R. Hence R(N)W =
R(N)VW = RFV (NV )W = RFV (MV )W = R(M)VW = R(M)W , so that
by Proposition 6.8.14,R(N) ⊆ R(M) is an integral extension. This proves (2),
and hence also (3) and (4).

Now assume that (2), (3), and (4) hold. Then NR(M) ⊆ MR(M) is an
integral extension of ideals, and the same is true after passing modulo each
minimal prime ideal of R(M). This means, by Lemma 16.2.2, that for all
P ∈ MinR, N+PF

PF
RF/PF (

M+PF
PF

) ⊆ M+PF
PF

RF/PF (
M+PF
PF

) is an integral ex-
tension of ideals. If (2) implies (1) in domains, it follows that (N+PF )/PF ⊆
(M + PF )/PF is a reduction of modules in F/PF , whence N ⊆ M is a re-
duction in F . Thus it suffices to prove the implication (2) ⇒ (1) for domains.
So let R be a domain with field of fractions K. Let V be a K-valuation ring
containing R. Extend V trivially to a valuation ring on the field of fractions of
SymR(F ), and restrict to RF (M). Denote the obtained valuation ring by W .
By assumption (3), NR(M)W = MR(M)W , whence NVRFV (MV )W =
MVRFV (MV )W . We represent MV by a finite matrix, each column stand-
ing for a generator expressed in the given basis for FV . By switching rows
and columns we have that the (1, 1)-entry divides all other entries, and by
row and column reducing we have that all other entries in the first row and
first column are 0. By continuing this, MV is a free V -module with basis
{d1v1, . . . , dnvn} for some di ∈ V and some basis {v1, . . . , vm} of FV . In par-
ticular, RFV (MV ) is a polynomial subring of a polynomial ring, and by pos-
sibly changing bases as above, RFV (MV ) = V [X1, . . . , Xn], MVRFV (MV )
is generated by X1, . . . , Xn and NVRFV (MV ) by c1X1, . . . , cnXn for some
ci ∈ V . But then NVRFV (MV )W = MVRFV (MV )W implies that all ci
are units, which proves (1).

Theorem 16.2.3 shows that questions of integral dependence and closure
of modules can sometimes be converted to analogous questions for ideals, at
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least for submodules of finitely generated free modules. However, the inter-
mediate construction of the rings R(M) can obscure the otherwise concrete
module M , so an explicit theory of the integral closure of modules can nev-
ertheless be useful. Brennan and Vasconcelos [25] gave various criteria for
integral closedness of the ring R(M) under further assumptions on the ring
and the module M .

Let N ⊆ M ⊆ F be R-modules with F free. Theorem 16.2.3 shows that
one could define M to be integral over N if and only if RF (M) is integral
over RF (N). This would certainly cover most main cases and it seems to be
a natural definition. However, in defining Rees algebra and integral closure of
a module, one must pick one’s poison; the problem is that this definition of
the Rees algebra depends on how the module is embedded in a free module.

Discussion 16.2.4 This theme of finding a notion of a Rees algebra that
does not depend on the embedding is addressed by Eisenbud, Huneke, and
Ulrich in [69]. Define a map f : M → F from an R-module M to a free
R-module F to be versal if every homomorphism from M to a free module
factors through f . A versal map can be obtained if the dual HomR(M,R)
is finitely generated, by taking the dual of a finitely generated free module
mapping onto HomR(M,R), and mapping M to this dual via the natural
map of M to its double dual. One could form the Rees algebra of M instead
by using a versal map from M to F , i.e., define R(M) = RF (M). This is
essentially the definition used in [69]. (See Exercise 16.13.) This definition
can be used to give a notion of integrality that works well and agrees with
our definition if R is a domain or if M has a rank. It can differ, however,
in other cases. Among the results of [69] are that this definition of Rees
algebra commutes with flat base change, that if R is torsion-free over Z,
then for every map of M to a free module G inducing an embedding on the
torsionless quotient of M , RG(M) ∼= R(M) (Exercise 16.17), that this is
false in characteristic p (Exercise 16.16), and that it agrees with the usual
definition of the Rees algebra of an ideal (Exercise 16.14). Other definitions
of Rees algebras of modules are for example in Liu [196]; or in Simis, Ulrich,
Vasconcelos [272].

16.3. Using exterior algebras

There is another characterization of integral closure of modules using exterior
algebras (Rees [241]). Exterior algebras are non-commutative rings, but no
theory of the integral closure in non-commutative rings is needed for the
reformulation below of the integral closure of modules.

For an R-module M , the exterior algebra ΛR(M) is the quotient of the tensor algebra

TR(M) =
∑

n≥0M
⊗n by the ideal generated by elements of the form m1 ⊗ · · · ⊗mr,

with m1, . . . ,mr ∈ M , such that for some distinct i, j ∈ {1, . . . , r}, mi = mj .

The image of an element m1 ⊗ · · · ⊗mr in ΛR(M) is denoted m1 ∧ · · · ∧mr. For
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all m1,m2 ∈ M ,

m1 ∧m2 = (m1 +m2) ∧ (m1 +m2) −m1 ∧m1 −m2 ∧m2 −m2 ∧m1 = −m2 ∧m1.

By definition, ΛR(M) is an N-graded ring. An element of degree k is a finite R-

linear combination of elements of the form m1 ∧ · · · ∧mk, with mi ∈ M . The degree

k component of ΛR(M) is denoted Λk
R(M). Clearly Λ0

R(M) = R, Λ1
R(M) = M .

If M = Rr , with basis e1, . . . , er, then Λk
R(M) is a free R-module of rank

(

r
k

)

whose

natural basis consists of ei1 ∧ ei2 ∧ · · · ∧ ei
k
with 1 ≤ i1 < i2 < · · · < ik ≤ r. In

particular, if k > r, then Λk
R(M) = 0.

In the previous section we interpreted the integral closure of modules via
(relative) symmetric algebras R(M). For this we assumed that M be con-
tained in a free module. In this section, we assume instead that M is a
torsion-free module over a domain.

Let R be a Noetherian integral domain with field of fractions K, and let
N ⊆ M be finitely generated torsion-free R-modules. Set L = M ⊗R K. Let
ER(N) (respectively ER(M)) be the canonical image of the exterior algebra of
the R-module N (respectively M) in ΛK(L). Note that ER(N) ⊆ ER(M) ⊆
ΛK(L) are inclusions of N-graded R-modules. By the definition, for any ring
V between R and K, EV (MV ) = (ER(M))V , EV (NV ) = (ER(N))V .

Let r be the rank of M , i.e., the K-vector space dimension of L. Then for
all k > r, EkR(M) = 0, and the component E

r
R(M) of degree r is a non-zero

torsion-free R-module of rank 1. From

E
r
R(N) ⊆ E

r
R(M) ⊆ E

r
K(L) = K,

it follows that ErR(M) is canonically isomorphic to an ideal I of R, and under
the same isomorphism, ErR(N) is canonically isomorphic to an ideal J ⊆ I.
Using this notation, we get another characterization of module reductions:

Theorem 16.3.1 (Rees [241, Theorem 1.2]) Let R be a Noetherian integral
domain with field of fractionsK, and N ⊆M an inclusion of finitely generated
torsion-free R-modules. Then N ⊆M is a reduction inM if and only if J ⊆ I
is a reduction.

Proof: If N ⊆ M is a reduction in M , then for any K-valuation ring V
containing R, NV = MV . Thus ER(N)V = ER(M)V , and since this is
N-graded, by reading off the degree r-part, so that JV = IV . Thus by
Proposition 6.8.2, J is a reduction of I.

Conversely, suppose that N is not a reduction ofM inM . Then there exists
a valuation ring V between R and K such that NV (MV . As N and M are
torsion-free and finitely generated, NV and MV are both free V -modules. If
their ranks are different, necessarily the rank of NV is strictly smaller than r
so that JV = 0 and hence J = 0. But I is a non-zero ideal, so that J is not
a reduction of I. Thus we may assume that the ranks of NV and MV are
both r. We may choose a basis u1, . . . , ur of MV such that p1u1, . . . , prur is
a basis of NV , where p1, . . . , pr are elements of V . As NV is not equal to
MV , necessarily p1 · · · pr is a non-unit in V , Hence JV = p1 · · · prIV is not
equal to IV , and so J is not a reduction of I.
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Whenever f : M → Rr is an injective R-module homomorphism, then M
can be represented as an m× r matrix (mij) of rank r and with entries in R.
Let detf (M) denote the ideal in R generated by the r × r minors of (mij).
Theorem 16.3.1 above can be rephrased as follows:

Proposition 16.3.2 Let R be a Noetherian integral domain. Let N ⊆ M
be torsion-free R-modules of rank r and f : M → Rr an embedding. Then
N ⊆ M is a reduction of modules (in M) if and only if detf (N) ⊆ detf (M)
is a reduction of ideals.

By Proposition 6.8.2, for ideals J ⊆ I, J = I if and only if for every
valuation ring V containing R and in the field of fractions of R, JV = IV .
Furthermore, by Theorem 10.2.2, J = I if and only if for every Rees valuation
ring of J , JV = IV . Thus an immediate consequence is:

Corollary 16.3.3 Let R be a Noetherian integral domain, N ⊆ M torsion-
free R-modules of rank r, and f :M → Rr an embedding. Then N ⊆M is a
reduction if and only if

M =
⋂

V

(NV ) ∩M,

as V varies over the Rees valuation rings of the ideal detf (N) in R.

16.4. Properties of integral closure of modules

The theory of integral closure of modules has been used in many contexts. For
example, Kodiyalam [174] developed the theory of integrally closed modules
over two-dimensional regular local rings, in analogy with Zariski’s theory of
integrally closed ideals. (Zariski’s theory of ideals is presented in Chapter 14.)
Katz and Kodiyalam [166] proved that the symmetric algebra modulo torsion
of an integrally closed module over a two-dimensional regular local ring is
Cohen–Macaulay, with reduction number one. Mohan [209] explicitly com-
puted the intersection of all reductions of an integrally closed module over a
two-dimensional regular local ring, the so-called core, using a Fitting ideal
of the module, generalizing the work of Huneke and Swanson [143] for ideals.
Rees proved in [241] the existence of Rees valuations for a module. Mohan
in [210] determined them more precisely for modules over two-dimensional
regular local rings.

In this section we present a few of the properties of integral closures of
modules, mostly analogs of the corresponding results for integral closures
of ideals. Connections with Buchsbaum–Rim multiplicity and acyclicity of
complexes are treated in subsequent sections.

The following generalization of Proposition 1.1.4 and Remark 1.3.2 (1) is
easy to prove:

Proposition 16.4.1 Let R be a Noetherian ring, N ⊆ M ⊆ L all finitely
generated R-modules. The following are equivalent:
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(1) N ⊆M is a reduction in L.
(2) For every multiplicatively closed subset W ⊆ R, W−1N ⊆ W−1M is a

reduction in W−1L.
(3) For every prime ideal P in R, NP ⊆MP is a reduction in LP .
(4) For every maximal ideal m in R, Nm ⊆Mm is a reduction in Lm.

Persistence of integral closure fails for modules under tensoring:

Example 16.4.2 Let R = k[X, Y ] be a polynomial ring in variables X and
Y over a field k, let N = (X2, Y 2)R ⊆M = (X, Y )2R. This is a reduction in
M (also as ideals). However, with the R-algebra S = R/(X, Y ), the image of
N ⊗R S ∼= k2 in M ⊗R S ∼= k3 is not a reduction.

Persistence holds under extension of scalars (compare with persistence for
ideals given on page 2):

Proposition 16.4.3 Let R be a Noetherian ring, and N ⊆ M ⊆ L finitely
generated R-modules with N ⊆ M a reduction in L. Let S be a Noetherian
R-algebra, such that for every minimal prime Q in S, Q ∩ R is a minimal
prime of R. Suppose that N,M,L extend by scalar extension to S-modules
NS ⊆ MS ⊆ LS. (This holds, for example, if L is contained in a free R-
module.) Then NS ⊆MS is a reduction of S-modules in LS.

Proof: By passing to S modulo a minimal prime, we may assume that S is an
integral domain. By assumption the kernel of the map R → S is a minimal
prime, and by passing to R modulo it we may assume that R is a domain.
Let V be a valuation ring between S and Q(S). Set V ′ = V ∩ Q(R). By
assumption NV ′ =MV ′ in L⊗Q(R), whence NV =MV in LS ⊗Q(S).

Persistence also holds under projections:

Proposition 16.4.4 Let R be a Noetherian ring,M1 ⊆ L1, M2 ⊆ L2 finitely
generated R-modules, and N ⊆ M1 ⊕M2 a reduction in L1 ⊕ L2. Let Ni be
the image of N under the composition N ⊆ M1 ⊕M2

πi→Mi, where πi is the
projection onto the ith component. Then Ni ⊆Mi is a reduction in Li.

Proof: By definition of integral closure, without loss of generality R is an
integral domain and L1, L2 are torsion-free modules. Let V be a valuation
ring between R and Q(R). By assumption, NV equals M1V ⊕ M2V in
(L1 ⊕ L2) ⊗ Q(R), so that NiV =MiV in Li ⊗Q(R).

Clearly if N1 ⊆ M1 and N2 ⊆ M2 are reductions, then so is N1 ⊕ N2 ⊆
M2 ⊕M2. The following generalizes Propositions 1.6.1 and 1.6.2:

Lemma 16.4.5 Let R be a Noetherian ring, and let N ⊆ M ⊆ Rr = F be
finitely generated R-modules.
(1) Let R ⊆ S be an integral extension of Noetherian rings. Then NS ⊆MS

is a reduction in Sr if and only if N ⊆M is a reduction in Rr.
(2) If R is local with maximal ideal m and if if and only if N ⊆ M is a

reduction in F .



324 16. Integral dependence of modules

Proof: Proposition 16.4.3 proves the necessity of both parts. Proofs of
sufficiency of the two parts are similar, so we only prove it for (2). As-

sume that N̂ ⊆ M̂ is a reduction in F̂ . By Theorem 16.2.3, it follows that

M̂ ⊆
√
N̂R

F̂
(M̂). Hence M ⊆

√
N̂R

F̂
(M̂) ∩ RF (M) =

√
NR

F̂
(M̂) ∩

RF (M) = NRF (M), where the last equality follows since R̂ is flat over R

and R
F̂
(M̂) = R̂ ⊗R RF (M), showing that R

F̂
(M̂) is flat over RF (M). An-

other application of Theorem 16.2.3 finishes the proof.

The following generalizes the first part of Lemma 5.4.4:

Lemma 16.4.6 Let R be a Noetherian ring, M a finitely generated R-
module, and N a submodule of M . Let N be the integral closure of N in
M and P ∈ Ass(M/N). Then there exists a minimal prime ideal p ⊆ P such
that P/p is associated to M ′/N ′, where M ′ = M/pM and N ′ is the integral
closure in M ′ of the image of N .

Proof: By localizing, without loss of generality P is the unique maximal
ideal of R. Write P = N :R z for some z ∈ M . So z 6∈ N , and by the
definition of N , there exists a minimal prime ideal p of R such that z is
not in the integral closure N ′ of the image of N in M ′ = M/pM . Hence
P/p ⊆ ((N+pM)/pM :R/p z) ⊆ (N ′ :R/p z) 6= R/p, whence P/p is associated
to M ′/N ′.

An immediate corollary of Theorem 16.2.3 is:

Corollary 16.4.7 Let (R,m) be a Noetherian local ring, andM a submodule
of a finitely generated free R-module F . Then a reduction of M has at least
dim(R(M)/mR(M)) generators.

With analogy with ideals, we define the analytic spread of a module M
to be ℓF (M) = ℓ(M) = dim(R(M)/mR(M)). If R/m is infinite, then by
Proposition 8.3.7, M has a reduction generated by ℓ(M) elements.

Remark 16.4.8 As reductions localize, for any prime ideal P in a Noe-
therian local ring (R,m), ℓ(M) ≥ ℓ(MP ).

The following easy and important corollary of Theorem 16.2.3 is in the
direction towards constructing Rees valuations of a module. It shows that
to check whether N ⊆ M is a reduction one only needs to check discrete
valuations of rank one:

Corollary 16.4.9 Let N ⊆ M ⊆ L be finitely generated modules over a
Noetherian ring R. Then N ⊆M is a reduction in L if and only if for every
minimal prime ideal P in R and every discrete valuation ring V of rank one
or zero between R/P and κ(P ), the images of N ⊗R/P V and M ⊗R/P V in
L⊗R/P κ(P ) agree.

Furthermore, there exists a finite set of V as above such that N ⊆ M is
a reduction in L if and only if for each of these finitely many V , if P is the
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kernel of the map R → V , then the images of N ⊗R/P V and M ⊗R/P V in
L⊗R/P κ(P ) agree.

Proof: Without loss of generality one can replace R by R/P , as P varies over
the minimal prime ideals, and assume that R is a domain. Let K be the field
of fractions. Similarly we may assume that L is torsion-free. Thus for some
non-zero r ∈ R, rL is contained in a free R-module F such that Lr = Fr.

Observe that N ⊆ M is a reduction in L if and only if rN ⊆ rM is a
reduction in rL. Moreover, for every discrete valuation ring V of rank one or
zero between R and Q(R), the images of NV and MV in L⊗K agree if and
only if the images of rNV and rMV in rL⊗K = F ⊗K agree. Hence we may
replace N by rN , M by rM , and L by rL to assume that N ⊆M ⊆ L ⊆ F ,
where F is a finitely generated free module.

By definition, if N is a reduction of M in L, the images of NV and MV
in L ⊗ K agree. Conversely, assume that the images of NV and MV in
L ⊗R K agree for every rank one discrete valuation ring V between R and
K. If N ⊆ M is not a reduction in L, then there exists a K-valuation ring
V containing R such that the images of NV and MV in L ⊗R K = F ⊗R K
are not equal. Hence N ⊆ M is not a reduction in F . By Theorem 16.2.3,
NRF (M) ⊆ MRF (M) is not a reduction, so that by Proposition 6.8.2 there
exists a discrete valuation ringW containing RF (M) such that NRF (M)W 6=
MRF (M)W . By Proposition 6.3.7, V =W ∩K is a discrete K-valuation ring
of rank one or zero. By assumption, the images of NV and MV in F ⊗ K
agree. Hence NRF (M)W = NRF (M)VW =MRF (M)VW =MRF (M)W ,
which is a contradiction. Furthermore, if W are taken to vary over the Rees
valuation rings of NRF (M), the corollary is proved.

Reductions can be tested also after passage to curves, i.e., after passing
to one-dimensional quotient domains. The following theorem is a version for
modules of a theorem of Böger [21] for ideals.

Theorem 16.4.10 (Katz [164, Theorem 2.6]) Let (R,m) be a formally equi-
dimensional Noetherian local ring, and N ⊆ M ⊆ F finitely generated R-
modules of rank r, with F free. Then N is a reduction of M in F if and only
if for every P ∈ SpecR with dim(R/P ) = 1, the image of N in F/PF is a
reduction of the image of M in F/PF .

Proof: Without loss of generality R is a domain.
If N is a reduction ofM in L, then by Theorem 16.2.3, NR(M) ⊆MR(M)

is a reduction of ideals. Any equations of integral dependence remain equa-
tions of integral dependence in any quotient. In particular, if P is a prime ideal
in R, then the passage to R(M)/(P SymR(F )∩R(M)) shows that the images
of N and M still give a reduction of ideals. Then again by Theorem 16.2.3,
the image of N in F/PF is a reduction of the image of M in F/PF .

Now assume that for every P ∈ SpecR with dim(R/P ) = 1, the image
of N in F/PF is a reduction of the image of M in F/PF . Suppose for
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contradiction that N ⊆ M is not a reduction. Then necessarily dimR ≥ 2.
By Theorem 16.2.3, there exists a prime ideal in R(M) that contains N but
not MR(M). By Krull’s Height Theorem (Theorem B.2.1), there exists a
homogeneous prime ideal Q′ in R(M) such that dim(R(M)/Q′) = 1 and Q′

contains NR(M) but not MR(M). Similarly, there exists a homogeneous
prime ideal Q contained in Q′ such that dim(R(M)/Q) = 2 and Q does not
contain det(N). By Proposition 16.3.2, det(N) is a proper ideal in R. Set
P = Q ∩ R. By the Dimension Formula (Theorem B.5.1), htP = htQ −
tr.degR(R(M)) + tr.degκ(P )(κ(Q)) = dimR + r − 2 − r + tr.degκ(P )(κ(Q)).
As Q does not contain MR(M), tr.degκ(P )(κ(Q)) ≥ 1. Also, det(N) 6∈ P , so
that dimR > htP ≥ dimR − 2 + 1, and so necessarily dim(R/P ) = 1. By
assumption, the image ofM in F/PF is integral over the image of N , whence
by Theorem 16.2.3,

N + PF

PF
RF/PF

(
M + PF

PF

)
⊆ M + PF

PF
RF/PF

(
M + PF

PF

)

is a reduction of ideals. This is saying that

NR(M)

P SymR(F ) ∩R(M)
⊆ MR(M)

P SymR(F ) ∩R(M)

is a reduction of ideals. As detN 6⊆ P , also detM 6⊆ P . It follows that
R(M)R\P is a polynomial ring over RP , so that QR\P contains the extension
of P to this polynomial ring. Thus P SymR(F ) ∩ R(M) ⊆ Q ⊆ Q′. Hence
by passing to R(M)/Q′, the displayed result shows that the image of N is a
reduction of the image of M , which contradicts the choice of Q′.

16.5. Buchsbaum–Rim multiplicity

In Chapter 11 we defined the multiplicity for modules over a Noetherian local
ring. There is another multiplicity, due to Buchsbaum and Rim [33], which we
present in this section. Rimsee Buchsbaum–Rim The results are largely due
to Buchsbaum, Rim; Kirby and Rees [167]; and Katz [164]. A more geometric
approach is in the work of [169] and [170]. Katz used the Buchsbaum–Rim
multiplicity to prove a reduction criterion for modules, generalizing the the-
orem of Böger (Corollary 11.3.2). In this section we follow the treatment
found in a paper of Simis, Ulrich and Vasconcelos [271]. One advantage of
this treatment is that the theory of multigraded Hilbert polynomials is not
needed, contrary to most approaches to this material. See also [23].

Discussion 16.5.1 Let A = ⊕i≥0Ai ⊆ B = ⊕i≥0Bi be a homogeneous
inclusion of graded Noetherian rings such that R = A0 = B0 is a local ring
with maximal ideal m and such that A = R[A1] and B = R[B1]. Let I be the
ideal in B generated by A1, let R = B[It] be the Rees algebra of I over B,
and let G = grI(B).
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Give R a bigrading as follows: assign degree (1, 0) to the image of B1 in R ,
and (0, 1) to the elements in A1t. (Although it is natural to assign elements
in A1t degrees (1, 1), the theory works better with the given grading.) With
this grading, R(0,0) = R, and R = R[R(1,0),R(0,1)]. The (i, j)th graded piece
of R is BiAjt

j .
The associated graded ring G inherits the bigrading. By BtG we mean

the image of Bt in G via the composition of the maps from B → R → G.
The algebra G also admits a grading Gn = ⊕i+j=nG(i,j) that makes G a
non-negatively graded algebra over G0 = R such that G = R[G1].

Remark 16.5.2 Note that G/B1G = R /B1R
∼= A, since R /B1R =

⊕j≥0R(0,j) = ⊕j≥0Ajt
j ∼= A. In general,

(BtG)n =

n−t+1⊕

j=1

(Aj−1Bn−j+1/AjBn−j)

= (A0Bn/A1Bn−1)⊕ (A1Bn−1/A2Bn−2)⊕ · · · ⊕ (An−tBt/An−t+1Bt−1).

Notice that since AjBn−j = Aj−1A1Bn−j ⊆ Aj−1B1Bn−j = Aj−1Bn−j+1,
the quotient modules above make sense as R-modules. Using this isomor-
phism, we see that the A = (G/B1G)-module B1G/(B1G)

2 is isomorphic to
B1A/A1A ∼= (A+B1A)/A.

We begin with the following theorem (see Simis, Ulrich, Vasconcelos [271],
Propositions 3.2, 3.4, and Corollary 3.5). If I is an ideal in a Noetherian ring
R, then by 0 : I∞ we denote the stable value of the ascending chain of ideals
0 : I ⊆ 0 : I2 ⊆ · · · .
Theorem 16.5.3 Let A ⊆ B be as in Discussion 16.5.1. Set d = dimB.
Assume further that λR(B1/A1) <∞. Fix an integer t > 0.
(1) For every n ≥ t− 1, λR(Bn/An−t+1Bt−1) = λR((BtG)n).
(2) For all n sufficiently large, λR(Bn/An−t+1Bt−1) is a polynomial function

pt(n) of degree

dim(BtG)−1 = dim(G/(0 :G BtG))−1 ≤ dimG−1 = dimB−1 = d−1.

(3) The polynomial pt(n) has the form

pt(n) =
et(A,B)

(d− 1)!
nd−1 +O(nd−2),

where et(A,B) = 0 if dim(G/(0 :G BtG)) < d and et(A,B) = e(BtG)
if dim(G/(0 :G BtG)) = d. In particular, et(A,B) is a non-negative
integer.

(4) If dim(G/(0 :G (B1G)
∞)) = d and (0 :G BtG) = (0 :G (B1G)

∞), then

et(A,B) = e(G/(0 :G (B1G)
∞)).

In particular, et(A,B) is constant for t sufficiently large; we denote the
constant value by e∞(A,B).

(5) If B is integral over A, then e∞(A,B) = 0.



328 16. Integral dependence of modules

(6) If B is equidimensional, universally catenary, and e∞(A,B) = 0, then B
is integral over A.

Proof: By Remark 16.5.2,
n−t+1⊕

j=1

(Aj−1Bn−j+1/AjBn−j) = (BtG)n.

Taking lengths on both sides, we get a telescoping sum on the left-hand side,
giving (1).

As a module, BtG is a finitely generated graded module over the graded
ring G/(0 :G BtB), which is a non-negatively graded ring generated by its
degree one piece over an Artinian local ring in degree 0. The degree 0 piece of
this ring is Artinian since it is a homomorphic image of the degree 0 piece of
G/(0 :G B1B), and this is R/J , where J = ann(B1/A1). Hence we may apply
Remark 11.1.12 to conclude that λR((BtG)n) is a polynomial in n for large n
of degree equal to dim(BtG)− 1. The only remaining claim in (2) that is not
immediate is that the dimension of G is the dimension of B, which follows
from Proposition 5.1.6.

Claim (3) follows from Remark 11.1.12.
Every statement in (4) is immediate except for the claim that et(A,B) =

e(G/(0 :G (B1G)
∞). To prove this statement, use the Additivity and Reduc-

tion Formula (Theorem 11.2.4):

et(A,B) = e(BtG) =
∑

q∈Min(G),dim(G/q)=d

λGq
((BtG)q)e(G/q).

By assumption, (0 :G BtG) = (0 :G B1G
∞), which implies that BtG is not

in q if q is minimal. Hence (Bt)q ∼= Gq, which gives us et(A,B) = e(G/(0 :G
(B1G)

∞), as required.
If B is integral over A, then B1B ⊆

√
A1B, and hence B1G ⊆

√
0. This

implies that ht((0 :G (B1G)
∞)) > 0. By (3) this implies that et(A,B) = 0 for

all large t, proving (5).
To prove (6) we reverse these implications. By (3), the assumption that

e∞(A,B) = 0 implies that dimG/(0 :G (B1G)
∞) < d. Since B is equidimen-

sional and universally catenary, by Proposition 5.4.8 the associated graded
ring G is equidimensional and catenary. It follows that (0 :G (B1G)

∞) is
not contained in any minimal prime of G, and therefore B1G ⊆

√
0. Hence

B1B ⊆
√
A1B and by Proposition 1.6.4, B is integral over A.

Parts (5) and (6) of Theorem 16.5.3 give a numerical condition for the
extension A ⊆ B to be integral, in terms of the vanishing of e∞(A,B). How-
ever, what we are most interested in is developing such a condition in terms
of e1(A,B), since this number has to do with the behavior of the lengths of
Bn/An. The next corollary gives such a condition.

Corollary 16.5.4 Let A ⊆ B be as in Discussion 16.5.1. Set d = dimB.
Assume further that λR(B1/A1) < ∞. If B is integral over A, and Bq = Aq
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for every minimal prime ideal q in A, then e1(A,B) = 0. Conversely, if B is
equidimensional, universally catenary, and e1(A,B) = 0, then B is integral
over A and Bq = Aq for every minimal prime ideal q in A.

Proof: Setting t = 1 in Theorem 16.5.3 we obtain that for large n, there is a
polynomial p(n) = p1(n) such that

p(n) = λR(Bn/An) = λR(B1G)

and

p(n) =
e1(A,B)

(d− 1)!
nd−1 +O(nd−2),

where e1(A,B) = 0 if dim(G/(0 :G B1G)) < d and e1(A,B) = e(B1G) if
dim(G/(0 :G B1G)) = d.

First assume that B is integral over A, and Bq = Aq for every minimal
prime q in A. Since B is integral over A it follows that B1B ⊆

√
A1B or

equivalently that B1G ⊆
√
0 in G. The minimal primes in A are in one-to-one

correspondence with the minimal primes in G/B1G via the isomorphism of
Remark 16.5.2. Since B1G ⊆

√
0, this means that the minimal primes ofA and

the minimal primes of G are in one-to-one correspondence. Since Bq = Aq for
every minimal prime q in A, the isomorphism B1G/(B1G)

2 ∼= (A+B1A)/A of
Remark 16.5.2 gives that for all minimal primes Q of G, (B1G/(B1G)

2)Q = 0.
By Nakayama’s Lemma it follows that (B1G)Q = 0, and hence that (0 : B1G)
is not in Q. This holds for every minimal prime Q of G, which implies that
dimG/((0 : B1G) < dimG. By Theorem 16.5.3 (3), e1(A,B) = 0.

Conversely, assume that e1(A,B) = 0 and that B is equidimensional and
universally catenary. From Theorem 16.5.3 (3) it follows that dimG/((0 :
B1G) < dimG. As G is equidimensional (Proposition 5.1.6), this means that
(0 : B1G) is not contained in any minimal prime of G, and so for all min-
imal primes Q of G, (B1G)Q = 0. Hence B1G ⊆

√
0, which implies that

B1B ⊆
√
A1B. This also means that the minimal primes in A are in one-

to-one correspondence with the minimal primes in G via the isomorphism of
Remark 16.5.2. Moreover, B is integral over A since B1B ⊆

√
A1B. Re-

mark 16.5.2 shows that ((A+B1A)/A)Q = 0, which implies that Aq = Bq for
every minimal prime q of A as B is generated by B1 over R (and hence over
A as well).

We now specialize this situation to the Rees algebras of modules. Let
(R,m) be a local Noetherian ring, and let N ⊆ M ⊆ F = Rr be inclusions
of R-modules. We apply the general results above by setting A = R(N) and
B = R(M), the Rees algebras of N and M respectively coming from the
embedding of N and M into the free module F . We write Mn (respectively
Nn) to be the nth power of the image of M in B (respectively of N in A). In
this case, G is the associated graded ring of the ideal NR(M).

Definition 16.5.5 Let (R,m) be a local Noetherian ring, and let N ⊆M ⊆
F = Rr be inclusions of R-modules. Suppose that λ(F/M) < ∞. We define



330 16. Integral dependence of modules

the Buchsbaum–Rim multiplicity of M (with respect to this embedding),
br(M), to be

br(M) = e1(R(M),R(F )).

Similarly, if λ(M/N) < ∞ we define the relative Buchsbaum–Rim mul-
tiplicity by br(N,M) = e1(R(N),R(M)).

Theorem 16.5.6 Let (R,m) be a local Noetherian ring of dimension d, and
let N ⊆M ⊆ F = Rr be inclusions of R-modules such that λR(M/N) < ∞.
(1) For all sufficiently large integers n, λR(M

n/Nn) is a polynomial function
f(n) of degree at most d+max{rk(M ⊗R κ(P )) |P ∈ Min(R)} − 1.

(2) If ht(annF/M) > 0, then

f(n) =
br(N,M)

(d+ r − 1)!
nd+r−1 +O(nd+r−2).

(3) If N is a reduction of M , then br(N,M) = 0 and the degree of f(n) is
strictly less than d + r − 1. The converse holds in case R is formally
equidimensional and ht(annF/M) > 0.

Proof: We set A = R(N) and B = R(M). Note that λR(M
n/Nn) is the

function studied in Theorem 16.5.3 when t = 1. By (2) and (3) of that
theorem it follows that for all large n,

λR(M
n/Nn) =

e1(A,B)

(dimB − 1)!
ndimB−1 +O(ndimB−2)

is a polynomial function. By Lemma 16.2.2,

dimB = dimR(M) ≤ d+max{rk(M ⊗R κ(P )) |P ∈ Min(R)} − 1,

proving (1).
To prove (2), note that by Lemma 16.2.2, the condition ht(annF/M) > 0

implies that dimB = d+ r. Then (2) follows at once Theorem 16.5.3 (in the
case t = 1 in that theorem).

To prove (3), first suppose that N is a reduction ofM . By Theorem 16.2.3,
B is integral over A. By assumption the length ofM/N is finite. Provided the
dimension of R is positive, this implies that Aq = Bq for every minimal prime
q of A. Corollary 16.5.4 applies to conclude that br(N,M) = e1(A,B) = 0,
proving that the degree of f(n) is strictly less than d + r − 1. Suppose that
the dimension of R is 0, i.e., R is Artinian. IfM = F , then the condition that
N is a reduction of M forces N = F as well. Obviously e1(A,B) = 0 in this
case. If M 6= F , then M ⊆ Rr−1 ⊕m ⊆ F , and then the degree of f(n) is at
most r − 1.

Conversely, if the degree of f(n) is strictly less than d+ r−1, then because
ht(annF/M) > 0, the degree of f(n) is strictly less than dimB. Hence
br(N,M) = e1(A,B) = 0. Corollary 16.5.4 gives the conclusion that B is
integral over A, forcing N to be a reduction of M in F by Theorem 16.2.3.
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With the set-up as in the theorem, the polynomial f(n) is called the
Buchsbaum–Rim polynomial of N ⊆M ⊆ F .

With the notion of Buchsbaum–Rim multiplicity, the following is a reduc-
tion criterion for modules in the spirit of Rees’s Theorem 11.3.1:

Corollary 16.5.7 Let (R,m) be a formally equidimensional local Noetherian
ring of dimension d > 0, and let N ⊆ M ⊆ F = Rr be R-modules with
λ(F/N) <∞. Then N is a reduction ofM in F if and only if br(N) = br(M),
which holds if and only if br(N,M) = 0.

Proof: We have that λ(Mn/Nn) = λ(Symn(F )/N
n) − λ(Symn(F )/M

n) is,
for large n, a polynomial of degree strictly less than d + r − 1 if and only if
br(N) = br(M). By Theorem 16.5.6 this is equivalent to N being a reduction
of M in F under the conditions of the corollary.

By Theorem 16.5.6 the assumption that N is a reduction ofM in F implies
that br(N,M) = 0. The converse holds since R is formally equidimensional
by the same theorem.

Observe that if I is an ideal in R and λ(R/I) < ∞, then br(I, R) = e(I).
The corollary above then generalizes Rees’s Theorem 11.3.1. More generally,
the next theorem can be thought of as a generalization of Böger’s theorem,
Corollary 11.3.2.

Theorem 16.5.8 Let (R,m) be a Noetherian local ring, F a finitely gener-
ated free R-module, and N ⊆M ⊆ F .
(1) Suppose that N ⊆ M is a reduction in F . Then brRQ

(NQ,MQ) = 0 for
every minimal prime ideal Q over N :R M .

(2) Suppose that R is formally equidimensional and that there exists an inte-
ger r such that for all P ∈ Min(R), the image ofM in F⊗Rκ(P ) has rank
r. Further suppose that ℓ(N) ≤ ht(N :R M)+ r−1. If for every minimal
prime ideal Q over N :R M , either ℓ(NQ) < ht(NQ :RQ

MQ) + r − 1 or
brRQ

(NQ,MQ) = 0, then N is a reduction of M .

Proof: (1) Assuming that N ⊆M is a reduction in F , NQ is also a reduction
of MQ. For Q minimal over N :R M , the length over RQ of MQ/NQ is finite.
By Theorem 16.5.6 we obtain that brRQ

(NQ,MQ) = 0.

(2) Let N be the integral closure of N in F . We claim that for every
P ∈ AssR(F/N), htP ≤ ℓ(NP )− r+1. To prove this, by Theorem B.5.2 and
localization, without loss of generality we may assume that P is the unique
maximal ideal of R. As R is formally equidimensional, by Lemma B.4.2,
by passing to R modulo a minimal prime ideal, we do not change htP . By
assumption this also does not change r, and ℓ(NP ) can only decrease. Thus we
may assume that R is an integral domain. Write P = N :R z for some z ∈ F .
Then Pz ⊆ N , so that if z is a linear form in SymR(F ) corresponding to z,
then Pz is in the integral closure R(N) of R(N) in SymR(F ), and z 6∈ R(N).
Hence there exists a prime ideal Q of height one in the Krull domain R(N)
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such that z 6∈ R(N)Q. Therefore P ⊆ Q, and necessarily P = Q ∩ R. Set

Q = Q∩R(N). By Proposition 4.8.6, htQ = 1. By Theorem B.5.2, R satisfies
the dimension formula, so

1 + dimR(N)/PR(N) ≥ htQ+ tr.degκ(P )κ(Q)

= htP + tr.degR(R(N)) = htP + r,

which proves the claim.
Now let P ∈ Ass(F/N). By Remark 16.4.8, dim ℓ(N) ≥ ℓ(NP ). Thus by

assumption and the claim, htP ≤ ℓ(NP )−r+1 ≤ ℓ(N)−r+1 ≤ ht(N :R M).
Then either P does not contain (N :R M), or P is minimal over (N :R M).
In the former case, MP ⊆ NP ⊆ NP . Suppose that P is minimal over
(N :R M). We claim that brRP

(NP ,MP ) = 0. If not then by assumption
ℓ(NP ) < ht(NP :RP

MP ) + r − 1. However in this case we would obtain
that htP ≤ ℓ(NP ) − r + 1 < ht(NP :RP

MP ), which is impossible. Thus
brRP

(NP ,MP ) = 0 is forced. By Theorems 16.5.6 and 16.2.3, NP ⊆ MP is
a reduction in FP . Thus for all P ∈ Ass(F/N), MP ⊆ NP , so that M ⊆ N .
This proves the theorem.

16.6. Height sensitivity of Koszul complexes

Let x1, . . . , xn ∈ R, and letM be an R-module. The standard construction of
Koszul complex K(x1, . . . , xn;M) is given in Section A.4 in the appendix. It
is well-known that the Koszul complex is depth-sensitive, i.e., that the depth
of (x1, . . . , xn) on M equals

n−max{j | the jth homology of K(x1, . . . , xn;M) is non-zero}.
In this statement, depth cannot be replaced by height. For example, in the
ring R = k[X, Y ]/(X2, XY ), with X and Y variables over a field k, the
ideal Y R has height 1, the depth of Y R on R is 0, and so ht(Y R) 6= 1 −
max{j | the jth homology of K(Y ;R) is non-zero}.

We prove that the Koszul complex is height-sensitive up to integral closure:

Theorem 16.6.1 (Rees [241]) Let R be a formally equidimensional ring,
and I = (x1, . . . , xn) an ideal in R of height h. Let G• be the Koszul complex
K(x1, . . . , xn;R). Then for all i > n− h, the module Bi of ith boundaries of
G• is a reduction in Gi of the module Zi of ith cycles of G•.

Proof: (This proof follows Katz [162].) By Proposition 16.4.1 and by The-
orem B.5.2, the hypotheses and conclusion are unaffected by localization, so
we may assume that R is a formally equidimensional local ring. By the def-
inition of integral closure and by Corollary B.4.3 we may also tensor with
R/P , for P ∈ MinR, and thus assume that R is a formally equidimensional
local domain. Koszul complexes on different n-element generating sets of I
are isomorphic, so we may change the xi by using prime avoidance to assume
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that whenever 1 ≤ i1 < i2 < · · · < ij ≤ n, 1 ≤ j ≤ h, then (xi1 , xi2 , . . . , xij )
has height j.

We denote the maps in the complex G• by ϕ•, and represent them as
matrices. For each i, Gi is ΛiR(R

n), so its standard basis consists of the
elements eJ as J varies over all subsets of {1, . . . , n} of cardinality i. For J =
{j1, . . . , jm} ⊆ {1, . . . , n}, with j1 < · · · < jm, define sgn(ji, J) = (−1)i−1.

Let i > n − h and let α ∈ Zi. The standard columns of ϕi are labeled
by sets J ⊆ {1, . . . , n}, |J | = i. The column corresponding to J equals
CJ =

∑
j∈J sgn(j, J)xjeJ\{j}. Then 0 = ϕi(α) =

∑
J αJCJ , and for any set

K with |K| = i− 1, this yields (row) equations

0 =
∑

j 6∈K
αK∪{j} sgn(j,K ∪ {j})xj.

Thus by Ratliff’s Theorem 5.4.1, each αJ is in the integral closure of some
(n− i+ 1)-generated subideal of I, thus in particular α ∈ IGi.

Multiplication by xj on the Koszul complex G• is homotopic to 0, and
hence there is a homotopy s : G• → G•[1] such that ds + sd = µxj

, the
multiplication map by xj . Hence ds(α) = xjα. As j is arbitrary, and α ∈ Zi
is arbitrary, it follows that IZi ⊆ IBi. Therefore for any valuation ring V ,
IV Zi ⊆ IV Bi ⊆ IV Zi, which proves the theorem.

A weak version of Ratliff’s Theorem 5.4.1 follows from this theorem (al-
though the proof above relies on it): if x1, . . . , xn of R generate an ideal of
height n, then for any element r = rn of (x1, . . . , xn−1) : xn, by definition
there exist r1, . . . , rn−1 such that (r1, . . . , rn) ∈ Z1. Thus by the theorem,
(r1, . . . , rn) ∈ B1. By Proposition 16.4.4, rn is integral over the ideal gener-
ated by the last row of the matrix ϕ1. But the entries of this last row are
0, ±x1, . . . , ±xn−1, so that rn is integral over (x1, . . . , xn−1).

Definition 16.6.2 Let G• be the bounded complex of finitely generated free
modules

G• : 0 −→ Gn
ϕn−→Gn−1

ϕn−1−→ · · ·ϕi+1−→Gi
ϕi−→· · · ϕ2−→G1

ϕ1−→G0 −→ 0.

The kernel of ϕi is denoted as Zi = Zi(G•), the image of ϕi+1 is denoted
Bi = Bi(G•), and the ith homology of G• as Hi = Hi(G•) = Zi/Bi. We say
that G• is acyclic up to integral closure if for all 1 ≤ i ≤ n, Zi is in the
integral closure of Bi in Gi.

Thus we can rephrase Theorem 16.6.1:
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Theorem 16.6.3 Let (R,m) be a formally equidimensional Noetherian local
ring, and let x1, . . . , xn be part of a system of parameters, i.e., the height of
(x1, . . . , xn) is n. Then the Koszul complex of x1, . . . , xn is acyclic up to
integral closure.

Acyclicity of complexes up to integral closure can be formulated differently:

Proposition 16.6.4 Let R be a Noetherian ring, and let G• be a complex
as in Definition 16.6.2. Then the following are equivalent:
(1) G• is acyclic up to integral closure.
(2) G• ⊗R (R/P ) is acyclic up to integral closure for all minimal primes P

of R.
(3) G• ⊗R Rred is acyclic up to integral closure, where Rred is R modulo its

ideal of nilpotent elements.
If (R,m) is a Noetherian local ring, (1), (2), (3) are equivalent to:
(4) G•⊗R R̂ is acyclic up to integral closure, where R̂ is the completion of R.

Proof: The equivalence of (1)–(3) follows immediately from the definitions.
The equivalence of (1) and (4) follows from Lemma 16.4.5.

16.7. Absolute integral closures

In this section we give a proof, due to Huneke and Lyubeznik [142], of a
fundamental result due to Hochster and Huneke [127] that says that the
absolute integral closure of a complete local domain in characteristic p is
Cohen–Macaulay. Recall from Section 4.8 that the absolute integral closure
of a commutative Noetherian domain R is the integral closure of R in a fixed
algebraic closure of the field of fractions K of R. The original proof in [127] is
quite difficult technically, while the proof given here is much simpler. We as-
sume knowledge of local duality and local cohomology in this section. See [29],
Section 3.5, for information concerning local duality.

We begin with a basic lemma that shows a way to kill cohomology classes
in finite extensions. This lemma is closely related to the “equational lemma”
in Hochster and Huneke [127] and its modification in Smith [274, 5.3].

Lemma 16.7.1 Let R be a Noetherian domain containing a field of char-
acteristic p > 0, let K be the field of fractions of R and let K be the alge-
braic closure of K. Let I be an ideal of R and let α ∈ Hi

I(R) be an ele-

ment such that the elements α, αp, αp
2

, . . . , αp
t

, . . . belong to a finitely gener-
ated submodule of Hi

I(R). Then there exists an R-subalgebra R′ of K (i.e.,
R ⊆ R′ ⊆ K) that is finitely generated as an R-module and such that the
natural map Hi

I(R) → Hi
I(R

′) induced by the natural inclusion R→ R′ sends
α to 0.

Proof: Let At =
∑t

i=1Rα
pi be the R-submodule of Hi

I(R) generated by

α, αp, . . . , αp
t

. The ascending chain A1 ⊆ A2 ⊆ A3 ⊆ · · · stabilizes because
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R is Noetherian and all At sit inside a single finitely generated R-submodule
of Hi

I(R). Hence As = As−1 for some s, i.e., αp
s ∈ As−1. Thus there exists

an equation αp
s

= r1α
ps−1

+ r2α
ps−2

+ · · ·+ rs−1α with ri ∈ R for all i. Let

T be a variable and let g(T ) = T p
s − r1T

ps−1 − rp
s−2

2 − · · · − rs−1T . Clearly,
g(T ) is a monic polynomial in T with coefficients in R and g(α) = 0.

Let x1, . . . , xd ∈ R generate the ideal I. If M is an R-module, the Čech
complex C•(M) of M with respect to the generators x1, . . . , xd ∈ R is

0 → C0(M) → · · · → Ci−1(M)
di−1→ Ci(M)

di→Ci+1(M) → · · · → Cd(M) → 0,
where C0(M) = M and Ci(M) = ⊕1≤j1<···<ji≤dRxj1

···xji
, and the ith local

cohomology module Hi
I(M) is the ith cohomology module of C•(M) [28,

5.1.19].
Let α̃ ∈ Ci(R) be a cycle (i.e., di(α̃) = 0) that represents α. The equality

g(α) = 0 means that g(α̃) = di−1(β) for some β ∈ Ci−1(R). Since Ci−1(R) =

⊕1≤j1<···<ji−1≤dRxj1
···xji−1

, we may write β =
∑

1≤j1<···<ji−1≤d
rj1,...,ji−1

(xj1
···xji−1

)e

where rj1,...,ji−1
∈ R, e ≥ 0, and

rj1,...,ji−1

(xj1
···xji−1

)e ∈ Rxj1
···xji−1

.

Consider the equations g(
Zj1,...,ji−1

(xj1
···xji−1

)e
)− rj1,...,ji−1

(xj1
···xji−1

)e
= 0, where Zj1,...,ji−1

is a variable. Multiplying such an equation by ((xj1 · · ·xji−1
)e)p

s

produces a
monic polynomial equation in Zj1,...,ji−1

with coefficients in R. Let zj1,...,ji−1
∈

K be a root of this equation and let R′′ be the R-subalgebra of K generated
by all the zj1,...,ji−1

, i.e., by the set {zj1,...,ji−1
|1 ≤ j1 < · · · < ji−1 ≤ d}. Since

each zj1,...,ji−1
is integral over R and there are finitely many zj1,...,ji−1

, the
R-algebra R′′ is finitely generated as an R-module.

Let γ =
∑

1≤j1<···<ji−1≤d
zj1,...,ji−1

(xj1
···xji−1

)e ∈ Ci−1(R′′). The natural inclusion

R → R′′ makes C•(R) into a subcomplex of C•(R′′) in a natural way, and
we identify α̃ ∈ Ci(R) and β ∈ Ci−1(R) with their natural images in Ci(R′′)
and Ci−1(R′′) respectively. With this identification, α̃ ∈ Ci(R′′) is a cycle
representing the image of α under the natural map Hi

I(R) → Hi
I(R

′′), and
so is δ = α̃ − di−1(γ) ∈ Ci(R′′). Since g(γ) = β and g(α̃) = di−1(β), we
conclude that g(α) = 0. Write δ =

∑
ρj1,...,ji where ρj1,...,ji ∈ R′′

xj1
···xji

.

Each individual ρj1,...,ji satisfies the equation g(ρj1,...,ji) = 0. Since g(T ) is
a monic polynomial in T with coefficients in R, each ρj1,...,ji is an element
of the field of fractions of R′′ and is integral over R. Let R′ be obtained
from R′′ by adjoining all the ρj1,...,ji . Each ρj1,...,ji ∈ R′ and the image of
α in Hi

I(R
′) is represented by the cycle δ =

∑
ρj1,...,ji ∈ Ci(R′) that has

all its components ρj1,...,ji in R′. Each R′
xj1

···xji
contains a natural copy

of R′, namely, the one generated by the element 1 ∈ R′
xj1

···xji
. There is

a subcomplex of C•(R′) that in each degree is the direct sum of all such
copies of R′. This subcomplex is exact because its cohomology groups are the
cohomology groups of R′ with respect to the unit ideal. Since δ is a cycle and
belongs to this exact subcomplex, it is a boundary, hence it represents the
zero element in Hi

I(R
′).
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Theorem 16.7.2 Let (R,m) be a Noetherian local domain containing a field
of characteristic p > 0, let K be the field of fractions of R and let K be the
algebraic closure of K. Assume R is a surjective image of a Gorenstein local
ring A. Let R′ be an R-subalgebra of K (i.e., R ⊆ R′ ⊆ K) that is a finitely
generated R-module. Let i < dimR be a non-negative integer. There is an
R′-subalgebra R′′ of K (i.e., R′ ⊆ R′′ ⊆ K) that is finitely generated as an
R-module and such that the natural map Hi

m(R
′) → Hi

m(R
′′) is the zero map.

Proof: As a first step, we will prove the existence of a finite extension where
the image of the local cohomology has finite length, allowing us to apply
Lemma 16.7.1. Let n = dimA and let Ni = Extn−iA (R′, A). Since R′ is a
finite R-module, so is Ni. Since we will be working with Ni for fixed i, we
abuse notation and simply write N = Ni.

Set d = dimR, and use induction on d to prove the theorem. For d = 0
there is nothing to prove, so we assume that d > 0 and that the theorem
proven for all smaller dimensions. Since N is a finite R-module, the set of the
associated primes of N is finite. Let P1, . . . , Ps be the associated primes of N
different from m. We make the following claim.

Claim: For each j there is an R′-subalgebra of K, RPj , corresponding to
Pj , such that RPj is a finite R-module and for every R∗ such that RPj ⊆
R∗ ⊆ K with R∗ a finite R-module, the image I ⊆ N of the natural map
Extn−iA (R∗, A) → N induced by the natural inclusion R′ → R∗ vanishes after
localization at Pj , i.e., IPj

= 0.

Assuming this claim, let R
′
= R′[RP1, . . . , RPs ] be the compositum of all

the RPj , 1 ≤ j ≤ s. Clearly R′ ⊆ R
′ ⊆ K. Since each RPj is a finite R-

module, so is R
′
. Clearly, R

′
contains every RPj . Hence the above claim

implies that IPj
= 0 for every j, where I ⊆ N is the image of the natural

map Extn−iA (R
′
, A) → N induced by the natural inclusion R′ → R

′
. It follows

that not a single Pj is an associated prime of I. But I is a submodule of N ,
and therefore every associated prime of I is an associated prime of N . Since
P1, . . . , Ps are all the associated primes ofN different fromm, we conclude that
if I 6= 0, then m is the only associated prime of I. Since I, being a submodule
of a finite R-module N , is finite, and since m is the only associated prime of
I, we conclude that I is an R-module of finite length.

We next establish the claim. Let P denote one of the primes P1, . . . , Ps.
Let dP = dim(R/P ). Since P is different from the maximal ideal, dP > 0.
As R is a surjective image of a Gorenstein local ring, it is catenary, hence
the dimension of RP equals d − dP , and i < d implies i − dP < d − dP =
dimRP . By the induction hypothesis applied to the local ring RP and the
RP -algebra R

′
P , which is finitely generated as an RP -module, there is an R′

P -
subalgebra R̃ of K that is finite as an RP -module, such that the natural map
Hi−dP
P (R′

P ) → Hi−dP
P (R̃) is the zero map. Let R̃ = R′

P [z1, z2, . . . , zt], where
z1, z2, . . . , zt ∈ K are integral over RP . Multiplying, if necessary, each zj by
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some element of R \P , we can assume that each zj is integral over R. We set
RP = R′[z1, z2, . . . , zt] Clearly, RP is an R′-subalgebra of K that is finite as
R-module. Now let R∗ be both an RP -subalgebra of K (i.e., RP ⊆ R∗ ⊆ K)
and a finitely generated R-module. The natural inclusions R′ → RP → R∗

induce natural maps Extn−iA (R∗, A) → Extn−iA (RP , A) → N . This implies
that I ⊆ J , where J is the image of the natural map ψ : Extn−iA (RP , A) → N .
Hence it is enough to prove that JP = 0. Localizing this map at P we
conclude that JP is the image of the natural map ψP : Extn−iAP

(R̃, AP ) →
Extn−iAP

(R′
P , AP ) induced by the natural inclusion R′

P → R̃ (by a slight abuse
of language we identify the prime ideal P of R with its full preimage in A).
Let DP ( ) = HomAP

( , EP ) be the Matlis duality functor in the category of
RP -modules, where EP is the injective hull of the residue field of RP in the
category of RP -modules. Local duality implies that DP (ψP ) is the natural
map Hi−dP

P (R′
P ) → Hi−dP

P (R̃), which is the zero map by construction (note
that i−dP = dimAP −(n−i)). Since ψP is a map between finite RP -modules
and DP (ψP ) = 0, it follows that ψP = 0. This proves the claim.

We can write the natural map Extn−iA (R
′
, A) → N as the composition of

the two maps Extn−iA (R
′
, A) → I → N , the first of which is surjective and

the second injective, and applying the Matlis duality functor D, we get that

the natural map ϕ : Hi
m(R

′) → Hi
m(R

′
) induced by the inclusion R′ → R

′
is

the composition of two maps Hi
m(R

′) → D(I) → Hi
m(R

′
), the first of which

is surjective and the second injective. This shows that the image of ϕ is
isomorphic to D(I), which is an R-module of finite length since so is I. In
particular, the image of ϕ is a finitely generated R-module. Let α1, . . . , αs ∈
Hi

m(R
′
) generate Im(ϕ).

The natural inclusion R′ → R
′
is compatible with the Frobenius homomor-

phism, i.e., with the raising to the pth power on R′ and R
′
. This implies that

ϕ is compatible with the action of the Frobenius f∗ on Hi
m(R

′) and Hi
m(R

′
),

i.e., ϕ(f∗(α)) = f∗(ϕ(α)) for every α ∈ Hi
m(R

′), which, in turn, implies that

Im(ϕ) is an f∗-stable R-submodule of Hi
m(R

′
), i.e., f∗(α) ∈ Im(ϕ) for every

α ∈ Im(ϕ). We finish the proof by applying the following lemma to a finite
generating set of Im(ϕ): let αj generate this image. Applying Lemma 16.7.1

we obtain a R
′
-subalgebra R′

j of K (i.e., R
′ ⊆ R′

j ⊆ K) such that R′
j is a

finite R-module and the natural map Hi
m(R

′
) → Hi

m(R
′
j) sends αj to zero.

Let R′′ = R′[R1, . . . , Rs] be the compositum of all the R′
j . Then R′′ is an

R′-subalgebra of K and is a finite R-module since so is each R′
j . The natural

map Hi
m(R

′
) → Hi

m(R
′′) sends every αj to zero, hence it sends the entire

Im(ϕ) to zero. Thus the natural map Hi
m(R

′) → Hi
m(R

′′) is zero.

As an almost immediate corollary we obtain the main result of Hochster and
Huneke [127], although our hypothesis that R be the homomorphic image of a
Gorenstein is slightly different from the hypothesis in [127] that R be excellent.
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Corollary 16.7.3 Let (R,m) be a Noetherian local domain containing a field
of characteristic p > 0. Assume that R is a surjective image of a Gorenstein
local ring. Then the following hold:
(1) Hi

m(R
+) = 0 for all i < dimR.

(2) Every system of parameters of R is a regular sequence on R+.

Proof: (1) R+ is the direct limit of the finitely generated R-subalgebras R′,
hence Hi

m(R
+) = lim

−→
Hi

m(R
′). But Theorem 16.7.2 implies that for each R′

there is R′′ such that the map Hi
m(R

′) → Hi
m(R

′′) in the inductive system is
zero. Hence the limit is zero.

(2) Let x1, . . . , xd be a system of parameters of R. We prove that x1, . . . , xj
is a regular sequence on R+ by induction on j. The case j = 1 is clear since R+

is a domain. Assume that j > 1 and that x1, . . . , xj−1 is a regular sequence
on R+. Set It = (x1, . . . , xt). The short exact sequences

0 → R+/It−1R
+ xt−→R+/It−1R

+ → R+/ItR
+ → 0

for t ≤ j − 1 and the fact that Hi
m(R

+) = 0 for all i < d imply by in-
duction on t that Hq

m(R
+/(x1, . . . , xt)R

+) = 0 for q < d − t. In partic-
ular, H0

m(R
+/(x1, . . . , xj−1)R

+) = 0 since 0 < d − (j − 1). Hence m is
not an associated prime of R+/(x1, . . . , xj−1)R

+. Suppose that P is an
embedded associated prime ideal of R+/(x1, . . . , xj−1)R

+. Then P is the
maximal ideal of the ring RP , dim(RP ) > j − 1, and P is an associated
prime of (R+/(x1, . . . , xj−1)R

+)P = (RP )
+/(x1, . . . , xj−1)(RP )

+, which is
impossible by the above. Hence every element of m not in any minimal
prime ideal of R/(x1, . . . , xj−1)R, for example, xj , is a regular element on
R+/(x1, . . . , xj−1)R

+.

16.8. Complexes acyclic up to integral closure

In this section we describe more generally when a complex is acyclic up to
integral closure. Stronger results than what we present have been obtained
by the theory of tight closure, see [126]. We need two results before proving
the main theorem. The first result is Corollary 16.7.3, while the second is a
generalization of the Buchsbaum–Eisenbud’s Acyclicity Criterion.

Throughout this section, R is a Noetherian ring and G• is a complex of
finitely generated free modules:

G• : 0 −→ Gn
ϕn−→Gn−1

ϕn−1−→ · · · ϕ2−→G1
ϕ1−→G0 −→ 0. (16.8.1)

Definition 16.8.2 Let R be a Noetherian ring and F and G finitely generated
free R-modules. A map ϕ : F → G can be represented as a matrix relative to
some chosen bases of F and G.
(1) For any integer t, It(ϕ) denotes the ideal in R generated by the t × t

minors of a matrix expression for ϕ. It is easy to show that It(ϕ) does
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not depend on the bases. By convention I0(ϕ) = R, even if ϕ is the zero
map. If t exceeds the rank of either F or G, then It(ϕ) = (0).

(2) The rank of ϕ, rk(ϕ), is defined to be the largest integer r such that
Ir(ϕ) 6= (0).

(3) More generally, if M is an R-module, the rank of the map F ⊗R M →
G⊗RM to be the largest integer r such that the induced map ΛrR(F )⊗R
M → ΛrR(G)⊗RM is non-zero.

Clearly rk(ϕ) equals the largest integer r for which ΛrR(ϕ) : ΛrR(F ) →
ΛrR(G) is non-zero.

Definition 16.8.3 If M is a not necessarily finitely generated R-module,
then whenever I = (x1, . . . , xn) is an ideal such that IM 6= M , the Koszul
depth of I on M , denoted K-depthI(M), is n− j, where Hj(x1, . . . , xn;M)
is the highest non-vanishing Koszul homology module on M .

This agrees with the usual notion of depth in case R is Noetherian and M
is a finitely generated R-module (see Section A.4 in the appendix). We use
the convention that the depth and the height of an ideal I are +∞ if I = R.

With these definitions we can state the generalized Buchsbaum–Eisenbud
Acyclicity Criterion.

Theorem 16.8.4 (The Generalized Buchsbaum–Eisenbud Acyclicity Crite-
rion Aberbach [1], original criterion in [32]) Let R be a Noetherian ring. Let
G• be as in (16.8.1). Let M be a not necessarily finitely generated R-module.
For 1 ≤ i ≤ n let si be the rank of the map Gi ⊗RM → Gi−1 ⊗RM , and let
sn+1 = 0. Set Ii = Isi(ϕi). Then G• ⊗R M is acyclic if and only if for all
i = 1, . . . , n, K-depthIi(M) ≥ i, and si + si+1 = rk(Gi).

Definition 16.8.5 Let G• be as in display (16.8.1). Let bi = rkGi, with the
convention that bi = 0 if i > n or i < 0. Set ri = Σnt=i(−1)t−ibt, 1 ≤ i ≤ n,
rn+1 = 0. The ri are the unique integers such that rn+1 = 0 and ri+1+ri = bi
whenever 1 ≤ i ≤ n.

We say that G• satisfies the standard conditions on rank, if for 1 ≤
i ≤ n, rkϕi = ri (equivalently, bi = rk ϕi+1 + rk ϕi, 1 ≤ i ≤ n).

We say that G• satisfies the standard conditions for depth (respec-
tively the height, if for all i = 1, . . . , n, the depth (respectively the height) of
the ideal Iri(ϕi) is at least i.

Examples of complexes satisfying the standard conditions on height and
rank can be found in the exercises.

With this set-up, the main theorem in this section is the following general-
ization of Theorem 16.6.3 (i.e., of Theorem 16.6.1):

Theorem 16.8.6 Let (R,m) be a formally equidimensional Noetherian local
ring containing a field, and let G• be

G• : 0 −→ Gn
ϕn−→Gn−1

ϕn−1−→ · · ·ϕi+1−→Gi
ϕi−→· · · ϕ2−→G1

ϕ1−→G0 −→ 0,
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with Gi finitely generated free R-modules, satisfying the standard conditions
on height and rank. Then G• is acyclic up to integral closure.

As pointed out in Roberts [249, page 126], without the assumption that R
contain a field, the result above would imply the monomial conjecture, which
is not yet known. (Cf. Exercise 16.9, part (ii).) A few characteristic-free cases
of complexes acyclic up to integral closure were proved by Katz in [162].

The proof of Theorem 16.8.6 proceeds by using the technique of reduction
to characteristic p. This technique is beyond the scope of this book, but it
is a standard technique in algebra, and especially in tight closure. Details
are written in Hochster and Huneke [126]. Using reduction to characteristic p
reduces Theorem 16.8.6 to the same statement in a ring of positive and prime
characteristic:

Theorem 16.8.7 Let (R,m) be a formally equidimensional Noetherian local
ring of positive prime characteristic p, and let G• be a complex of finitely
generated free R-modules as in (16.8.1) satisfying the standard conditions on
height and rank. Then G• is acyclic up to integral closure.

Proof: Let R̂ be the m-adic completion of R, and Q a minimal prime ideal
in R̂. Then R̂/Q is formally equidimensional, and G• ⊗R (R̂/Q) satisfies the

standard conditions on height and rank. If we prove that G• ⊗R (R̂/Q) is
acyclic up to integral closure, then by Proposition 16.6.4, G• is acyclic up to
integral closure. Thus without loss of generality we may assume that R is a
complete local domain.

Choose i ∈ {1, . . . , n}. As the height of Ii = Irk(ϕi)(ϕi) is at least i, there
exists a system of parameters x1, . . . , xi contained in Ii. By Corollary 16.7.3,
x1, . . . , xi form a regular sequence on R+. Thus the K-depthIi(R

+) ≥ i for
1 ≤ i ≤ n. Thus by Theorem 16.8.4, G• ⊗R R+ is acyclic.

Let z ∈ Zi be a cycle. Since G• ⊗R R+ is acyclic, it follows that z ∈
Bi(G• ⊗R R+) = Bi ⊗R R+. By writing z as a linear combination of the
boundaries (over R) with coefficients in R+, we may collect the finitely many
coefficients appearing and adjoin them to R to get a complete local Noe-
therian ring S that is module finite over R. Then the theorem follows from
Lemma 16.4.5.

16.9. Exercises

16.1 Let N ⊆ M ⊆ T be inclusions of finitely generated modules over a
Noetherian ring R. Prove or disprove: N is a reduction of T if and
only if N is a reduction of M and M is a reduction of T .

16.2 Let N ⊆ M be finitely generated modules over a Noetherian ring R.
Let N be the integral closure of N in M . Prove that for any minimal
prime ideal P in R and any Noetherian valuation ring V between R/P
and κ(P ), NV = NV inside M ⊗ κ(P ).
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16.3 (Rees [241]) Let R be an integral domain, R its integral closure, andM
a finitely generated torsion-free R-module. Let x ∈ M(0) be integral

over M . Prove that x is an element of HomR(HomR(M,R),R), in a
natural way.

16.4 Let R be a Noetherian domain with field of fractions K, and let
N ⊆M be finitely generated R-modules such that N ⊗R K =M ⊗R
K. Let S′(M) (respectively S′(N)) denote the image of SymR(M)
(respectively SymR(N)) in SymK(M⊗RK). Prove that the following
are equivalent:
(i) N ⊆M is a reduction of modules.
(ii) S′(N) ⊆ S′(M) is an integral extension of rings.
(iii) NS′(M) ⊆MS′(M) is an integral extension of ideals.

16.5 ([82]) Let R be a Noetherian ring, n a positive integer, and M a
submodule of Rn. We think of M as generated by the columns of
a matrix A. Suppose that there exists an integer k such that for all
minimal primes P , the rank of (M + PRn)/PRn is k. Let m ∈ Rn,
and let B be the matrix whose columns generateM+Rm. Prove that
m is in the integral closure of M in Rn if and only if Ik(B) ⊆ Ik(A).

16.6 Let R be a Noetherian local ring of positive dimension d. Let G• be
a complex of finitely generated free R-modules,

0 → Gn → Gn−1 → · · · → G1 → G0 → 0.
such that Hi(G•) has finite length for i ≥ 1 and such that d ≥ n.
Prove that G• satisfies the standard conditions on height and rank.

16.7 Let A = Z[X1, . . . , Xd], a polynomial ring in variables X1, . . . , Xd

over Z. Let J be an ideal in A generated by monomials in the Xi

(with unit coefficients), and let H• be an A-free resolution of A/J by
finitely generated free A-modules. Let Ii denote the ideal of rank-
order minors of the ith map in H•.
(i) Prove that

√
Ii is generated by monomials in X1, . . . , Xd.

(ii) If J = (X1, . . . , Xd), prove that
√
Ii = (X1, . . . , Xd) for all 1 ≤

i ≤ d, and
√
Ii = A for i ≥ d+ 1. (We are not assuming that A

be minimal.)
16.8 Let R be a locally formally equidimensional Noetherian ring, and

x1, . . . , xn elements of R generating an ideal whose height at any local-
ization is at least n. Let G• be the Koszul complex K•(x1, . . . , xn;R).
Prove that G• satisfies the standard conditions on height and rank.

16.9 Let A = Z[X1, . . . , Xd], a polynomial ring in variables X1, . . . , Xd

over Z. Let J be an ideal in A generated by monomials in the Xi

(with unit coefficients), and let H• be an A-free resolution of A/J
by finitely generated free A-modules. Let R denote a complete local
domain, and x1, . . . , xd a system of parameters of R. Let f : A → R
be the ring map sending Xi to xi, J = f(I)R, and G• = H• ⊗A R.
(i) Suppose that R contains a field. Prove that G• is acyclic up to

integral closure.
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(ii) Let I = (xt+1
1 , . . . , xt+1

d , xt1 · · ·xtd). Assume that G• is acyclic
up to integral closure. Prove that (xt+1

1 , . . . , xt+1
d ) : xt1 · · ·xtd ⊆

(x1, . . . , xd).
16.10 Let R be an integral domain with field of fractions K, M a non-zero

finitely generated torsion-free R-module. Let M = ∩VMV , where
V varies over all K-valuation rings containing R. Prove that M is a
finitely generated R-module if and only if the integral closure of the
ring R is a finitely generated R-module.

16.11 Let (R,m) be a Noetherian local domain with infinite residue field.
Let M ⊆ Rr be modules of rank r. Assume that M is integrally
closed. Prove that there exists x ∈ m such that mM :Rr x = M . (In
other words, an integrally closed module is m-full.)

16.12 (Katz [164, Theorem 2.5]) Let (R,m) be a formally equidimensional
Noetherian local ring, let N ⊆ M ⊆ F be R-modules with F finitely
generated and free. Assume that N ,M , and F have rank r. Let I(M)
be the ideal of r×r minors of a presenting matrix ofM , and similarly
define I(N). Suppose that dimS(M)/mS(M) = ht(I(M)) + r − 1,
and that

√
I(N) =

√
I(M). Prove that N ⊆M is a reduction if and

only if for all Q ∈ Min(I(M)), brRQ
(MQ) = brRQ

(NQ).
16.13 (Eisenbud, Huneke, Ulrich [69]) Define the Rees algebra of an R-

module M as R(M) = SymM
L , where L = ∩g ker(SymM

Sym g−→ SymF )
as g :M → F varies over all R-module homomorphisms to free mod-
ules F . Prove that if f :M → G is versal, then R(M) ∼= R(f), where
R(f) is the image of SymM in SymG.

16.14 ([69]) With the notation of Exercise 16.13, prove that ifM is an ideal,
then R(M) is the usual Rees algebra of M .

16.15 ([69]) Let R be a ring, M an R-module, and A ⊆ B submodules of
M . Let A′, B′ be the images of A and B in the Rees algebra S of M ,
as defined in Exercise 16.14. Define B to be integral over A if the
algebra extension R[A′] ⊆ R[B′] in S is an integral extension. Let k
be a field, R = k[x]/(x2), and A = (0) ⊆ B = M = (x)/(x2). Prove
that B is integral over A by the definition in this exercise, but not
integral by the definition in 16.1.1.

16.16 ([69]) Let k be a field of characteristic p > 0, X, Y, Z variables over k,
and R = k[X, Y, Z]/((Xp, Y p) + (X, Y, Z)p+1). Let M = ZR and
f :M → R2 the homomorphism f(Z) = (X, Y ).
(i) Prove that M ∼= R/(X, Y, Z)p.
(ii) Prove that f is injective.
(iii) Using Definition 16.2.1, let S be the Rees algebra of M deter-

mined by the embedding M ⊆ R. Prove that S is naturally
isomorphic to the image of SymR(M) → SymR(R).

(iv) Let S′ be the image of SymR(M)
Sym f−−−→SymR(R

2). Prove that
S′ is not isomorphic to S.
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(Thus the definition of a Rees algebra of a module given in 16.2.1
depends on the embedding of the module in a free module.)

16.17 ([69]) Let R be a Noetherian ring, let M be a finitely generated R-
module, and let g : M → G be a homomorphism to a free R-module
that induces an injection from the torsionless quotient of M . If R is
torsion-free over Z, prove that R(M) ∼= R(g).

16.18 (Gaffney [82] [83], [84], [85]; Gaffney and Kleiman [89] applied the
definition of the integral closure of a module in the analytic setting to
study the singularities). Let X, x be a complex analytic germ set, n
a positive integer, and M a submodule of OnX,x. Let f ∈ O

n
X,x. Prove

that f is in the integral closure of M in O
n
X,x if and only if for all

analytic ϕ : (C, 0) → (X, x), h ◦ ϕ ∈ (ϕ∗M)O1.
16.19 (Amao [13], Rees [240]) Let R be a Noetherian ring, M a finitely

generated R-module, and J ⊆ I ideals in R such that IM/JM has
finite length.
(i) Prove that InM/JnM has finite length for all n ≥ 0, and that

there exists a polynomial p such that for n sufficiently large,
p(n) = λ(InM/JnM). Also prove that p(n) has degree at most
dimR, and the coefficient of the term of degree dimR is of the
form a(J, I,M)/(dimR)!, where a(J, I,M) ∈ N.

(ii) Assume that R is a local formally equidimensional ring. Prove
that J is a reduction of I if and only if p(n) has degree strictly
smaller than dimR.

(iii) Assume that R is a local formally equidimensional ring and that
ht(J : I) ≥ ℓ(J). Prove that J is a reduction of I if and only
if either ht(J : I) > ℓ(J) or ht(J : I) = ℓ(J) and for all prime
ideals P minimal over J : I, a(JP , IP ,MP ) = 0.
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Joint reductions

Joint reductions were first introduced by Rees in [238]. Rees used joint reduc-
tions to prove that mixed multiplicities of zero-dimensional ideals, as defined
by Teissier and Risler [294], are the usual multiplicities of ideals generated
by joint reductions. Rees’s definitions and existence results were generalized
by O’Carroll in [218]. Here we prove basic properties of joint reductions and
mixed multiplicities, and prove various connections between them.

In Chapter 8 we proved the existence of reductions in Noetherian local
rings in several ways: Theorem 8.3.5 proved it without the assumption that
the residue field be infinite and relied on the descending chain condition in
Artinian modules; Proposition 8.3.7 relied on Noether Normalization; The-
orem 8.6.3 used superficial elements, and Theorem 8.6.6 used Zariski-open
sets. In Section 17.3 we generalize such existence results to joint reductions.
The Rees–Sally proof of the existence of joint reductions via standard inde-
pendent sets of general elements is in Section 17.8. In Section 17.4, we define
mixed multiplicities, a generalization of multiplicities. The results of that
section are mostly due to Teissier and Rees; they connect mixed multiplici-
ties and joint reductions. The result that in formally equidimensional rings
mixed multiplicities determine joint reductions is in Section 17.6. Section 17.7
contains the Teissier–Rees–Sharp results on Minkowski inequalities for mixed
multiplicities. We end Section 17.8 with a brief discussion of the core of ideals.

There are many topics related to joint reductions that we do not go into
in this book. For “joint reduction numbers” (cf. reduction numbers, Defi-
nition 8.2.3) and for Cohen–Macaulayness of multi-ideal Rees algebras, an
interested reader may wish to read [311], [313], [314]; [293]; [119]; [120]. A
recent interpretation of mixed multiplicities of monomial ideals in terms of
mixed volumes of polytopes is in [301].

17.1. Definition of joint reductions

In this chapter, we deal with many ideals at the same time. For notational con-
venience, if I1, . . . , Ik are ideals and n1, . . . , nk ∈ N, we write In for In1

1 · · · Ink

k .

Definition 17.1.1 Let I1, . . . , Ik be ideals in a ring R, and for each i =
1, . . . , k, let xi ∈ Ii. The k-tuple (x1, . . . , xk) is a joint reduction of the

k-tuple (I1, . . . , Ik) if the ideal
∑k
i=1 xiI1 · · · Ii−1Ii+1 · · · Ik is a reduction of

I1 · · · Ik.
In case I = I1 = · · · = Ik, a k-tuple (x1, . . . , xk) being a joint reduction

of (I1, . . . , Ik) says that (x1, . . . , xk)I
k−1 is a reduction of Ik, so that there
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exists an integer n such that (x1, . . . , xk)I
k−1Ikn = Ik(n+1). In other words,

a k-tuple (x1, . . . , xk) is a joint reduction of (I, . . . , I) if and only if the ideal
(x1, . . . , xk) is a reduction of I. Thus joint reductions generalize reductions.

Example 17.1.2 For any elements x, y ∈ R, and any positive integers m,n,
the pair (x, y) is a joint reduction of the pair ((x, yn)R, (xm, y)R) of ideals,
because x(xm, y) + y(x, yn) = (x, yn)(xm, y).

It is convenient to define reductions and joint reductions more generally:

Definition 17.1.3 Let R be a ring, M an R-module, and I ⊆ J ideals in R.
We say that I ⊆ J is a reduction with respect to M if there exists an
integer l such that IJ lM = J l+1M . Similarly, if I1, . . . , Ik are ideals in a ring
R, and for each i = 1, . . . , k, xi ∈ Ii, then the k-tuple (x1, . . . , xk) is called a
joint reduction of the k-tuple (I1, . . . , Ik) with respect to M if the ideal∑k
i=1 xiI1 · · · Ii−1Ii+1 · · · Ik is a reduction of I1 · · · Ik with respect to M .
If for each i, Ii is a product of ideals Ji1 · · ·Jili , and xi = yi1 · · ·yili with

yij ∈ Jij, then the joint reduction (x1, . . . , xk) of (I1, . . . , Ik) is called a com-
plete reduction.

O’Carroll [221] gave a generalization of the Eakin–Sathaye Theorem (cf.
Theorem 8.6.8) by using complete reductions. Jayanthan and Verma [153]
used complete reductions to study the Cohen–Macaulay property of bigraded
Rees algebras. Another application of complete reductions is in Viêt in [315].

Lemma 17.1.4 Let R be a Noetherian ring and M a finitely generated
R-module. Then any (joint) reduction with respect to M is also a (joint)
reduction with respect to R/annM , and vice versa.

Proof: Suppose that I ⊆ J is a reduction with respect to M . Let l be such
that IJ lM = J l+1M . By Lemma 2.1.8, I ⊆ J is a reduction with respect
to R/annM . If I is a reduction of J with respect to R/annM , then there
exists l ∈ N such that J l+1 ⊆ IJ l + annM , so that J l+1M ⊆ IJ lM , whence
equality holds and I is a reduction of J with respect to M . A similar proof
works for joint reductions.

A useful inductive tool for joint reductions is the following easy lemma:

Lemma 17.1.5 Let (x1, . . . , xk) be a joint reduction of (I1, . . . , Ik) with
respect to M . Then there exists an integer l such that (x2, . . . , xk) is a joint
reduction of (I2, . . . , Ik) with respect to (I l+1

1 M + x1M)/x1M .

Proof: By assumption there exists an integer l such that (I1 · · · Ik)l+1M =

(
∑k
i=1 xiI1 · · · Ii−1Ii+1 · · · Ik)(I1 · · · Ik)lM . This l works.

An important role in the theory of reductions is played by the Artin–Rees
Lemma. For joint reductions, we need a multi-ideal version:

Theorem 17.1.6 (Artin–Rees Lemma) Let R be a Noetherian ring, I1, . . . ,
Ik ideals, and M,N ⊆ T finitely generated R-modules. Then there exist inte-
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gers c1, . . . , ck such that for all ni ≥ ci, i = 1, . . . , k,

InM ∩N = In−c(IcM ∩N).

Proof: (Sketch) Let t1, . . . , tk be variables over R, S the finitely generated
R-algebra R[I1t1, . . . , Iktk], the so-called multi-Rees algebra of I1, . . . , Ik,
G the finitely generated S-module ⊕nIntnT = T [I1t1, . . . , Iktk], and H =
⊕n(InM ∩ N)tn an S-submodule of G. By the Noetherian properties, H is
a finitely generated S-module. Let ci be the maximal ti-degree of elements
in a generating set of H. These c1, . . . , ck work (as in the proof of the usual
Artin–Rees Lemma).

17.2. Superficial elements

In Section 8.5, we defined and proved existence of superficial elements in the
context needed for reductions. Analogously, we present here the definitions
and existence for superficial elements for the multi-ideal version.

Definition 17.2.1 Let R be a Noetherian ring, M a finitely generated R-
module, and I1, . . . , Ik ideals in R. An element x ∈ I1 is superficial for
I1, . . . , Ik with respect to M if there exists a non-negative integer c such that
for all n1 ≥ c and all n2, . . . , nk ≥ 0,

(InM :M x) ∩ Ic1In2
2 · · · Ink

k M = In1−1
1 In2

2 · · · Ink

k M.

A sequence of elements x1, . . . , xl, with xi ∈ Ii, is a a superficial sequence
for I1, . . . , Il with respect to M if for i = 1, . . . , l, xi ∈ Ii is superficial with
respect to M/(x1, . . . , xi−1)M for the images of Ii, . . . , Ik in R/(x1, . . . , xi−1).

Proposition 17.2.2 (Existence of superficial elements) If (R,m) is a Noe-
therian local ring with infinite residue field, then superficial sequences for
I1, . . . , Ik with respect to a finitely generated module M exist. Explicitly, there
exist a non-empty Zariski-open subset U of I1/mI1 and c ∈ N such that for any
x ∈ I1 with image in U , for all i ≥ 1, all n1 ≥ c+i−1, and all n2, . . . , nk ≥ 0,

(InM :M xi) ∩ Ic1In2
2 · · · Ink

k M = In1−i
1 In2

2 · · · Ink

k M.

If I1 = J1 · · ·Jr, we can even take x to be of the form y1 · · · yr with yj ∈ Jj.
Also, if I1 is not contained in the prime ideals P1, . . . , Ps of R, x can be chosen
to avoid the same prime ideals.

Proof: The module In1−i
1 In2

2 · · · Ink

k M is always contained in (InM :M xi) ∩
Ic1I

n2
2 · · · Ink

k M . It suffices to prove the other inclusion for some x and c. If
I1 is nilpotent, let c be such that Ic−1

1 = 0. Then for all n1 ≥ c + i − 1,
In1−i
1 = 0 = Ic1 , and the proposition follows for all x ∈ I1.
Now assume that I1 is not nilpotent. Then I1/I

2
1 6= 0. Let A be the finitely

generated R-algebra ⊕n≥0(I
n/I1I

n). We can make A an Nk-graded ring by

setting the degree of In/I1I
n to be n ∈ Nk. For each positive integer c define
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Ac = ⊕n≥0,n1=c(I
n/I1I

n).
Let G = ⊕n≥0(I

nM/I1I
nM), a finitely generated graded A-module. Let

Q1, . . . , Qt be the associated prime ideals of G that do not contain A1. For
each i = 1, . . . , t, let Wi be the image of Qi ∩ I1 in I1/mI1. Also, for each
i = 1, . . . , s, let Vi be the image of Pi∩ I1 in I1/mI1. By Nakayama’s Lemma,
each Wi and each Vi is a proper (R/m)-vector subspace of I1/mI1. Let U be
the complement of the union of all these Wi and Vi. As R/m is an infinite
field, U is a non-empty Zariski-open subset of I1/mI1. Let x ∈ I1 such that
its image lies in U .

Suppose that I1 is of the form J1 · · ·Jr. If all elements y1 · · · yr, with yi ∈ Ji,
have the image in I1/mI1 lie in some Vi or Wi, then since R/m is infinite, for
each y2 ∈ J2, . . . , yr ∈ Jr, the image of J1y2 · · ·yr is contained in some Vi
or Wi. Similarly, for each y3 ∈ J3, . . . , yr ∈ Jr, the image of J1J2y3 · · ·yr is
contained in some Vi orWi, etc., so that I1 = J1 · · ·Jr has the image contained
in some Vi or Wi, contradicting that each Vi and Wi was proper.

It now remains to prove that (0 :G xi) ∩ AcG = (0G). Let (0G) = ∩jGj
be an irredundant primary decomposition of the zero submodule of G. Each√
Gj :A G is an associated prime ideal ofG. If x is not contained in

√
Gj :A G,

then
√
Gj :A G is one of the Ql and Gj :G xi = Gj for all i. If instead

x is contained in
√
Gj :A G, then by the choice of x (avoiding the images

of Q1, . . . , Qt), A1 is contained in
√
Gj :A G, so that there exists a positive

integer cj such that Acj ⊆ Gj :A G. Let c be the maximum of all such cj (or
c = 0 if there are no such cj). Then

(0 :G x
i) ∩ AcG =

⋂

x∈
√
Gj :AG

(Gj :A x
i) ∩

⋂

x6∈
√
Gj :AG

(Gj :A x
i) ∩ AcG

⊆
⋂

x6∈
√
Gj :AG

Gj ∩ AcG ⊆
⋂

j

Gj = (0G).

Remark 17.2.3 Note that the proof shows that whenever the image of
x in I1/I

2
1 ⊆ A = ⊕n≥0(I

n/I1I
n) is not in any associated prime ideal of

the A-module ⊕n≥0(I
nM/I1I

nM) that does not contain (I1/I
2
1 )A, then x is

superficial for I1, . . . , Ik with respect to M .

Lemma 17.2.4 Let R be a Noetherian ring, I1, . . . , Ik ideals in R, and M
a finitely generated R-module. Let i be a positive integer and x ∈ I1 be such
that for some c ∈ N and all large integers n1, . . . , nk,

(InM :M xi) ∩ Ic1In2
2 · · · Ink

k M = In1−i
1 In2

2 · · · Ink

k M.

Assume that I1 ⊆
√
I2 · · · Ik, and that ∩nIn1M = 0. Then for all sufficiently

large n1, . . . , nm,

InM :M xi = (0 :M xi) + In1−i
1 In2

2 · · · Ink

k M,

and (0 :M xi) ∩ In1
1 In2

2 · · · Ink

k M = 0.

The hypothesis on x holds for example if i = 1 and xi ∈ Ii1 is superficial for
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Ii1, I2, . . . , Ik with respect to M .

Proof: By the multi-ideal version of the Artin–Rees Lemma (17.1.6), there
exist e1, . . . , ek ∈ N such that for all nj ≥ ej , I

nM ∩ xiM ⊆ xiIn−eM . Thus
InM :M xi ⊆ (0 :M xi) + In−eM . By the radical assumption, there exists
a positive integer m such that Im1 ⊆ Ic1I

e2
2 · · · Iekk . Thus for n1 ≥ m + e1,

n2 ≥ e2, . . . , nk ≥ ek, I
nM :M xi ⊆ (0 :M xi) + Ic1I

n2
2 · · · Ink

k M . It follows
that for large n1, . . . , nk,

InM :M xi = (InM :M xi) ∩
(
(0 :M xi) + Ic1I

n2
2 · · · Ink

k M
)

= (0 :M xi) + (InM :M xi) ∩ Ic1In2
2 · · · Ink

k M

= (0 :M xi) + In1−i
1 In2

2 · · · Ink

k M.

In particular, for all sufficiently large ni,

(0 :M xi) ∩ In1
1 In2

2 · · · Ink

k M ⊆
⋂

n1≫0

(InM :M xi) ∩ Ic1In2
2 · · · Ink

k M

⊆
⋂

n1≫0

In1−i
1 In2

2 · · · Ink

k M ⊆
⋂

n1≫0

In1−i
1 M = 0.

17.3. Existence of joint reductions

In this section we prove the existence of joint reductions of, for example,
d ideals in a Noetherian d-dimensional local ring via superficial elements:
an element-by-element construction is proved in Theorem 17.3.1 and global
existence is proved more generally via Zariski-open sets in Proposition 17.3.2.
Another proof of existence of joint reductions is given in Section 17.8. The
first theorem below also proves existence of complete reductions.

Theorem 17.3.1 (Existence of joint reductions) Let (R,m) be a Noetherian
local ring with infinite residue field, let d be the dimension of R, and let
I1, . . . , Id be ideals in R. Assume that for all i, Ii ⊆

√
Ii+1 · · · Id. Then there

exists a joint reduction (x1, . . . , xd) of (I1, . . . , Id). If any Ii is a product of
n ideals, the element xi may be taken to be a product of n elements, the jth
factor of xi being taken from the jth factor of Ii.

Proof: If d = 0, there is nothing to prove. So assume that d > 0. Suppose
that (x1, . . . , xd) is a joint reduction of (I1, . . . , Id) modulo 0 : (I1 · · · Id)l for
some positive integer l. Then there exists an integer n such that

(I1 · · · Id)n ⊆
d∑

i=1

xiI
n
1 · · · Ini−1I

n−1
i Ini+1 · · · Ind + (0 : (I1 · · · Id)l).

Hence (I1 · · · Id)n+l ⊆ ∑d
i=1 xiI

n+l
1 · · · In+li−1 I

n+l−1
i In+li+1 · · · In+ld , which says

that (x1, . . . , xd) is a joint reduction of (I1, . . . , Id). Thus it suffices to prove
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the theorem by first passing to the ring R/(0 : (I1 · · · Id)l) for some l. If l is
large enough such that for all n, 0 : (I1 · · · Id)n ⊆ 0 : (I1 · · · Id)l, then the anni-
hilator of the image of I1 · · · Id in R/(0 : (I1 · · · Id)l) is zero. Thus by passing
to R/(0 : (I1 · · · Id)l), we may assume that I1 · · · Id has a zero annihilator,
which implies that no Ii is contained in any associated prime ideal.

Let x1 ∈ I1 be superficial for I1, . . . , Id and not contained in any associated
prime ideal of R. Such an element x1 exists by Proposition 17.2.2, and if I1 =
J1 · · ·Jn, then x1 can be taken to be y1 · · · yn with yi ∈ Ji. As dim(R/(x1)) =
dimR − 1, by induction there exist elements xi ∈ Ii, i ≥ 2, such that the
image of (x2, . . . , xd) modulo (x1) is a joint reduction of (I2, . . . , Id) modulo
(x1). Thus there exists a positive integer n such that (I2 · · · Id)n is contained

in
∑d
i=2 xiI

n
2 · · · Ini−1I

n−1
i Ini+1 · · · Ind + (x1). Multiplication by In1 produces

(I1 · · · Id)n ⊆
d∑

i=2

xiI
n
1 I

n
2 · · · Ini−1I

n−1
i Ini+1 · · · Ind + (x1) ∩ (I1 · · · Id)n.

As x1 is superficial for I1, . . . , Id, by Lemma 17.2.4, for sufficiently large n,

(I1 · · · Id)n ⊆
d∑

i=1

xiI
n
1 · · · Ini−1I

n−1
i Ini+1 · · · Ind ⊆ (I1 · · · Id)n,

so that equality holds throughout. This proves the theorem.

This theorem proves the existence of a joint reduction, the first element
of which is chosen from a Zariski-open subset of a homomorphic image of
I1/mI1, after which the second element is chosen from a homomorphic image
of I2/mI2, etc. The following proposition shows that when joint reductions
exist, one can take the joint reduction d-tuple (x1, . . . , xd) from a Zariski-open
subset of (I1/mI1)⊕ · · · ⊕ (Id/mId). The analogous result for reductions was
proved by Northcott and Rees, see Theorem 8.6.6.

Proposition 17.3.2 Let (R,m, k) be a Noetherian local ring of dimen-
sion d. For i = 1, . . . , d, let Ii = (ai1, . . . , aili) be ideals in R, and let
xi be an element of Ii. Write xi =

∑
j uijaij for some uij ∈ R. Set

l =
∑
i li. Then there exists a (possibly empty) Zariski open set U ⊆ kl

such that (x1, . . . , xd) is a joint reduction of (I1, . . . , Id) if and only if the
image of (u11, . . . , u1l1 , . . . , ud1 . . . , udld) in k

l lies in U .

Proof: Let S be the polynomial ring over k in variables Aij , where i varies
from 1 to d, and for each i, j varies from 1 to li. Let T = ⊕n(In/mIn), where
n varies over Nd. Both S and T are finitely generated R-algebras and are
Nd-graded, with degAij = (0, . . . , 0, 1, 0, . . . , 0), with 1 in the ith spot and 0
elsewhere. For i = 1, . . . , d, let Ji = (Ai1, . . . , Aili)S and Xi =

∑
j uijAij ,

where uij is the image of uij in R/m. Set J = J1 · · ·Jd.
Let ϕ : S → T be the natural graded ring homomorphism with ϕ(Aij) =

aij +mIi. Let K be the kernel of ϕ. This is a homogeneous ideal in S.
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Claim: (x1, . . . , xd) is a joint reduction of (I1, . . . , Id) if and only if for some
integer l, J l ⊆ K + (X1, . . . , Xd)S.

If (x1, . . . , xd) is a joint reduction of (I1, . . . , Id), then there exists an integer
l such that

(I1 · · · Id)l =
d∑

i=1

xiI
l
1 · · · I li−1I

l−1
i I li+1 · · · I ld.

Let M be a monomial in J l of degree (l, . . . , l). For each i there exists an
element ri ∈ I l1 · · · I li−1I

l−1
i I li+1 · · · I ld such that ϕ(M) =

∑
rixi+m(I1 · · · Id)l.

Let Ri ∈ J l1 · · ·J li−1J
l−1
i J li+1 · · ·J ld be a preimage of ri under ϕ. Then M −∑

RiXi ∈ K, which proves that J l ⊆ K + (X1, . . . , Xd).
For the other inclusion in the claim, assume that J l ⊆ K + (X1, . . . , Xd).

By multi-homogeneity,

J l ⊆ K +
∑

i

XiJ
l
1 · · ·J li−1J

l−1
i J li+1 · · ·J ld.

After applying ϕ this says that (x1, . . . , xd) is a joint reduction of (I1, . . . , Id),
proving the claim.

Fix n ∈ N. If M1, . . . ,Mcn are the monomials (in the Aij) of degree
(n, . . . , n), then the k-vector space Vn ⊆ S that they generate has dimen-
sion cn. Let Wn be the vector subspace of Vn generated by elements of
(K + (X1, . . . , Xd)S) ∩ Jn, with basis {B1, . . . , Bsn}. Write Bi =

∑
j cijMj

for some elements cij ∈ k. The Xi and the cij depend linearly on the uij .
For each uij , let Uij be a variable over k. Lift the dependence of the cij on
the uij into a polynomial Lij of degree at most 1 in k[U11, . . . , Udld ]. Set Cn
to be the matrix (Lij), and set L to be the ideal of all cn-minors of Cn, as n
varies over positive integers (L could be the zero ideal). Define the following
(possibly empty) Zariski-open set:

U = {u ∈ kl |F (u) 6= 0 for some F ∈ L}.

If u ∈ U , there exist a positive integer n and a cn-minor F of Cn such that
F (u) 6= 0. In particular, sn = cn, so J

n ⊆ K + (X1, . . . , Xd). Thus by the
claim the corresponding (x1, . . . , xd) is a joint reduction of (I1, . . . , Id). The
other implication is proved in a similar way.

The last two results showcase the role Zariski-open sets play in the theory
of joint reductions. More results of this type are in Section 17.5.

Here is a twist on the existence of joint reductions: given elements, we can
construct ideals for which the given elements form a joint reduction:

Proposition 17.3.3 Let (R,m) be a Noetherian ring and let (x1, . . . , xk) be
an m-primary ideal. Then for all large n, (x1, . . . , xk) is a joint reduction of
((x1) +m

n, . . . , (xk) +m
n).
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Proof: There exists n such that mn ⊆ (x1, . . . , xk). Let J =
∑k
i=1 xi((x1) +

m
n) · · · ((xi−1) +m

n)((xi+1) +m
n) · · · ((xk) +m

n). Then

((x1) +m
n) · · · ((xk) +m

n) = J +m
kn ⊆ J + (x1, . . . , xk)m

n(k−1)

⊆ J ⊆ ((x1) +m
n) · · · ((xk) +m

n),

so that equality holds throughout.

17.4. Mixed multiplicities

In analogy with Hilbert polynomials and multiplicities for an ideal with re-
spect to a module we develop the multi-graded Hilbert polynomials and mixed
multiplicities for several ideals with respect to a module. An important in-
gredient is the exact sequence

0 → InM :M x

In1−1
1 In2

2 · · · Ink

k M
→ M

In1−1
1 In2

2 · · · Ink

k M

x−→ M

InM
→ M

xM + InM
→ 0,

where M is a finitely generated R-module, I1, . . . , Ik are ideals in R, and
x ∈ I1. If I1, . . . , Ik have finite co-length with respect toM , then the modules
in the sequence have finite length, and

λ
( M

InM

)
− λ

( M

In1−1
1 In2

2 · · · Ink

k M

)

= λ
( M

xM + InM

)
− λ

( InM :M x

In1−1
1 In2

2 · · · Ink

k M

)
. (17.4.1)

Theorem 17.4.2 (The multi-graded Hilbert polynomial) Let (R,m) be a
Noetherian local ring, M a finitely generated R-module, and I1, . . . , Ik m-
primary ideals in R. There exists a polynomial P (n1, . . . , nk) in k variables
with rational coefficients and of total degree dimM such that for all sufficiently
large n1, . . . , nk,

P (n1, . . . , nk) = λR(M/In1
1 · · · Ink

k M).

We call P the multi-graded Hilbert polynomial of I1, . . . , Ik with respect
to M . This theorem clearly generalizes Theorem 11.1.3, where k = 1.

Proof: The case k = 1 is proved in Theorem 11.1.3, and here we assume
that k > 1. Using Lemma 8.4.2 we may assume that the residue field of R is
infinite. We prove the theorem by induction on d = dim(M).

If dimM = 0, then for all large n1, . . . , nk, I
n1
1 · · · Ink

k M = 0, and so
P (n1, . . . , nk) is the constant polynomial λ(M). The degree of the polynomial
is 0, which is equal to the dimension of M .

Assume that dimM > 0. By Proposition 17.2.2, there exists x ∈ I1
that is superficial for I1, . . . , Ik with respect to M and not contained in any
prime ideal that is minimal over annM . For n1, . . . , nk sufficiently large, by
Lemma 17.2.4 and Equation (17.4.1),

λ
( M

InM

)
− λ

( M

In1−1
1 In2

2 · · · Ink

k M

)
= λ

( M

xM + InM

)
− λ

(
0 :M x

)
.
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Since x is not in any minimal prime ideal over annM , dim(M/xM) = dimM−
1, so that by induction on dimension there is a polynomial Q(n1, . . . , nk) with
rational coefficients and of total degree dimM − 1 such that Q(n1, . . . , nk) =
λ(M/(xM + InM)) for all sufficiently large n1, . . . , nk. If Q(n) = λ(0 :M
x) for all sufficiently large n1, . . . , nk, then for such n1, . . . , nk, by the dis-
played equation, λ(M/InM) is constant, so that InM/I1I

nM = 0, whence
by Nakayama’s Lemma, InM = 0, which contradicts the assumption that
dimM > 0. So necessarily Q(n) − λ(0 :M x) is a polynomial of degree
dimM − 1, for large integers n1, . . . , nk. By the displayed formula, for large
n1, . . . , nk, λ(M/InM) equals

∑n1

i=1Q(i, n2, . . . , nk) plus an integer constant
independent of n1, . . . , nk, so that by Lemma 11.1.2, for large n1, . . . , nk,
λ(M/InM) equals a polynomial in n1, . . . , nk with rational coefficients, of
degree dimM .

As was the case for one ideal, also the leading coefficients of the Hilbert
polynomials of many ideals carry much information, as we prove below.

Definition 17.4.3 Let (R,m) be a Noetherian local ring, M a finitely gener-
ated R-module, and I1, . . . , Ik m-primary. Let P be the multi-graded Hilbert
polynomial of I1, . . . , Ik with respect to M . Write the homogeneous part of P
of degree dimR as

∑

d1+···+dk=dimR

1

d1! · · ·dk!
e(I

[d1]
1 , . . . , I

[dk]
k ;M)nd11 · · ·ndkk ,

where e(I
[d1]
1 , . . . , I

[dk]
k ;M) ∈ Q. (The notation I

[di]
i is unrelated to Frobenius

powers in tight closure.) We call this number the mixed multiplicity of
M of type (d1, . . . , dk) with respect to I1, . . . , Ik. If di = 1, we also write Ii
in place of I

[di]
i . Sometimes we also write the symbol e(I

[d1]
1 , . . . , I

[dk]
k ;M) as

e(I1, . . . , I1, . . . , Ik, . . . , Ik;M), where each Ii is listed di times.

Just as in the definition of multiplicity (Definition 11.1.5), we could have
replaced the dimension ofR with the dimension ofM in the definition of mixed
multiplicity above. However, for our purposes in this book, it is convenient
to have the mixed multiplicities be 0 when the dimension of M is strictly
less than the dimension of R. This stipulation is not a serious restriction: an
arbitrary R-module M is a module over R/annM , dimM = dim(R/annM),
and Hilbert polynomials and joint reductions of M as an R-module are the
same as the Hilbert polynomials and joint reductions of M as a module over
R/annM .

By Theorem 17.4.2, e(I
[d1]
1 , . . . , I

[dk]
k ;M) is a rational number. We prove

below that it is a non-negative integer.
The case k = 1 is of course the usual multiplicity, cf. Definition 11.1.5.

The study of multi-graded Hilbert polynomials for bihomogeneous ideals in
a bigraded polynomial ring over an Artinian ring was initiated by van der
Waerden [305]. Bhattacharya [16] followed the methods of van der Waerden
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and developed the Hilbert polynomial for a pair of zero-dimensional ideals in
a Noetherian local ring, i.e., Bhattacharya proved the case k = 2 above.

Mixed multiplicities are additive on exact sequences, just like multiplicities:

Lemma 17.4.4 Let (R,m) be a Noetherian local ring, I1, . . . , Ik m-primary
ideals, and 0 → M1 → M2 → M3 → 0 a short exact sequence of finitely
generated R-modules. Then for any d1, . . . , dk ∈ N with d1+ · · ·+dk = dimR,

e(I
[d1]
1 , . . . , I

[dk]
k ;M2) = e(I

[d1]
1 , . . . , I

[dk]
k ;M1) + e(I

[d1]
1 , . . . , I

[dk]
k ;M3).

Proof: By the multi-ideal version of the Artin–Rees Lemma (Theorem 17.1.6),
there exist c1, . . . , ck ∈ N such that for all ni ≥ ci, I

nM2∩M1 = In−c(IcM2∩
M1) ⊆ In−cM1. Thus

λ
( M1

InM1

)
≥ λ

( M1

InM2 ∩M1

)
≥ λ

( M1

In−cM1

)
.

Since for large ni, the two outside length functions above are polynomials
in n1, . . . , nk with identical top degree parts (of degree equal to dim(R)), it
follows that λ(M1/(I

nM2 ∩M1)) is

∑

d1+···+dk=dimR

1

d1! · · ·dk!
e(I

[d1]
1 , . . . , I

[dk]
k ;M1)n

d1
1 · · ·ndkk +Q′,

where Q′ is dominated by a polynomial of degree at most dimR − 1. The
short exact sequence

0 −→ M1

InM2 ∩M1
−→ M2

InM2
−→ M3

InM3
−→ 0

and Theorem 17.4.2 show that for sufficiently large n1, . . . , nk, Q
′ is a polyno-

mial, necessarily of degree at most dimR− 1. The comparison of the leading
coefficients of the polynomials of lengths of the modules in the last short exact
sequence now proves the lemma.

An important inductive consequence is the following:

Lemma 17.4.5 Let (R,m) be a Noetherian local ring, M a finitely generated
R-module of dimension d = dimR > 1, and (x1, . . . , xd) and I1, . . . , Id m-
primary ideals, where xi ∈ Ii for each i. Set M ′ = M/x1M , and for any
positive integer l, set Nl = (I l1M + x1M)/x1M . Then dimNl = dimM ′.

Set R′ = R/x1R or R′ = R/annM ′, and suppose that dimR′ = d −
1 = dimM ′. Then eR′(I2R

′, . . . , IdR′;M ′) = eR′(I2R
′, . . . , IdR′;Nl) and

eR′((x2, . . . , xd)R
′;M ′) = eR′((x2, . . . , xd)R

′;Nl).

Proof: From the short exact sequence

0 −→ Nl =
I l1M + x1M

x1M
→ M

x1M
→ M

I l1M + x1M
→ 0,
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as M/(I l1M + x1M) has dimension zero, it follows that dimNl = dimM ′

and by additivity of (mixed) multiplicities on the short exact sequence, the
proposition follows.

With this notation, Theorem 17.4.2 can be made more precise:

Theorem 17.4.6 (Risler and Teissier [294]) Let (R,m) be a Noetherian
local ring, I1, . . . , Ik m-primary ideals, and M a finitely generated R-module
of dimension d = dimR. Fix c ∈ N. Let x ∈ I1 be in the complement
of all the minimal prime ideals of R, and suppose that for all sufficiently
large n1, . . . , nk, (InM :M x) ∩ Ic1I

n2
2 · · · Ink

k M = In1−1
1 In2

2 · · · Ink

k M (this
holds for example if x ∈ I1 is superficial for Ii1, I2, . . . , Ik with respect to M).
Set R′ = R/xR, M ′ = M/xM . Then for any integers d1, . . . , dk ∈ N with
d1 + · · ·+ dk = d and d1 > 0,

eR(I
[d1]
1 , . . . , I

[dk]
k ;M) =




eR′(I

[d1−1]
1 R′, . . . , I [dk]k R′;M ′) if d > 1;

λ(M/xM)− λ(0 :M x) if d = 1.

Proof: From Equality (17.4.1) and Lemma 17.2.4 we get that

λ
( M

InM

)
− λ

( M

In1−1
1 In2

2 · · · Ink

k M

)
= λ

( M

xM + InM

)
− λ(0 :M x)

for large n1, . . . , nk. Both sides can be expressed in terms of the multi-graded
Hilbert polynomials for such n1, . . . , nk. The highest degree part on the left-
hand side is then the highest degree in

∑

d1+···+dk=d

1

d1! · · ·dk!
eR(I

[d1]
1 , . . . , I

[dk]
k ;M)

(
nd11 − (n1 − 1)d1

)
nd22 · · ·ndkk ,

which is
∑

d1+···+dk=d

1

(d1 − 1)!d2! · · ·dk!
eR(I

[d1]
1 , . . . , I

[dk]
k ;M)nd1−1

1 nd22 · · ·ndkk .

On the right-hand side the highest degree then equals, in case d > 1,
∑

d1+···+dk=d−1

1

d1! · · ·dk!
eR′(I

[d1]
1 R′, . . . , I [dk]k R′;M ′)nd11 · · ·ndkk ,

and if d = 1, the highest degree on the right is the constant

eR′(I
[0]
1 R′, . . . , I [0]k R′;M ′)− λ(0 :M x) = λ(M/xM)− λ(0 :M x).

With this, the proposition follows by reading off the leading coefficients.

An immediate corollary is that mixed multiplicities are positive integers in
important situations:

Corollary 17.4.7 (Risler and Teissier [294]) Let (R,m) be a Noetherian
local ring, I1, . . . , Ik m-primary ideals, and M a non-zero finitely generated
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R-module with dimM = dimR = d. Let d1, . . . , dk ∈ N with d1+ · · ·+dk = d.
Let x1, . . . , xd be any superficial sequence for I1, . . . , I1, . . . , Ik, . . . , Ik with
respect to M , with each Ii listed di times, and each xi not in any minimal
prime ideal over (x1, . . . , xi−1). Then

e(I
[d1]
1 , . . . , I

[dk]
k ;M) = λ

( M

(x1, . . . , xd)M

)
− λ((x1, . . . , xd−1)M :M xd),

which equals the multiplicity of the ideal (x1, . . . , xd) on M . In particular,
mixed multiplicities are positive integers when dimM = dimR.

Proof: Set Ri = R/(x1, . . . , xi) and Mi =M/(x1, . . . , xi)M . By the previous
theorem,

eR(I
[d1]
1 , . . . ,I

[dk]
k ;M) = eR1

(I
[d1−1]
1 R1, . . . , I

[dk]
k R1;M1)

= · · ·
= eRd−1

(I
[0]
1 Rd−1, . . . , I

[0]
k−1Rd−1, I

[1]
k Rd−1;Md−1)

= eRd
(I

[0]
1 Rd, . . . , I

[0]
k Rd;Md)− λ((x1, . . . , xd−1)M : xd)

= λ
( M

(x1, . . . , xd)M

)
− λ((x1, . . . , xd−1)M : xd).

This proves the displayed formula of the statement, and that mixed multiplic-
ities are integers. If d = 0, this number is just λ(M), a positive integer (by
assumption M is non-zero). If d > 0, set I = (x1, . . . , xd). By repeated use of
Proposition 11.1.9, e(I;M) = λ(M/(x1, . . . , xd)M)−λ((x1, . . . , xd−1)M : xd),
which proves the corollary.

This corollary says for example that the mixed multiplicity e(I [d−j],m[j];M)
is the I-multiplicity of M after intersecting M with j sufficiently general
hyperplanes in m (and passing to the corresponding ring).

An additivity and reduction formula also holds for mixed multiplicities.
One can prove it with brute force by using prime filtrations of modules and
the additivity of mixed multiplicities on short exact sequences, or as follows:

Theorem 17.4.8 (Additivity and Reduction Formula) Let (R,m) be a Noe-
therian local ring, M a finitely generated R-module of dimension d = dimR,
and I1, . . . , Ik m-primary ideals. Then for any d1, . . . , dk ∈ N with d1 + · · ·+
dk = d,

eR(I
[d1]
1 , . . . , I

[dk]
k ;M) =

∑

p

λ(Mp)eR/p(I
[d1]
1 (R/p), . . . , I

[dk]
k (R/p);R/p),

where p varies over Min(R/annM) for which dim(R/p) = d.

Proof: By passing to R[X ]mR[X], where X is a variable over R, neither
the hypotheses nor the conclusion change, so we may assume that R/m is
infinite. By Proposition 17.2.2, there is a superficial sequence x1, . . . , xd,
for I1, . . . , I1, . . . , Ik . . . , Ik with respect to M and with respect to each of
the finitely many R/p, with each Ii listed di times, and each xi chosen
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to not be in any minimal prime ideal over (x1, . . . , xi−1). Then if I =

(x1, . . . , xd), by Corollary 17.4.7, e(I
[d1]
1 , . . . , I

[dk]
k ;M) = e(I;M), and for

each p, e(I
[d1]
1 , . . . , I

[dk]
k ;R/p) = e(I;R/p). Now the proposition follows from

the Additivity and Reduction Formula for multiplicities, Theorem 11.2.4.

Theorem 17.4.6 and Corollary 17.4.7 show a connection between joint reduc-
tions and mixed multiplicities: when a joint reduction is built by a superficial
sequence, the corresponding mixed multiplicity is given by the multiplicity of
the ideal generated by the superficial sequence. We next prove Rees’s result
that the ideal generated by a joint reduction has the same multiplicity as the
corresponding mixed multiplicity:

Theorem 17.4.9 (Rees [239]) Let (R,m) be a Noetherian local ring, M a
finitely generated R-module of dimension d = dimR, and I1, . . . , Ik m-primary
ideals in R. Let d1, . . . , dk ∈ N with d1+ · · ·+dk = d, and (x1, . . . , xd) a joint
reduction of (I1, . . . , I1, . . . , Ik, . . . , Ik) with respect to M , with each Ii listed
di times. Then

e(I
[d1]
1 , . . . , I

[dk]
k ;M) = e((x1, . . . , xd);M).

Proof: Set I = (x1, . . . , xd). Because (x1, . . . , xd) is a joint reduction of
(I1, . . . , I1, . . . , Ik, . . . , Ik), I is m-primary, and therefore e(I;M) makes sense.
As (mixed) multiplicities and joint reductions are preserved under passage
to the faithfully flat extension R[X ]mR[X], where X is a variable over R,
without loss of generality we may assume that the residue field is infinite.

Since e(I
[d1]
1 , . . . , I

[dk]
k ;M) = e(I1, . . . , I1, . . . , Ik, . . . , Ik;M), we may simplify

notation and set k = d and all di = 1.
If d = 0, then e(I1, . . . , Id;M) = λ(M) = e((0);M), so the theorem holds.
Let d = 1. Then (x1) being a joint reduction of (I1) with respect toM says

that there exists an integer l such that x1I
l
1M = I l+1

1 M . Thus for all n > l,
xn1M ⊆ xn−l1 I l1M = In1M and λ(M/xn1M) ≥ λ(M/In1M) ≥ λ(M/xn−l1 M).
Thus the Hilbert polynomials of I and (x1) with respect to M must have the
same leading coefficients, namely e((x1);M) = e(I1;M).

Now let d > 1. If (x1, . . . , xd) is a joint reduction of (I1, . . . , Id) with respect
to M , then it is so with respect to each R/P , as P varies over the minimal
prime ideals in R that contain annM . Then by the Additivity and Reduction
Formulas for (mixed) multiplicities (Theorems 11.2.4 and 17.4.8), it suffices
to prove the theorem in case M = R = R/P is an integral domain.

Set l =
∑
i µ(Ii). With notation as in Proposition 17.3.2, let U ⊆ (R/m)l be

a Zariski-open subset that determines all the joint reductions of (I1, . . . , Id);
by assumption, U is non-empty. Let U ′ be a non-empty Zariski-open subset
of I1/mI1 such that any preimage in I1 of any element of U ′ is a non-zero
superficial element for I1, . . . , Id. Such U

′ exists and is non-empty by Propo-
sition 17.2.2. By Lemma 8.5.12, there exists y ∈ U ′ such that (y, x2, . . . , xd) ∈
U , i.e., such that (y, x2, . . . , xd) is a joint reduction of (I1, . . . , Id). Set
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R′ = R/yR. By Theorem 17.4.6, eR(I1, . . . , Id;R) = eR′(I2R
′, . . . , IdR′;R′),

and by Proposition 11.1.9, e((y, x2, . . . , xd);R) = eR′((x2, . . . , xd)R
′;R′).

Since (y, x2, . . . , xd) is a joint reduction of (I1, . . . , Id), by Lemma 17.1.5, for
all large l, (x2, . . . , xd) is a joint reduction of (I2, . . . , Id) with respect to (I l1+
yR)/yR. Choose one such large l and set N = (I l1 + yR)/yR. By induction
on d then eR′(I2R

′, . . . , IdR′;N) = eR′((x2, . . . , xd)R
′;N). By Lemma 17.4.5,

eR(I1, . . . , Id;R) = eR′(I2R
′, . . . , IdR

′;R′)

= eR′(I2R
′, . . . , IdR

′;N)

= eR′((x2, . . . , xd)R
′;N)

= eR′((x2, . . . , xd)R
′;R′)

= eR((y, x2, . . . , xd);R).

It remains to prove that e((y, x2, . . . , xd);R) = e((x1, . . . , xd);R). Set R′′ =
R/(xd), N

′′ = (I ld + xdR)/xdR. By Proposition 11.1.9 and by Lemma 17.4.5,

eR((y, x2, . . . , xd);R) = eR′′((y, x2, . . . , xd−1)R
′′;R′′)

= eR′′((y, x2, . . . , xd−1)R
′′;N ′′).

Similarly,

eR((x1, . . . , xd);R) = eR′′((x1, . . . , xd−1)R
′′;R′′)

= eR′′((x1, . . . , xd−1)R
′′;N ′′).

By Lemma 17.1.5, for l sufficiently large, (x1, . . . , xd−1) is a joint reduc-
tion of (I1, . . . , Id−1) with respect to N ′′. Thus by induction on d, using
R′′ and N ′′, y can in addition be chosen sufficiently general in I1 such that
eR′′((y, x2, . . . , xd−1)R

′′;N ′′) = eR′′((x1, . . . , xd−1)R
′′;N ′′). This proves the

theorem.

In the next two sections we prove more connections between joint reductions
and mixed multiplicities: Section 17.5 gives background on manipulations of
joint reductions and superficial elements, and the main result generalizing
Rees’s Theorem connecting multiplicities and reductions is in Section 17.6.

17.5. More manipulations of mixed multiplicities

In this section we exhibit some connections between joint reductions, superfi-
cial elements, and mixed multiplicities. Most results were inspired by Böger’s
techniques in [20]. The main goal of this section is to prepare the background
for the results in the subsequent section, so a reader may wish to skip the
section and only read the parts as needed later.

Proposition 17.5.1 Let (R,m) be a Noetherian local ring of dimension d,
I1, . . . , Id m-primary ideals and M a finitely generated R-module. Then for
any positive integer l,

e(I1, . . . , Id−1, I
l
d;M) = le(I1, . . . , Id;M).
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Proof: Without loss of generality dk > 0. By using Lemma 8.4.2 we may
assume that the residue field of R is infinite. By Proposition 17.2.2 there ex-
ist elements x1, . . . , xd, the jth element taken from Ij , that form a superficial
sequence for I1, . . . , Id. We can even assume that for all positive integers l,
xld ∈ I ld is superficial for I ld with respect to M/(x1, . . . , xd−1)M . By Theo-
rem 17.4.7 and by Proposition 11.2.9,

e(I1, . . . , Id−1, I
l
d;M) = e((x1, . . . , xd−1, x

l
d);M)

= le((x1, . . . , xd−1, x
l
d);M)

= le(I1, . . . , Id;M).

Lemma 17.5.2 Let (R,m) be a Noetherian local ring with infinite residue
field, and I1, . . . , Ik ideals in R such that I1 ⊆

√
I2 · · · Ik. Let Y be a variable

over R and x ∈ I1. Then there exist positive integers c and e and a non-empty
Zariski-open subset U of I1/mI1 with the following property: whenever y ∈ I1
has a natural image in U , and whenever l ≥ e, and n1, . . . , nk are sufficiently
large (depending on l), then

InR[Y ] ∩ (xl + ylY )R[Y ] = (xl + ylY )In1−l
1 In2

2 · · · Ink

k R[Y ],

and

(InR[Y ] :R[Y ] (x
l + ylY )) ∩ Ic1In2

2 · · · Ink

k R[Y ] = In1−l
1 In2

2 · · · Ink

k R[Y ].

Proof: Let (0) = q1 ∩ · · · ∩ qs be a primary decomposition of (0). Assume
that I1 ⊆ √

q1, . . . ,
√
qt and that I1 6⊆ √

qt+1, . . . ,
√
qs. Let e ∈ N be such that

Ie1 ⊆ q1 ∩ · · · ∩ qt. By Proposition 17.2.2, we may assume that the preimages
of elements of U do not lie in

√
qt+1, . . . ,

√
qs, and furthermore that for each

y in the preimage of U and for each i ≥ 1, yi is superficial for Ii1, I2, . . . , Ik.
Fix y in the preimage of U . By construction as in Proposition 17.2.2, there
exists c ∈ N such that for all n1 ≥ c+ i− 1 and all n2, . . . , nk ≥ 0,

(In : yi) ∩ Ic1In2
2 · · · Ink

k = In1−i
1 In2

2 · · · Ink

k .

Let l ≥ e and r ∈ (0 : yl). Then ryl ∈ qt+1 ∩ · · · ∩ qs, so by the choice of y,
r ∈ qt+1 ∩ · · · ∩ qs, whence rI l1 = 0. This proves that (0 : yl) = (0 : I l1). By
Lemma 17.2.4, In : yl = (0 : yl) + In1−l

1 In2
2 · · · Ink

k for all sufficiently large ni
(depending on l). Let F = (xl+ylY )

∑a
j=0 rjY

j ∈ InR[Y ], with rj ∈ R. The

coefficient ylra of Y a+1 is in In, so ra ∈ (0 : I l1) + In1−l
1 In2

2 · · · Ink

k . Hence

(xl + ylY )raY
a and (xl + ylY )

∑a−1
j=0 rjY

j are both in InR[Y ], and so by

induction on a, F ∈ (xl + ylY )In1−l
1 In2

2 · · · Ink

k .
If in F above in addition each rj ∈ Ic1I

n2
2 · · · Ink

k , one similarly shows that

(InR[Y ] :R[Y ] (x
l + ylY )) ∩ Ic1In2

2 · · · Ink

k R[Y ] = In1−l
1 In2

2 · · · Ink

k R[Y ].

Lemma 17.5.3 Let (R,m) be a Noetherian local ring, M a finitely generated
R-module of dimension d = dimR, and I1, . . . , Id m-primary ideals.
(1) If J1, . . . , Jd are m-primary ideals and for i = 1, . . . , d, Ji ⊆ Ii, then

e(J1, . . . , Jd;M) ≥ e(I1, . . . , Id;M).
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(2) If for i = 1, . . . , d, xi ∈ Ii and (x1, . . . , xd) is m-primary, then

e((x1, x2, . . . , xd);M) ≥ e(I1, . . . , Id;M).

Proof: (1) follows as for all n ∈ Nd, λ(M/JnM) ≥ λ(M/InM), so that the
multi-graded Hilbert polynomial for J1, . . . , Jd with respect to M dominates
the multi-graded Hilbert polynomial for I1, . . . , Id with respect to M , and
hence the same holds for the leading coefficients.

To prove (2), first apply Proposition 17.3.3 to construct m-primary ideals
J1, . . . , Jd, with xi ∈ Ji ⊆ Ii for all i, and (x1, . . . , xd) being a joint reduction
of (J1, . . . , Jd). Then (2) follows from (1) and Theorem 17.4.9.

Lemma 17.5.4 Let (R,m) be a Noetherian local ring with infinite residue
field, let I1, . . . , Ik be ideals, and xi ∈ Ii (i = 1, . . . , k). Let Y be a variable
over R. Assume that the ideal (x1, . . . , xk) and all the Ii have the same height
k and the same radical. Let P be a prime ideal minimal over (x1, . . . , xk) such
that e((x1, . . . , xk)RP ;RP ) = e(I1RP , . . . , IkRP ;RP ). Set S = R[Y ]PR[Y ].
Then there exists a non-empty Zariski-open subset U of I1/mI1 (actually
of (I1 + (xk))/(mI1 + (xk)), but that can be lifted to a non-empty Zariski-
open subset U of I1/mI1), such that for any preimage y of an element of
U and for all sufficiently large integers l, eS((x

l
1 + ylY, x2, . . . , xk)S;S) =

l eRP
((x1, x2, . . . , xk)RP ;RP ).

Proof: We use induction on k. If k = 1, choose y as in Lemma 17.5.2. Then for
all sufficiently large integers l, xl1+y

lY is superficial for I l1R[Y ], hence also for
I l1S. By Corollary 17.4.7, eS((x

l
1+ y

lY )S;S) = eS(I
l
1S;S) = eRP

(I l1RP ;RP ).
By Proposition 11.2.9, this equals l e(I1RP ;RP ), which proves the case k = 1.

Now let k ≥ 2. For q ∈ Min(RP ), set A = RP /q. By Lemma 17.5.3 (2),
if dim(A) = k, then eA((x1, . . . , xk)A;A) ≥ eA(I1A, . . . , IkA;A). By the
Additivity and Reduction Formulas for multiplicity and mixed multiplicity
(Theorems 11.2.4 and 17.4.8),

eRP
((x1, . . . , xk)RP ;RP ) =

∑

A=RP /q

λ(Rq)eA((x1, . . . , xk)A;A)

≥
∑

q

λ(Rq)eA(I1A, . . . , IkA;A)

= eRP
(I1RP , . . . , IkRP ;RP ).

But then all terms in the display have to be equal, so that for each A = RP /q,
eA((x1, . . . , xk)A;A) = eA(I1A, . . . , IkA;A). Thus the hypotheses of the
lemma hold for each R/p in place of R, with p varying over those mini-
mal prime ideals of R for which dim(RP /pRP ) = k. If the conclusion holds
with R/p in place of R, then there exists a Zariski-open non-empty subset
Up of I1/mI1 such that the conclusion of the lemma holds for R/p in place of
R. Then by the Additivity and Reduction Formula for multiplicities, Theo-
rem 11.2.4, the conclusion holds also in R for y a preimage of any element of



17.5. More manipulations of mixed multiplicities 361

the non-empty Zariski-open subset ∩pUp of I1/mI1. Thus it suffices to prove
the lemma in the case where RP is an integral domain.

In this case, xk is a non-zerodivisor on RP . Set T = RP /xkRP . Then

e(I1RP , . . . , IkRP ;RP ) = eRP
((x1, . . . , xk)RP ;RP ) (by assumption)

= eT ((x1, . . . , xk−1)T ;T ) (by Proposition 11.1.9)

≥ eT (I1T, . . . , Ik−1T ;T ) (by Lemma 17.5.3)

= eT ((y1, . . . , yk−1)T ;T )

(by Corollary 17.4.7, for some yi ∈ Ii)

≥ e(I1RP , . . . , IkRP ;RP ) (by Proposition 11.1.9),

so that equality has to hold throughout. In particular, e((x1, . . . , xk−1)T ;T ) =
e(I1T, . . . , Ik−1T ;T ). By induction on k, there exists a non-empty Zariski-
open subset U of I1/mI1 such that for any preimage y of an element of U ,

eS/xkS((x
l
1 + ylY, x2, . . . , xk−1)(S/xkS);S/xkS) = l e((x1, x2, . . . , xk−1)T ;T )

for all large l. Another application of Proposition 11.1.9 finishes the proof:

eS((x
l
1 + ylY,x2, . . . , xk)S;S)

= eS/xkS((x
l
1 + ylY, x2, . . . , xk−1)(S/xkS);S/xkS)

= l e((x1, x2, . . . , xk−1)T ;T )

= l e((x1, x2, . . . , xk)S;S).

Lemma 17.5.5 Let (R,m) be a formally equidimensional Noetherian local
ring with infinite residue field, Y a variable over R and S the localization
of R[Y ] at mR[Y ] + Y R[Y ]. Let I1, . . . , Ik be ideals in R, with xi ∈ Ii for
i = 1, . . . , k. Assume that the ideal (x1, . . . , xk) and all the Ii have height
k and have the same radical. Let Λ be the set of prime ideals in R mini-
mal over (x1, . . . , xk). Assume that for all P ∈ Λ, e((x1, . . . , xk)RP ;RP ) =
e(I1RP , . . . , IkRP ;RP ). Let y ∈ I1 be a superficial element for I1, . . . , Ik
that is not in any prime ideal minimal over (x2, . . . , xk). Then for all suf-
ficiently large integers l, the set of prime ideals of S minimal over (xl1 +
ylY, x2, . . . , xk)S equals {PS |P ∈ Λ}.
Proof: Let Jl = (xl1+y

lY, x2, . . . , xk)S. By the choice of y, the height of Jl is
k. Elements of Λ clearly extend to prime ideals in S minimal over Jl. Suppose
that there exists a prime ideal Q in S minimal over Jl that is not extended
from a prime ideal in Λ. By the Krull’s Height Theorem, Theorem B.2.1,
htQ ≤ k. As Jl has height k, necessarily htQ = k. By Lemma B.4.7, S is
formally equidimensional, so that by Lemma B.4.2, dim(S/Q) = dimS − k.
Similarly, for each P ∈ Λ, dim(S/PS) = dimS − k. By the Additivity and
Reduction Formula, Theorem 11.2.4, for all n ≥ 1,

e
( S

((xl1 + ylY )n, xn2 , . . . , x
n
k)S

)
≥ e
( S
Q

)
· λ
( SQ
((xl1 + ylY )n, xn2 , . . . , x

n
k )SQ

)

+
∑

P∈Λ

e
( S

PS

)
· λ
( SPS
((xl1 + ylY )n, xn2 , . . . , x

n
k)SPS

)
.
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By Lech’s Formula 11.2.10 it follows that

lim
n→∞

1

nk
e
( S

((xl1 + ylY )n, xn2 , . . . , x
n
k)S

)

≥ e(S/Q) · e(JlSQ;SQ) +
∑

P∈Λ

e(S/PS) · e(JlSPS;SPS)

>
∑

P∈Λ

e(S/PS) · e(JlSPS;SPS)

=
∑

P∈Λ

e(R/P )l · e((x1, . . . , xk)RP ;RP ),

the last equality by Lemma 17.5.4. By Lemma 11.1.7 and by the Additivity
and Reduction Formula,

e
( S

((xl1 + ylY )n, xn2 , . . . , x
n
k)S

)
≤ e
( S

((xl1 + ylY )n, xn2 , . . . , x
n
k , Y )S

)

= e
( R

(xln1 , x
n
2 , . . . , x

n
k)R

)

=
∑

P∈Λ

e(R/P )λ
( RP
(xln1 , x

n
2 , . . . , x

n
k)RP

)
,

so that by Lech’s Formula and by Proposition 11.2.9,

lim
n→∞

1

nk
e
( S

((xl1 + ylY )n, xn2 , . . . , x
n
k)S

)
≤ l e(R/P )e((x1, . . . , xk)RP ;RP ),

contradicting the earlier inequality. Thus no such Q exists.

17.6. Converse of Rees’s multiplicity theorem

Rees showed (see Theorem 17.4.9) that the ideal generated by a joint reduc-
tion has the same multiplicity as the corresponding mixed multiplicity, and
Böger extended this result to non-m-primary ideals. The converse holds for
formally equidimensional rings, and this we prove next. This converse gener-
alizes Theorem 11.3.1 and Corollary 11.3.2 for multiplicities.

Theorem 17.6.1 (Swanson [281]) Let (R,m) be a formally equidimensional
Noetherian local ring, I1, . . . , Ik ideals in R, and xi ∈ Ii, i = 1, . . . , k. Assume
that the ideal (x1, . . . , xk) and the Ii have the same height k and the same rad-
ical. If e((x1, . . . , xk)RP ;RP ) = e(I1RP , . . . , IkRP ;RP ) for all prime ideals P
minimal over (x1, . . . , xk), then (x1, . . . , xk) is a joint reduction of (I1, . . . , Ik).

Proof: Let X be a variable over R, and T = R[X ]mR[X]. By work in Sec-
tion 8.4, R → T is a faithfully flat extension, and radicals, heights, minimal
prime ideals, multiplicities, and mixed multiplicities are preserved under pas-
sage to T , and some k-tuple of elements is a joint reduction of a k-tuple
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of ideals in R if and only if it is so after passage to T . Furthermore, by
Lemma B.4.7, T is still formally equidimensional, so that by possibly switch-
ing to T we may assume that R has an infinite residue field.

Let Λ be the set of all prime ideals in R that are minimal over (x1, . . . , xk).
Then Λ is a finite set, and by the Krull’s Height Theorem, each prime ideal
in Λ has height k. By Theorem B.5.2, each RP is formally equidimensional.

If k = 0, there is nothing to prove. If k = 1, by assumption e((x1);RP ) =
e(I1RP ;RP ) = e(I1;RP ). As RP is formally equidimensional, by Rees’s The-
orem 11.3.1, (x1)RP ⊆ I1RP is a reduction. Thus I1 ⊆ ∩P (x1)RP ∩ R, and
by Ratliff’s Theorem 5.4.1, I1 ⊆ (x1), so that (x1) ⊆ I1 is a reduction.

Now let k > 1. We first reduce to the case where R is a domain. Let
p ∈ MinR and let Q ∈ SpecR be minimal over p + (x1, . . . , xk). Then
since R is formally equidimensional and hence equidimensional and catenary,
htQ = ht(Q/p) ≤ k, so necessarily htQ = k and Q ∈ Λ. By Lemma 17.5.3,

e((x1, . . . , xk)(R/p)Q; (R/p)Q) ≤ e(I1(R/p)Q, . . . , Ik(R/p)Q; (R/p)Q).

Then by the Additivity and Reduction Formulas for multiplicities and mixed
multiplicities (Theorems 11.2.4 and 17.4.8),

e((x1, . . . , xk)RQ;RQ) =
∑

q∈MinR,q⊆Q
λ(Rq) e((x1, . . . , xk)(R/q)Q; (R/q)Q)

≤
∑

q∈MinR,q⊆Q
λ(Rq) e(I1(R/q)Q, . . . , Ik(R/q)Q; (R/q)Q)

= e(I1(R/q)Q, . . . , Ik(R/q)Q; (R/q)Q)

= e((x1, . . . , xk)RQ;RQ),

so that e((x1, . . . , xk)(R/q)Q; (R/p)Q) = e(I1(R/p)Q, . . . , Ik(R/p)Q; (R/p)Q)
for each p ∈ MinR and each Q ∈ Λ such that p ⊆ Q. If we know the result
for integral domains, since ht(Q/p) = htQ = k, then (x1, . . . , xk) is a joint
reduction of (I1, . . . , Ik) with respect to R/p for each p ∈ MinR. Then by
Proposition 1.1.5, since the definition of joint reduction reduces to a reduction
question, (x1, . . . , xk) is a joint reduction of (I1, . . . , Ik). Thus it suffices to
prove the theorem for integral domains.

Let S = R[Y ]mR[Y ]+Y R[Y ] and let y be as in the statements of Lem-
mas 17.5.2 and 17.5.4. Since both requirements are given by non-empty
Zariski-open sets, y exists, and we may choose non-zero y. Thus xl1 + ylY
is not zero for all l. Set S′ = S/(xl1 + ylY ), for some large integer l. By
Lemma 17.5.4, if l is sufficiently large,

e((xl1 + ylY, x2, . . . , xk)SPS;SPS) = l e((x1, x2, . . . , xk)RP ;RP )

for every P ∈ Λ. By Proposition 11.1.9,

e((xl1 + ylY, x2, . . . , xk)SPS;SPS) = e((x2, . . . , xk)S
′
PS′ ;S′

PS′).
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By Lemma 17.5.2, there exists an integer c such that for all large n1, . . . , nk,

(InS :S (xl + ylY )) ∩ Ic1In2
2 · · · Ink

k S = In1−l
1 In2

2 · · · Ink

k S.

This in particular holds for all n1 that are large multiples of l, and c replaced
by a larger integer that is a multiple of l. Thus by Theorem 17.4.6,

eS′
PS′

(I2S
′
PS′ , . . . , IkS

′
PS′ ;S′

PS′) = e(I l1SPS, I2SPS, . . . , IkSPS ;SPS)

= e(I l1RP , I2RP , . . . , IkRP ;RP )

= l e(I1RP , I2RP , . . . , IkRP ;RP ).

By assumption and the derived equalities, e(I2S
′
PS′ , . . . , IkS

′
PS′ ;S′

PS′) equals
e((x2, . . . , xk)S

′
PS′ ;S′

PS′) for all P ∈ Λ. By Lemma 17.5.5, all the minimal
prime ideals over (xl1 + ylY, x2, . . . , xk)S are of the form PS, with P ∈ Λ.

Set J = x2I3 · · · Ik + · · · + xkI2 · · · Ik−1. By Lemma B.4.7, S is locally
formally equidimensional, and by Proposition B.4.4, S′ is formally equidi-
mensional. By induction on k, (x2, . . . , xk) is joint reduction of (I2, . . . , Ik)
with respect to S′, so JS′ is a reduction of I2 · · · IkS′. Thus for sufficiently
large n, (I2 · · · Ik)n+1S′ ⊆ J(I2 · · · Ik)nS′. Hence (I2 · · · Ik)n+1S is contained
in J(I2 · · · Ik)nS + (xl1 + ylY )S. By the choice of y as in Lemma 17.5.2, for
possibly larger n, if J ′ = JI1,

(I1 · · · Ik)n+1S ⊆ J ′(I1I2 · · · Ik)nS + (xl1 + ylY )In+1−l
1 (I2 · · · Ik)n+1S.

Thus there exists s ∈ R[Y ] \ (mR[Y ] + Y R[Y ]) such that

s(I1 · · · Ik)n+1 ⊆ J ′(I1I2 · · · Ik)nR[Y ] + (xl1 + ylY )In+1−l
1 (I2 · · · Ik)n+1R[Y ].

But the constant term u of s is a unit in R, so that by reading off the degree
zero monomials in R[Y ] we get

(I1 · · · Ik)n+1 ⊆ J ′(I1I2 · · · Ik)n + xl1I
n+1−l
1 (I2 · · · Ik)n+1

⊆ J ′(I1I2 · · · Ik)n + x1I
n
1 (I2 · · · Ik)n+1,

which proves that (x1, . . . , xk) is a joint reduction of (I1, . . . , Ik).

17.7. Minkowski inequality

In [294], Teissier conjectured a Minkowski-type inequality for mixed multi-
plicities:

e(IJ ;M)1/d ≤ e(I;M)1/d + e(J ;M)1/d,

where R is a Noetherian local ring with maximal ideal m, I and J are m-
primary ideals and M is a finitely generated R-module of dimension d =
dimR. In [295] Teissier proved the conjecture for rings R that are reduced
Cohen–Macaulay and contain Q. Rees and Sharp proved the conjectures
in full generality in [243]. We present the proofs of Teissier, and Rees and
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Sharp. In [296] Teissier also proved that if R is a Cohen–Macaulay normal
complex analytic algebra, then equality holds above if and only if there exist
positive integers a and b such that Ia = Ib. For a more general statement see
Exercise 17.10.

Lemma 17.7.1 Let (R,m) be a two-dimensional Noetherian local ring, I
and J m-primary ideals, and M a finitely generated R-module of dimension
two. Then

e(I, J ;M)2 ≤ e(I;M) e(J ;M).

Proof: By standard methods we may assume that R has an infinite residue
field. There then exist a, b ∈ I such that (a, b) is a reduction of I. For any
positive integers r, s, n,

λ
( M

IrnJsnM

)
≤ λ

( M

(arn, brn)JsnM

)

= λ
( (arn, brn)M

(arn, brn)JsnM

)
+ λ
( M

(arn, brn)M

)

≤ 2λ
( M

JsnM

)
+ λ

( M

(arn, brn)M

)
.

By multiplying through by 2!/n2 and taking the limit as n→ ∞, by definition
of multiplicities and by Lech’s Formula (Theorem 11.2.10), e(IrJs;M) ≤
2 e(Js;M) + 2 e((ar, br);M). By Proposition 8.1.5, (ar, br) is a reduction of
Ir, so that by Propositions 11.2.1 and 11.2.9,

e(IrJs;M) ≤ 2e(Js;M) + 2e(Ir;M) = 2e(J ;M)s2 + 2e(I;M)r2.

Furthermore,

e(IrJs;M) = lim
n→∞

2!

n2
λ
( M

(IrJs)n
M
)

= lim
n→∞

2!

n2

(1
2
e(I;M)(rn)2 + e(I [1], J [1];M)(rn)(sn) +

1

2
e(J ;M)(sn)2

)

= e(I;M)r2 + 2e(I, J ;M)rs+ e(J ;M)s2.

Thus 2 e(I, J ;M)rs ≤ e(I;M)r2 + e(J ;M)s2, for all positive integers r, s. In
particular, the inequality holds for r = e(I, J ;M) and s = e(I;M), which
proves the lemma.

Theorem 17.7.2 Let (R,m) be a Noetherian local ring, M a finitely gener-
ated R-module of dimension d = dimR ≥ 2, and I and J m-primary ideals.
Then for all i = 1, . . . , d− 1,

e(I [i], J [d−i];M)2 ≤ e(I [i+1], J [d−i−1];M) · e(I [i−1], J [d−i+1];M).

Proof: Without loss of generality we may assume that the residue field of R
is infinite: this changes neither the hypotheses nor the conclusion.
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First suppose that d > 2. By possibly switching i and d− i we may assume
that i ≥ 2. By Theorem 17.4.6, there exists x ∈ I such that dim(M/xM) =
d − 1 = dimR − 1 and such that for all j = 1, . . . , d, eR(I

[j], J [d−j];M) =
eR′(I [j−1]R′, J [d−j]R′;M ′), where R′ = R/xR and M ′ = M/xM . By induc-
tion on d,

eR(I
[i+1], J [d−i−1];M) · eR(I [i−1], J [d−i+1];M)

= eR′(I [i]R′, J [d−i−1]R′;M ′) · eR′(I [i−2]R′, J [d−i+1]R′;M ′)

≥ eR′(I [i−1]R′, J [d−i]R′;M ′)2

= eR(I
[i], J [d−i];M)2.

Thus it suffices to prove the case d = 2. But then i = 1, and the conclusion
follows from the lemma.

Corollary 17.7.3 (Minkowski inequality) Let (R,m) be a Noetherian local
ring, M a finitely generated R-module of dimension d = dimR ≥ 1, and I
and J m-primary ideals. Then for all i = 0, . . . , d,
(1) e(I [i], J [d−i];M) e(I [d−i], J [i];M) ≤ e(I;M) e(J ;M),
(2) e(I [d−i], J [i];M)d ≤ e(I;M)d−ie(J ;M)i, and
(3) e(IJ ;M)1/d ≤ e(I;M)1/d + e(J ;M)1/d.

Proof: We switch to the compact notation ei = e(I [d−i], J [i];M). By Corol-
lary 17.4.7, ei is a positive integer for all i, and by Theorem 17.7.2, for all
i = 1, . . . , d− 1, ei

ei−1
≤ ei+1

ei
.

If i = 0, d, (1) and (2) hold trivially. If d = 2, (1) and (2) hold by
Lemma 17.7.1. Now let d > 2 and d > i > 0.

To prove (1), by symmetry we may assume that i ≤ d/2. By Theorem 17.7.2
and by induction on i,

eied−i =
ei
ei−1

ed−i
ed−i+1

ei−1ed−i+1 ≤ ed−i+1

ed−i

ed−i
ed−i+1

e0ed = e0ed,

which proves (1). Furthermore, by Theorem 17.7.2,

( ei
ei−1

)d−i
· · ·
(e1
e0

)d−i
≤
( ed
ed−1

)i
· · ·
(ei+1

ei

)i
,

as there are i · (d− i) factors on each side. But the left side is ed−ii /ed−i0 , and
the right side is eid/e

i
i, which proves (2).

From the definition of mixed multiplicities and (2),

e(IJ ;M) =

d∑

i=0

(
d

i

)
ei ≤

d∑

i=0

(
d

i

)
e(I;M)(d−i)/de(J ;M)i/d

= (e(I;M)1/d + e(J ;M)1/d)d,

which proves (3).
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17.8. The Rees–Sally formulation and the core

We prove yet another form of the existence of joint reductions and superficial
elements, after passing to generic extensions or to infinite residue fields.

Let (R,m) be a Noetherian local ring of dimension d. Let N be a sufficiently
large integer, and X1, . . . , XN variables over R. By R[X ] we denote the ring
R[X1, . . . , XN ], and by R(X) we denote the ring R[X ] localized at mR[X ].
Then R[X ] and R(X) are faithfully flat extensions of R and R(X) is a d-
dimensional Noetherian ring.

Let I1, . . . , Id be ideals in R. For each i = 1, . . . , d, write Ii = (ai1, . . . , aili).

Definition 17.8.1 (Rees and Sally [242]) The standard independent set
of general elements of (I1, . . . , Id) is a set {x1, . . . , xd} ⊆ R(X), where

xi =

mi+li∑

j=mi+1

aijXmi+j , mi = l1 + · · ·+ li−1.

Note that each xi depends on distinct variables Xj.

Theorem 17.8.2 (Rees and Sally [242])With notation as above, (x1, . . . , xd)
is a joint reduction of (I1R(X), . . . , IdR(X)).

Proof: If d = 0, there is nothing to prove. So assume that d > 0. Choose
a positive integer l such that for all n, 0 : (I1 · · · Id)n ⊆ 0 : (I1 · · · Id)l. If
(x1, . . . , xd) is a joint reduction of (I1R(X), . . . , IdR(X)) modulo the ideal
0 : (I1 · · · Id)l extended to R(X), then there exists an integer n such that

(I1· · · Id)nR(X) ⊆
d∑

i=1

xiI
n
1 · · ·Ini−1I

n−1
i Ini+1· · · IndR(X)+(0 : (I1 · · · Id)l)R(X).

Hence (I1 · · · Id)n+lR(X) ⊆ ∑d
i=1 xiI

n+l
1 · · · In+li−1 I

n+l−1
i In+li+1 · · · In+ld R(X), or

in other words, (x1, . . . , xd) is a joint reduction of (I1R(X), . . . , IdR(X)).
Thus it suffices to prove the theorem in case 0 : (I1 · · · Id)l = 0. This implies
that each Ii contains a non-zerodivisor. Thus dim(R(X)/(x1)) = dimR(X)−
1 = dimR − 1.

Set R′ = R(X1, . . . , Xm1
)/x1R(X1, . . . , Xm1

). The images of x2, . . . , xd
in R′(X) = R(X)/x1R(X) form the standard independent set of general
elements of (I2R

′, . . . , IdR′). Thus by induction on d, the image of (x2, . . . , xd)
in R′(X) is a joint reduction of (I2R

′(X), . . . , IdR
′(X)) and there exists a

positive integer n such that

(I2 · · · Id)nR(X) ⊆
d∑

i=2

xiI
n
2 · · · Ini−1I

n−1
i Ini+1 · · · IndR(X) + (x1)R(X).

Multiplication by In1 shows that (I1 · · · Id)nR(X) is contained in

d∑

i=2

xiI
n
1 I

n
2 · · · Ini−1I

n−1
i Ini+1 · · · IndR(X) + (x1) ∩ (I1 · · · Id)nR(X).
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It suffices to prove that x1 is a superficial for I1R(X), . . . , IdR(X). Consider

A = ⊕n≥0(I
n/I1I

n)

⊆ A[X ] = ⊕n≥0(I
nR[X ]/I1I

nR[X ])

⊆ A(X) = ⊕n≥0(I
nR(X)/I1I

nR(X)).

All the associated primes of A(X) are localizations of the associated primes
of A[X ], which are extended from the associated primes of A. Thus the
image of x1 in A[X ] is not contained in any associated prime of A[X ] that
does not contain I1/I

2
1 . Thus by Remark 17.2.3, x1 ∈ I1R[X ] is superficial for

I1R[X ], . . . , IdR[X ] and so x1 ∈ I1R(X) is superficial for I1R(X), . . . , IdR(X).
In particular, for all sufficiently large n, (x1) ∩ (I1 · · · Id)nR(X) is contained
in x1I

n−1
1 In2 · · · IndR(X), which proves the theorem.

The last part of the proof showed:

Lemma 17.8.3 Any element of the standard independent set of general ele-
ments of (I1, . . . , Id) is a superficial element for I1R(X), . . . , IdR(X).

With Theorem 17.8.2 we get a new proof of the existence of joint reductions:

Theorem 17.8.4 Let (R,m) be a Noetherian local ring with infinite residue
field. Let d be the dimension of R. Then for any ideals I1, . . . , Id in R there
exists a joint reduction of (I1, . . . , Id). In fact, almost any specialization of
the Xi yields a joint reduction.

Proof: Let {x1, . . . , xd} ⊆ R[X ] be a standard independent set of general
elements of (I1, . . . , Id). By Theorem 17.8.2, (x1, . . . , xd) is a joint reduction
of (I1R(X), . . . , IdR(X)). Thus there exists a positive integer n such that

(I1 · · · Id)nR(X) ⊆
d∑

i=1

xiI
n
1 · · · Ini−1I

n−1
i Ini+1 · · · IndR(X).

By definition of R(X) there exists an element f ∈ R[X ] \mR[X ] such that

f · (I1 · · · Id)nR[X ] ⊆
d∑

i=1

xiI
n
1 · · · Ini−1I

n−1
i Ini+1 · · · IndR[X ].

As f is not in mR[X ] and R/m is an infinite field, there exist u1, . . . , uN ∈ R
such that f evaluated at Xi 7→ ui is a unit in R. In fact, the “almost all”
is taken to mean that the set of all u = (u1, . . . , uN) ∈ RN with f(u) 6∈ m

satisfies the condition. Let ϕ : R[X ] → R be the ring homomorphism defined
by ϕ(Xi) = ui. Set ai = ϕ(xi). Under the image of ϕ we get that

(I1 · · · Id)n ⊆
d∑

i=1

aiI
n
1 · · · Ini−1I

n−1
i Ini+1 · · · IndR ⊆ (I1 · · · Id)n,

which proves that (a1, . . . , ad) is a joint reduction of (I1, . . . , Id).
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Lemma 17.8.5 Let (R,m) be a Cohen–Macaulay local ring of dimension d
and let I1, . . . , Id be m-primary ideals in R. Suppose that (a1, . . . , ad) is a
joint reduction of (I1, . . . , Id). Let {x1, . . . , xd} ⊆ R[X ] be a standard inde-
pendent set of general elements of (I1, . . . , Id). Then for any r = 0, . . . , d,
(a1, . . . , ar, xr+1, . . . , xd) is a joint reduction of (I1R(X), . . . , IdR(X)).

Proof: If r = d, as (a1, . . . , ad) is a joint reduction of (I1, . . . , Id), then by
extension to R(X), (a1, . . . , ad) is a joint reduction of (I1R(X), . . . , IdR(X)).
So we may assume that r < d. If r = 0, then the result follows from Theo-
rem 17.8.2. So we may assume that 0 < r < d.

By assumption there exists a positive integer l such that (I1 · · · Id)l =∑
i aiI

l
1 · · · I li−1I

l−1
i I li+1 · · · I ld. Let K =

∑
i<d aiI

l
1 · · · I li−1I

l−1
i I li+1 · · · I ld−1.

Then modulo K, adI
l−1
d equals I ld. In particular, modulo K, by Theo-

rem 17.8.2 the standard independent element xd generates a reduction of
IdR(X). Certainly xdI

l−1
d R(X) ⊆ (I ld + K)R(X). We want to prove that

xdI
l−1
d R(X) +KR(X) = (I ld +K)R(X). Since adI

l−1
d +K = I ld +K, we get

the following inequalities on vector space dimensions over (R/m)(X):

dim
( (I ld +K)R(X)

(mI ld +K)R(X)

)
= dim

( (adI l−1
d +K)R(X)

(mI ld +K)R(X)

)

≤ dim
( (xdI l−1

d + mI ld +K)R(X)

(mI ld +K)R(X)

)

≤ dim
( (I ld +K)R(X)

(mI ld +K)R(X)

)
,

so that equality holds throughout and by Nakayama’s Lemma xdI
l−1
d R(X)+

KR(X) = (I ld + K)R(X). This means that (a1, . . . , ad−1, xd) is a joint re-
duction of (I1R(X), . . . , IdR(X)), proving the case r = d − 1. Then by
Lemma 17.1.5, (a1, . . . , ad−1) is a joint reduction of (I1R(X), . . . , Id−1R(X))
with respect to (I ld + (xd))R(X)/(xd)R(X) for some integer l, whence by
Lemma 17.1.4, (a1, . . . , ad−1) is a joint reduction of (I1R(X), . . . , Id−1R(X))
with respect to R′ = R(X)/xdR(X). (We only need those variables Xi above
that appear in xd but by abuse of notation we still write R(X).) Hence by in-
duction on d, since {x1, . . . , xd−1} is a standard independent set of general el-
ements of (I1R

′, . . . , Id−1R
′) so that by induction (a1, . . . , ar, xr+1, . . . , xd−1)

is a joint reduction of (I1R
′, . . . , IdR′). We write out an ideal equation in

R′ = R(X)/xdR(X) of what this means, then lift it to an ideal inclusion in
R(X), and then as in the proof of Theorem 17.8.2 we use the fact that xd is
superficial for the ideals to finish the proof of the lemma.

Theorem 17.8.6 Let (R,m) be a Cohen–Macaulay local ring of dimension
d and let I1, . . . , Id be m-primary ideals in R. Suppose that (a1, . . . , ad) is a
joint reduction of (I1, . . . , Id). Let {x1, . . . , xd} ⊆ R[X ] be a standard inde-
pendent set of general elements of (I1, . . . , Id). Then (x1, . . . , xd)R(X)∩R ⊆
(a1, . . . , ad).
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Proof: We proceed by induction on d. First let d = 1. With the given
generators a11, . . . , a1l of I1, write a1 =

∑
i ria1i for some ri ∈ R. By Propo-

sition 8.3.3, since (a1) ⊆ I1 is a reduction, there exists i such that ri 6∈ m.
Without loss of generality r1 6∈ m. By possibly rescaling a1 without loss of
generality r1 = 1. By definition x1 =

∑
i a1iXi = (a11 +

∑
i>1 ria1i)X1 +∑

i>1 a1i(Xi − riX1). For i > 1 set X ′
i = Xi − riX1 and then set b =∑

i>1 a1iX
′
i. It follows that x1 = a1X1 + b. As (a1) ⊆ I1 is a reduction,

so is a1R[X
′
2, . . . , X

′
l ] ⊆ I1R[X

′
2, . . . , X

′
l ]. In particular, b/a1 is integral over

R[X ′
2, . . . , X

′
l ]. Thus there exists a monic polynomial f in variable X1 and

coefficients in R[X ′
2, . . . , X

′
l ] such that f(−b/a1) = 0. In other words, f ∈

R[X1, X
′
2, . . . , X

′
l ] = R[X ] and is monic in X1. By polynomial division after

inverting a1, f ∈ (a1X1+ b)Ra1 [X ] = x1Ra1 [X ]. Since R is Cohen–Macaulay,
so is R[X ], so every associated prime ideal of x1R[X ] is minimal. Thus f is in
every minimal component of x1R[X ] whose prime ideal does not contain a1.
All other associated prime ideals of x1R[X ] contain a1, hence I1, hence m,
so that by the minimality condition the only other associated prime ideal of
x1R[X ] is mR[X ]. Thus f · (x1R(X)∩R) is contained in all the primary com-
ponents of x1R[X ], hence f · (x1R(X)∩R) ⊆ x1R[X ] = x1R[X1, X

′
2, . . . , X

′
l ].

Since f is monic in X1, by reading off the coefficient of this leading term we
get that x1R(X) ∩R ⊆ a1R. This proves the case d = 1.

Now let d > 1. First pass to R/(a1): this is a (d− 1)-dimensional Cohen–
Macaulay ring. By Lemmas 17.1.5 and 17.1.4, (a2, . . . , ad) is a joint reduction
of (I2, . . . , Id) with respect to R/(a1). By induction on d,

(x2, . . . , xd)((R/(a1))(X)) ∩ (R/(a1)) ⊆ (a2, . . . , ad)(R/(a1)).

In other words, (a1, x2, . . . , xd)R(X) ∩ R ⊆ (a1, a2, . . . , ad). By the previous
lemma, (a1, x2, . . . , xd) is a joint reduction of (I1R(X), . . . , IdR(X)). We
may pass modulo (x2, . . . , xd) as above modulo (a1) to conclude similarly
that (x1, . . . , xd)R(X)∩R(variables in x2, . . . , xd) ⊆ (a1, x2, . . . , xd)R(X). It
follows that

(x1, . . . , xd)R(X) ∩R ⊆ (x1, . . . , xd)R(X) ∩R(variables in x2, . . . , xd) ∩R
⊆ (a1, x2, . . . , xd)R(X) ∩R
⊆ (a1, a2, . . . , ad).

Rees and Sally used these constructions in their proof of the Briançon–
Skoda Theorem:

Theorem 17.8.7 (Rees and Sally [242]) Let (R,m) be a regular local ring of
dimension d and let I1, . . . , Id be m-primary ideals. Then the integral closure
of I1 · · · Id is contained in every joint reduction of (I1, . . . , Id). In particular,

for any m-primary ideal I, Id is contained in every reduction of I.

Proof: Let {x1, . . . , xd} be a standard independent set of general elements
of (I1, . . . , Id). Set L = R(X)/(x2, . . . , xd). A linear change of variables
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Xl1+1, . . . , Xm2
that is invertible over R does not change L, but it enables us

to assume that for each i = 1, . . . , l2, the coefficient a2i of Xi+l1 in x2 is a non-
zerodivisor on L. Similarly we may assume that each aji is a non-zerodivisor
on L, with j = 2, . . . , d. For each j = 2, . . . , d, choose i ∈ {mj−1+1, . . . , mj},
let cj be the coefficient of Xi in xj , let yj = xj − cjXi, and let Y denote all
the variables other than these chosen ones. Then the kernel of the natural
map R[X ] → R[Y ][−y2/c2, . . . ,−yd/cd] is (x2, . . . , xd)Rc2···cd [X ] ∩ R[X ]. By
the assumption on the aji then the kernel is (x2, . . . , xd)R[X ]. Thus L is
isomorphic to a localization of R[Y ][−y2/c2, . . . ,−yd/cd]. But R[Y ] is a reg-
ular domain, hence locally analytically unramified, so that by Theorem 9.2.2,
R[Y ][−y2/c2, . . . ,−yd/cd] is locally analytically unramified. In particular, L is
analytically unramified. This means that the integral closure L of L is module-
finite over L. Let C be the conductor of L ⊆ L. By Exercise 12.2, C and x1C
are integrally closed ideals in L. Since x1L ⊆ I1L is a reduction, it follows
that I1CL ⊆ x1C = x1C ⊆ x1L. From the given presentation of L we deduce
that c2 · · · cd is in C. As the possible choices of the ci generate Ii and since L
is indepenedent of these choices, it follows that I2 · · · Id ⊆ C. Thus the image
of I1 · · · Id in L is contained in x1L, whence I1 · · · Id ⊆ (x1, . . . , xd)R(X)∩R,
whence the conclusion follows from Theorem 17.8.6.

Other versions of the Briançon–Skoda Theorem are in Section 13.3. More
connections between joint reductions and the Briançon–Skoda Theorems are
in [280], [282].

The results in the previous section and in Chapter 13 showed that the
integral closures of powers of an ideal are contained in lower ordinary powers
of the ideal. In particular, Theorem 17.8.7 and Corollary 13.3.4 each shows
that in a regular local ring R of dimension d, for any ideal I, Id ⊆ I. If J is
any reduction of I, then as Id = Jd, this result proves that Id ⊆ J . Thus the
integral closure of the dth power of I is contained in every reduction of I.

Definition 17.8.8 (Rees and Sally [242]) For an ideal I, the core of I,
denoted core(I), is the intersection of all reductions of I.

Thus in a regular local ring of dimension d, for any ideal I, core(I) contains
the integral closure of Id. (Also by Lipman’s adjoint results in Section 18.2,
at least under additional assumptions on grI(R), core(I) contains the adjoint
of Id.) This seems to indicate that the radicals of core(I) and I are the same.
Indeed, this is true quite generally:

Proposition 17.8.9 (Böger [19]) Let R be a Noetherian local ring and let
I be an ideal. Then

√
I =

√
core(I).

Proof: Certainly core(I) ⊆ I. So it suffices to prove that if r ∈ I, then a
power of r is in core(I). By Corollary 8.6.7, there exists an upper bound N
on all reduction numbers of reductions of I. Thus for any reduction J of I,
IN+1 = JIN ⊆ J , so that IN+1 ⊆ core(I).



372 17. Joint reductions

As a consequence, if R/I is Artinian, then with notation as in the proof of
the proposition, R/IN+1 is Artinian, so that by the descending chain condi-
tion the possibly infinite intersection of all the reductions of I may be pruned
to be a finite intersection. This finiteness holds also more generally, see Ex-
ercise 17.13.

The core of I is a fascinating ideal associated to I that has been the subject
of much work in recent years. Some easy results are outlined in the exercises.
There are many more results in the literature, see [46], [47], [48]; [143]; [144];
[146], [147]; [224]; [81]; and [225] for additional information.

17.9. Exercises

17.1 Let R be a Noetherian ring, I1, . . . , Ik ideals in R, and xi ∈ Ii for
i = 1, . . . , k. Prove that the following are equivalent:
(i) (x1, . . . , xk) is a joint reduction of (I1, . . . , Ik).
(ii) For all integers n1, . . . , nk > 0, (xn1

1 , . . . , xnk

k ) is a joint reduction
of (In1

1 , . . . , Ink

k ).
(iii) For some integers n1, . . . , nk > 0, (xn1

1 , . . . , xnk

k ) is a joint reduc-
tion of (In1

1 , . . . , Ink

k ).
17.2 Let x ∈ I1 be superficial for I1, . . . , Ik with respect to M . Prove

conditions that x be a non-zerodivisor. (Cf. Lemmas 8.5.3, 8.5.4.)
17.3 (O’Carroll [218]) Let (R,m) be a Noetherian local ring with infinite

residue field and of dimension d, and let I1, . . . , Id be ideals in R.
Prove that there exists a reduction (y1, . . . , yd) of I1 · · · Id such that
each yi is a product of d elements, the jth factor being taken from Ij .

17.4 (Verma [313]) Let (R,m) be a two-dimensional regular local ring with
infinite residue field. Let I and J be m-primary integrally closed ideals
and (a, b) a joint reduction of (I, J). Prove that aJ + bI = IJ . (We
say that I and J have joint reduction number zero.)

17.5 (Cf. Corollary 8.6.7.) Let (R,m) be a Noetherian local ring, and let
I1, . . . , Id be ideals in R. Prove that there exists an integer n such that
(I1 · · · Id)n+1 =

∑d
j=1 aj(I1 · · · Ij−1Ij+1 · · · Id)(I1 · · · Id)n for any joint

reduction (a1, . . . , ad) of (I1, . . . , Id). (In other words, joint reduction
numbers are bounded.)

17.6 Let (R,m) be a Noetherian local ring with infinite residue field k. Let
M be a finitely generated R-module of positive dimension d = dimR.
Let I1, . . . , Id be m-primary ideals, and (x1, . . . , xd) a joint reduction
of (I1, . . . , Id) with respect toM . Prove that there exists a non-empty
Zariski-open subset U of I1/mI1 such that if y ∈ I1 is in the preimage
of an element in U , then e((x1, . . . , xd);M) = e((y, x2, . . . , xd);M).

17.7 Let (R,m) be a Noetherian local ring, M a finitely generated R-
module, and I1, . . . , Ik m-primary ideals in R. For any non-negative
integers n1, . . . , nk, find a formula for e(In1

1 · · · Ink

k ;M) in terms of
mixed multiplicities of M with respect to I1, . . . , Ik.
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17.8 Let (R,m) be a two-dimensional regular local ring and I and J m-
primary ideals. Use the Hoskin–Deligne Formula 14.5.4 to show that
e(I, J ;R) = λ(R/IJ)− λ(R/I)− λ(R/J).

17.9 Let (R,m) be a d-dimensional Noetherian local ring, and I and J pro-
jectively equivalent m-primary ideals (i.e., there exist positive integers
r and s such that the integral closures of Ir and Js equal). Prove that
e(IJ ;R)1/d = e(I;R)1/d + e(J ;R)1/d.

17.10* (Rees and Sharp [243] for dimension 2; Katz [161] in general) Let
(R,m) be a formally equidimensional d-dimensional Noetherian local
ring, and I and J m-primary ideals such that e(I;R)1/d+e(J ;R)1/d =
e(IJ ;R)1/d. Prove that I and J are projectively equivalent.

Exercises about the core
17.11 Prove that if (R,m) is a two-dimensional regular local ring, then

core(mn) = m
2n−1.

17.12 Let I ⊆ J be ideals in R. Prove or find a counterexample: core(I) ⊆
core(J).*

17.13 (Corso, Polini, Ulrich [46]) Let (R,m) be a Noetherian local ring with
infinite residue field and I an ideal in R. Assume that there exists a
finite set U ⊆ SpecR such that for any minimal reduction J of I, the
set of associated primes of R/J is contained in U . Prove that core(I)
can be written as a finite intersection of minimal reductions of I.

17.14 ([46]) Let R be an Nd-graded Noetherian ring with maximal homoge-
neous maximal ideal M. Let I be a homogeneous ideal in R. Prove
that core(IRM) is generated by homogeneous elements of R.

17.15 ([46]) Let k be a field of characteristic 0, X, Y, Z variables over k, and
R = k[X, Y, Z](X,Y,Z). Let I = (X2−Y 2+XZ,XY +XZ−Y Z,XZ−
2Y Z + Z2, Y 2 + Y Z − Z2, Z2 − 2Y Z). Verify that core(I) = m

4.
17.16 ([143]) (Review the techniques of Chapters 14 and 18.) Let (R,m) be

a two-dimensional regular local ring with an infinite residue field. Let
I be an integrally closed m-primary ideal.
(i) Prove that I adj(I) ⊆ core(I).
(ii) (This part takes a lot of time.) Let x1 be part of a minimal

reduction of I. Prove that the intersection of all reductions
(x1, x2) of I (as x2 varies) equals (x1) + I adj(I).

(iii) Prove that I adj(I) = core(I).
(iv) Prove that for all n ≥ 1, core(In) = I2n−1adj(I).
(v) Prove that adj(core(I)) = (adj(I))2.
(vi) Define core n recursively: core 1(I) = core(I) and core n(I) =

core n−1(core(I)) for n > 1. Prove that for all n ≥ 1, core n(I))
= I(adj(I))2

n−1.

* As the book is going to press, Kyungyong Lee found a counterexample in a four-

dimensional regular local ring.
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Adjoints of ideals

In this chapter we present adjoint ideals for regular local rings. Lipman defined
and used them in [192], proving a generalized version of the Briançon–Skoda
Theorem, and extending Zariski’s theory on two-dimensional regular local
rings. Our goal in this chapter is to cover the basic properties of adjoint ide-
als, present the generalized Briançon–Skoda Theorem, present Howald’s work
on monomial ideals, (and more generally, adjoint ideals of ideals generated
by monomials in an arbitrary regular system of parameters), and to present
special results for two-dimensional regular local rings. In the last section, we
develop mapping cones in greater generality, and then apply them to adjoint
construction in two-dimensional regular local rings.

The notion of adjoints is closely related to the notion of multiplier ideals.
We discuss multiplier ideals and their characteristic p variants in Section 18.7.
Any two of these notions agree whenever they are both defined, however,
adjoint ideals are defined in arbitrary characteristics.

18.1. Basic facts about adjoints

Let R be a regular domain with field of fractions K. Recall from Defi-
nition 9.3.1 that the set D(R) of divisorial valuations with respect to R
consists of all K-valuation rings V such that the maximal ideal mV of V
contracts to the prime ideal P in R and tr.degκ(P )κ(mV ) = htP − 1. We
proved in Theorem 9.3.2 that every such valuation ring V is essentially of
finite type over R and hence Noetherian. Thus we can write V as a lo-
calization of R[X1, . . . , Xn]/(f1, . . . , fm) for some variables X1, . . . , Xn and
f1, . . . , fm ∈ R[X1, . . . , Xn]. We can even choose f1, . . . , fm such that they
generate a prime ideal, so that by Definition 4.4.1, JV/R is defined.

Definition 18.1.1 (Lipman [192]) Let R be a regular domain with field of
fractions K. The adjoint of an ideal I in R, denoted adj I, is the ideal

adj I =
⋂

V ∈D(R)

{r ∈ K | rJV/R ⊆ IV }.

We will prove that adj I is an ideal in R. Since R is Noetherian and in-
tegrally closed, it is a Krull domain and therefore it is the intersection of
its localizations at all the height one prime ideals. These localizations are
elements of D(R) for which the Jacobian ideal over R is a unit ideal, so that

adj I ⊆
⋂

htP=1

{r ∈ K | rJRP /R ⊆ IRP }
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⊆
⋂

htP=1

{r ∈ K | r ∈ IRP } ⊆
⋂

htP=1

RP = R.

Hence we can also write:

adj I =
⋂

V ∈D(R)

{r ∈ R | rJV/R ⊆ IV }.

Furthermore, only those V are needed in this intersection for which IV 6= V .

Lemma 18.1.2 Let I be an ideal in a regular domain R. Then I ⊆ I ⊆
adj I = adj(I), and adj I is an integrally closed ideal.

Proof: By Proposition 10.4.3, since R is locally formally equidimensional,
each Rees valuation ring of I is in D(R). Thus by Proposition 6.8.2 and
the definition of Rees valuations, I = ∩V ∈D(R){r ∈ R | r ∈ IV }. This is
clearly contained in adj I. Every ideal in a valuation ring is integrally closed,
hence so is the contraction {r ∈ R | rJV/R ⊆ IV } to R. The intersection
of integrally closed ideals is integrally closed, so adj is an integrally closed
ideal. Furthermore, for all V ∈ D(R), IV = IV by Proposition 6.8.1, so
adj I = adj(I).

We make a notational convention: for an arbitrary valuation ring V , as in
Section 6.2, one can construct a corresponding valuation vV , or v for short,
that defines the valuation ring V . Any two such corresponding valuations
are equivalent, but there is a unique one whose value group is Z (not just

isomorphic to Z). Let D̃(R) denote the set of all (normalized) vV obtained in
this way. Then the definition of adjoint can be rephrased as follows:

adj I =
⋂

v∈D̃(R)

{r ∈ R | v(r) ≥ v(I)− v(JRv/R)},

where Rv stands for the valuation ring determined by v.

Lemma 18.1.3 Let R be a regular domain, I an ideal and x an element
in R. Then adj(xI) = x · adj(I). In particular, the adjoint of every principal
ideal is the ideal itself.

Proof: Let K be the field of fractions of R. Then

adj(xI) =
⋂

v∈D̃(R)

{
r ∈ K | v(r) ≥ v(xI)− v(JRv/R)

}

=
⋂

v∈D̃(R)

{
r ∈ K | v

( r
x

)
≥ v(I)− v(JRv/R)

}

=
⋂

v∈D̃(R)

{
rx ∈ K | v(r) ≥ v(I)− v(JRv/R)

}

= x
⋂

v∈D̃(R)

{
r ∈ K | v(r) ≥ v(I)− v(JRv/R)

}

= x · adj I.
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This says that the adjoint of any ideal in a zero- or one-dimensional regular
domain is itself. Thus in the rest of this chapter we only consider two- or
higher dimensional regular domains.

In general, adjoints are not easily computable. See Sections 18.3, 18.4
and 18.5 for more on computability.

18.2. Adjoints and the Briançon–Skoda Theorem

Briançon–Skoda-type results say that for a given ideal I there exists an integer
l such that for all n ≥ l, some ideal operation of In is contained in In−l.
See Section 13.3 for results of this form involving integral closure. In this
section we prove several such results involving adjoint ideals. We also prove
various other basic results on adjoints. The results in this section are from
Lipman [192].

Proposition 18.2.1 For any ideals I and J in a regular domain R, adj(IJ) :
I = adj(IJ) : I = adj J .

In particular, for all n ≥ 0, adj(In+1) : I = adj(In).

Proof: For any r ∈ adj J and any v ∈ D̃(R), v(rI) ≥ v(IJ) − v(JRv/R), so

rI ∈ adj(IJ).
Let r ∈ R. Then r ∈ adj(IJ) : I if and only if rI ∈ adj(IJ), which holds if

and only if for all v ∈ D̃(R), v(rI) ≥ v(IJ)− v(JRv/R). This in turn holds if
and only if v(r) ≥ v(J)− v(JRv/R), i.e., if and only if r ∈ adj J .

Partial information on adjoints can be obtained via the following:

Proposition 18.2.2 Let R be a regular domain, with field of fractions K,
and let I be an ideal of R. Let S be a finitely generated R-algebra contained in
K, and let S be the integral closure of S. Assume that IS is principal. Then
adj I ⊆ (IS :R JS/R).

Proof: By Theorem 9.2.3, S is module-finite over S and hence finitely gen-
erated over R. By Proposition 4.10.3, IS has a primary decomposition
∩si=1(ISPi

∩ S), where P1, . . . , Ps are the prime ideals in S minimal over
IS. As R is locally formally equidimensional, by Theorem B.4.8 it satisfies
the dimension formula, so the SPi

are divisorial valuation rings with respect
to R. It follows that

adj I ⊆
s⋂

i=1

{r ∈ R | rJSPi
/R ⊆ ISPi

}

=
s⋂

i=1

{r ∈ R | rJS/R ⊆ ISPi
}

= {r ∈ R | rJS/R ⊆ IS}
= (IS :R JS/R).



378 18. Adjoints of ideals

It is clear that adj I is the intersection of all (IS :R JS/R), as S varies over

all finitely generated R-algebras contained in the field of fractions of R.
This construction is used in the proof below of the following Briançon–

Skoda-type result:

Theorem 18.2.3 Let I be an l-generated ideal in a regular domain R. Then
(1) adj(In+l−1) ⊆ In for all sufficiently large n.
(2) If grI(R) contains a homogeneous non-zerodivisor of positive degree, then

adj(In+l−1) ⊆ In for all n ≥ 0.

Proof: Let I = (a1, . . . , al). For each i = 1, . . . , l, set Si = R[ Iai ]. By Propo-

sition 18.2.2, adj(In+l−1) ⊆ ∩li=1(I
n+l−1Si :R JSi/R

). Clearly (In+l−1Si :R

JSi/R
) ⊆ an+1−l

i (Si :R JSi/R
). By Theorem 9.2.3, Si is module-finite over Si.

Thus by Theorem 12.3.10, (Si :K : JSi/R
) ⊆ (Si :K JSi/R). It follows that

adj(In+l−1) ⊆ an+l−1
i (Si :K : JSi/R

) ⊆ an+l−1
i (Si :K JSi/R).

Observe that JSi/R contains al−1
i Si = I l−1Si, so that adj(In+l−1) is contained

in an+l−1
i (Si :K al−1

i ) = ani Si = InSi. Thus adj(In+l−1) ⊆ ∩li=1I
nSi ∩ R =

∪t≥0(I
n+t :R I

t).
It is well-known that for large n, ∪t≥0(I

n+t :R I
t) = In, which proves (1).

Here are the details: By Proposition 8.5.7, there exist positive integers m and c and

an element x ∈ Im such that for all n ≥ m + c, (In : x) ∩ Ic = In−m. By the Artin–

Rees Lemma, for sufficiently large n, In : x ⊆ Ic, so that for all sufficiently large n,

In : x = In−m. It follows that for any t and all sufficiently large n,

I
n ⊆ I

n+t
: I

t ⊆ I
n+mt

: I
mt ⊆ I

n+mt
: x

t
= I

n
.

If grI(R) has a non-zerodivisor of positive degree, by Lemma 8.5.8, for all
t ∈ N, In+t : It = In, which proves (2).

Proposition 18.2.4 Let R be a regular domain and I an ideal. Then the
R-module ⊕n≥0adj(I

n) is a finitely generated module over the rings ⊕n≥0I
n

and ⊕n≥0In (the Rees algebra and its normalization). In particular, there
exists n0 such that for all n ≥ n0,

adj(In+1) = I adj(In).

Proof: The result is trivial if I = 0. So we assume that I 6= 0. By Proposi-
tion 18.2.1, ⊕n≥0adj(I

n) is a module over ⊕n≥0In, and by Theorem 18.2.3,
for some positive integer l, I l(⊕n≥0adj(I

n)) is contained in ⊕n≥0I
n = R[It].

Thus if x is a non-zero element in I, ⊕n≥0adj(I
n) is contained in the module

1
xlR[It], which is finitely generated over R[It]. This proves the proposition.

However, ⊕n≥0adj(I
n) need not be a ring: Proposition 18.3.3 below shows

that for a maximal ideal m in a regular domain, adj(mn · m) is not adj(mn) ·
adj(m) in general.
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18.3. Background for computation of adjoints

In this section we indicate a general principle on how one can compute adjoints
in some cases. At the end we also prove that the Jacobian ideals of elements
in D(R) are not “too big”.

Principle 18.3.1 (Rhodes [246]) Fix elements x1, . . . , xl in R. For each
i = 1, . . . , l, set Si = R[x1

xi
, . . . , xl

xi
]. By Lemma 6.3.3, for each V ∈ D(R), there

exists i such that Si ⊆ V . By Lemma 9.3.3, V ∈ D(Si), and furthermore,
D(Si) ⊆ D(R). If Si is regular after localization at the center of V , then by
Lemma 4.4.8, JV/R = JV/Si

JSi/R. If x1, . . . , xl form a regular sequence, then

by Corollary 5.5.9, JSi/R = xl−1
i Si. If moreover each Si is regular at all the

centers of elements of D(R) that contain Si, say if x1, . . . , xl form part of a
regular system of parameters, then for any ideal I,

adj I =

l⋂

i=1

⋂

v∈D̃(Si)

{r ∈ K | v(r) ≥ v(I)− v(JRv/R)}

=
l⋂

i=1

⋂

v∈D̃(Si)

{r ∈ K | v(r) ≥ v(I)− v(JRv/Si
)− v(JSi/R)}

=
l⋂

i=1

⋂

v∈D̃(Si)

{r ∈ K | v(r) ≥ v(I)− v(JRv/Si
)− v(xl−1

i )}

=

l⋂

i=1

1

xl−1
i

⋂

v∈D̃(Si)

{r ∈ K | v(r) ≥ v(I)− v(JRv/Si
)} ∩R

=

l⋂

i=1

1

xl−1
i

adj(ISi) ∩R.

This reduces the computation of adj I to the computation of the adjoints of
each ISi (and to the computation of a finite intersection).

There are cases when the ideals ISi are simpler, so this principle can be suc-
cessfully applied, but there are also cases where simplicity is not transparent
(see Exercise 18.4).

The principle can be summarized as follows:

Proposition 18.3.2 Let R be a regular domain. Let an ideal m of height l be
minimally generated by (x1, . . . , xl) and assume that R/(x1, . . . , xl) is regular.
Then for any ideal I in R,

adj I =

(
l⋂

i=1

1

xl−1
i

adj

(
IR[

m

xi
]

))
∩R.

A special case when this principle can be applied is:
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Proposition 18.3.3 Let R be a Noetherian regular domain. Let m be a d-
generated maximal ideal in R of height d. Then

adjmn =

{
R, if n ≤ d− 1,
m
n−d+1, otherwise.

Proof: By Proposition 18.3.2,

adjmn =
d⋂

i=1

1

xd−1
i

adj
(
m
nR
[
m

xi

])
∩R

=

d⋂

i=1

1

xd−1
i

adj
(
xni R

[
m

xi

])
∩R

=

d⋂

i=1

xn−d+1
i R

[
m

xi

]
∩R.

If n ≥ d, this is ∩di=1m
n−d+1R[mxi

] ∩R = m
n−d+1, otherwise it is R.

Similar techniques as in the proof of this proposition show the following:

Proposition 18.3.4 Let R be a Noetherian regular domain, m a d-generated
maximal ideal in R of height d > 1, and r a positive integer. Then

adj(xr1, x2, . . . , xd) = R.

In particular, with the set-up as in Proposition 18.3.3, for all V ∈ D(R),
JV/R ⊆ m

d−1V , so that the Jacobian ideals are not “too big”. Here is another
testimony to this:

Lemma 18.3.5 Let R be a regular domain, with x1, . . . , xd a regular se-
quence such that R/(x1, . . . , xd) is regular. Then for any divisorial valuation
ring V ∈ D(R), mV · JV/R ⊆ x1 · · ·xdV .

Proof: Let v ∈ D̃(R) corresponding to V ∈ D(R). By possibly taking a
subset of the xi, without loss of generality all v(xi) are positive. Let m

be the contraction of the maximal ideal of V to R. After localizing at m,
x1, x2, . . . , xd are part of a regular system of parameters (R/(x1, . . . , xd) is
regular, hence so is Rm/(x1, . . . , xd)m, whence x1, . . . , xd is part of a regular
system of parameters in Rm). We may possibly extend them to a full regular
system of parameters, so we may assume that R is a Noetherian local ring
with maximal ideal m = (x1, . . . , xd).

If d = 0, the lemma holds trivially. If d = 1, then v is the m-adic valuation,
in which case V = R, JV/R = R. As v is normalized, v(x1) = 1, and the lemma
holds again. Let S = R[x1

xd
, . . . , xd−1

xd
]. Then S is a regular ring contained

in V , and locally, x1

xd
, . . . ,

xd−1

xd
, xd form a regular system of parameters. By

Corollary 5.5.9, JS/R equals xd−1
d S. By induction on

∑
i v(xi), then v(JV/S) ≥

v(x1

xd
· · · xd−1

xd
xd) − 1, so that by Lemma 4.4.8, v(JV/R) = v(JS/R)v(JV/S) ≥

v(x1 · · ·xd)− 1.
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18.4. Adjoints of monomial ideals

Monomial ideals typically mean ideals in a polynomial ring or in a power
series ring over a field that are generated by monomials in the variables. We
define monomial ideals more generally: let R be a regular ring, and x1, . . . , xd
a permutable regular sequence in R such that for every i1, . . . , is ∈ {1, . . . , d},
R/(xi1 , . . . , xis) is a regular domain. By a monomial ideal (in x, . . . ,xd)
we mean an ideal in R generated by monomials in x1, . . . , xd. For example,
when R is regular local, x1, . . . , xd can be an arbitrary regular system of
parameters. There are few results in the literature on such monomial ideals,
see for example Kiyek and Stückrad [168] for results on the integral closure
of such ideals. Most of this section is taken from Hübl and Swanson [135].

As in the usual monomial ideal case, we can define the Newton polyhedron:

Definition 18.4.1 (Cf. Definition 1.4.7) With the set-up for this section,
let I be an ideal generated by monomials xa1 , . . . , xas . Then the Newton
polyhedron of I (relative to x1, . . . , xd) is the set

NP(I) = {e ∈ Qd≥0 | e ≥ Σiciai, ci ∈ Q≥0,Σici = 1} ⊆ Qd.

The set NP(I) is the standard Newton polyhedron of the monomial ideal
(Xa1 , . . . , Xa

s) in the polynomial ring Q[X1, . . . , Xd]. Thus we know that
NP(I) is a closed convex set in Qd≥0, is bounded by coordinate hyperplanes
and by hyperplanes of the form p1X1 + · · · + pdXd = p, with pi ∈ N and
p ∈ N>0. We will denote the interior of NP(I) as NP◦(I).

As expected, the integral closure of general monomial ideals is determined
by their Newton polyhedra, just as for the usual monomial ideals (Proposi-
tion 1.4.9). We provide a proof for general monomial ideals for completeness:

Theorem 18.4.2 Let R be a regular domain and let x1, . . . , xd be a per-
mutable regular sequence in R such that for every i1, . . . , is ∈ {1, . . . , d}, the
ring R/(xi1 , . . . , xis) is a regular domain. Let I be an ideal generated by
monomials in x1, . . . , xd. The integral closure I of I equals

I = (xe | e ∈ NP(I) ∩ Nd).

Thus the integral closure of an ideal generated by monomials is also generated
by monomials.

Proof: Write I = (xa1 , . . . , xas). Let α = xe be such that e ∈ NP(I) ∩ Nd.
There exist r1, . . . , rs ∈ Q≥0 such that

∑
ri = 1 and e ≥∑ riai (component-

wise). Write ri = mi/n for some mi ∈ N and n ∈ N>0. Then

αn = xne1−Σmiai1
1 · · ·xned−Σmiaid

d (xa1)m1 · · · (xas)ms ∈ In,

so that α ∈ I. It remains to prove the other inclusion.
Let S be the set of hyperplanes that bound NP(I) and are not coordinate

hyperplanes. For each H ∈ S, if an equation for H is p1X1 + · · ·+ pdXd = p
with pi ∈ N and p ∈ N>0, define IH = (xe | e ∈ Nd,

∑
i piei ≥ p). Clearly

I ⊆ IH .
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Let Y1, . . . , Yt be variables over R and R′ = R[Y1, . . . , Yt]/(Y
p1
1 − x1, . . . ,

Y ptt − xt). This is a free finitely generated R-module, and Y1, . . . , Yt form a
regular sequence in R′. Set P = (Y1, . . . , Yt)R

′. Then R′/P = R/(x1, . . . , xt)
is a regular domain, so P is a prime ideal, and for any prime ideal Q in R′

containing P , R′
Q is a regular local ring. By construction, IHR

′ is contained
in (Y1, . . . , Yt)

p = P p. By Theorems 6.7.9, 6.7.8 and Exercise 5.7, P pR′
P

is integrally closed. As R′ is finitely generated over a locally formally equi-
dimensional (regular) ring, by Theorem B.5.2, R′

Q is locally formally equi-
dimensional. By Ratliff’s Theorem 5.4.1, the integral closure of P pR′

Q has
no embedded prime ideals. It follows that the integral closure of P pR′

Q is
P pR′

P ∩R′
Q. As R′

Q is a regular domain and P is generated by a regular se-
quence, P pR′

P ∩R′
Q = P pR′

Q. It follows that P
pR′

P ∩R′ = P p is the integral

closure of P p. Hence IH ⊆ P p ∩ R = P p ∩ R, and by freeness of R′ over R,
the last ideal is exactly (xe | e ∈ N,

∑
i piei ≥ p).

With this,

I ⊆
⋂

H∈S
IH

⊆
⋂

H∈S
(xe | e ∈ N,

∑
i piei ≥ p, H is defined by

∑
i piXi = p)

= (xe | e ∈ NP(I) ∩ Nd).

We proved that in the special case in Proposition 18.3.3, the adjoint of a
monomial ideal is monomial. This is true in general. Howald [129] proved
the precise characterization of adjoints of monomial ideals in a polynomial
ring over a field of characteristic zero, the general form is due to Hübl and
Swanson [135]:

Theorem 18.4.3 Let R be a regular domain, and let x1, . . . , xd be a per-
mutable regular sequence in R such that for every i1, . . . , is ∈ {1, . . . , d}, the
ring R/(xi1 , . . . , xis) is a regular domain. Let I be an ideal generated by
monomials in x1, . . . , xd. Then the adjoint of I equals

adj I = (xe | e ∈ Nd, e+ (1, . . . , 1) ∈ NP◦(I)).

Thus the adjoint of an ideal generated by monomials in a regular system of
parameters is also generated by monomials.

Proof: First we prove that whenever e ∈ Nd with e + (1, . . . , 1) ∈ NP◦(I),
then xe ∈ adj(I). Let v ∈ D̃(R). By the definition of the Newton polyhedron,
v(x1 · · ·xdxe) > v(I). As v is normalized, v(xe) ≥ v(I)− v(x1 · · ·xd) + 1. By
Lemma 18.3.5, v(JRv/R) ≥ v(x1 · · ·xd)− 1, so that v(xe) ≥ v(I)− v(JRv/R).

As v was arbitrary, this proves that (xe | e ∈ Nd, e + (1, . . . , 1) ∈ NP◦(I)) ⊆
adj I. It remains to prove the other inclusion.

Let S be the set of hyperplanes that bound NP(I) and are not coordinate
hyperplanes. For each H ∈ S, if an equation for H is p1X1 + · · ·+ pdXd = p
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with pi ∈ N and p ∈ N>0, define IH = (xe | e ∈ Nd,
∑
i piei ≥ p). By the

definition of Newton polytopes, I ⊆ IH .
By possibly reindexing, without loss of generality p1, . . . , pt > 0 and pt+1 =

· · · = pd = 0. Let vH be the valuation on Q(R) defined by vH(xi) = pi
with the property that for every r =

∑
ν rνx

ν ∈ R with rν either zero or not
in (x1, . . . , xt), vH(r) = min{vH(xν) | rν 6= 0}. Such valuations exist (first
localize at (x1, . . . , xt), then adjoin a pith root yi of xi for i ≤ t to obtain a
larger regular local ring in which the natural extension of vH is a multiple of
the valuation corresponding to the maximal ideal). By construction, vH(I) ≥
vH(IH) ≥ p, and adj(IH) ⊆ {r ∈ R | vH(r) ≥ vH(IH)− vH(JRvH

/R)}. By the
properties of vH , the last ideal is generated by monomials in the xi. The proof
of Lemma 18.3.5 can be modified to show that vH(JRvH

/R) = vH(x1 · · ·xd)−1.
Thus

adj(IH) ⊆ (xe | e ∈ Nd, vH(x
e > vH(IH)− vH(x1 · · ·xd))

⊆ (xe | e ∈ Nd,Σipi(ei + 1) > vH(IH))

⊆ (xe | e ∈ Nd,Σipi(ei + 1) > p),

whence

adj I ⊆
⋂

H∈S
adj(IH)

⊆
⋂

H∈S
(xe | e ∈ N,Σipi(ei + 1) > p, H is defined by

∑
i piXi = p)

= (xe | e ∈ N, e+ (1, . . . , 1) ∈ NP◦(I)) .

Example 18.4.4 Let R = k[X, Y ], a polynomial ring in variables X and
Y over R. We show here that the adjoint of I = (X4, XY, Y 2) is (X, Y ).
Observe that (1, 0) + (1, 1) and (0, 1) + (1, 1) are both in the interior of the
Newton polytope of I, but (0, 0) + (1, 1) is not, proving via Theorem 18.4.3
that adj(X4, XY, Y 2) is the monomial ideal (X, Y ). See the corresponding
Newton polytope below.

0 1 2 3 4

0

1

2

One can also compute the same adjoint by using the Computational Prin-
ciple 18.3.1 step-by-step. In the next section we show yet another way of
computing the adjoint of this ideal.
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18.5. Adjoints in two-dimensional regular rings

Throughout this section R is a regular local ring of dimension two, with
maximal ideal m. If I is integrally closed, we will prove that for any m-
primary ideal I, adj I = In−2(A), where A is an n× (n−1) presenting matrix
of I. We will also prove that if I has a two-generated reduction (x1, x2), then

adj I = In−2(A) = (x1, x2) : I.

Thus in particular the adjoint of any ideal (m-primary or not) whose integral
closure is known, is computable, and is independent of the reduction.

First some reductions: as adj(xI) = x · adj(I) (Lemma 18.1.3), it suffices
to determine the adjoints of m-primary ideals. Also, as adj(I) = adj(I ), it
suffices to determine the adjoints of integrally closed m-primary ideals. Any
m-primary ideal I in R has a resolution of the form

0 −→ Rn−1 A−→Rn −→ I −→ 0,

where n is not necessarily minimal possible. By the Hilbert–Burch Theo-
rem A.4.2, I = In−1(A).

We first assume that R/m is an infinite field. Write I = (x1, . . . , xn), and
assume that (x1, x2) is a reduction of I. As the residue field is infinite, such
minimal reductions exist. Let B be the (n − 2) × (n − 1) submatrix of A
consisting of the last n − 2 rows. We will prove that adj I = In−2(B) =
In−2(A). The reason for introducing B is purely technical — one can more
readily prove that In−2(B) contracts from a blowup. As x1 and x2 generate
a minimal reduction of I, an easy observation about A and B is that if A
contains a unit entry in some column, the same column contains a unit entry
in B. Thus if A is an n× (n− 1) presenting matrix of I and n is not minimal
possible, by elementary row and column operations on A and its submatrix
B and eliminating a column and one of the last n − 2 rows, we get an (n −
1) × (n − 2) presenting matrix A′ of I such that its submatrix B′ consisting
of its last n− 3 rows satisfying the following:
(1) for all j = 1, . . . , n− 2, Ij(A

′) = Ij+1(A),
(2) for all j = 1, . . . , n− 3, Ij(B

′) = Ij+1(B).
Thus in order to determine the adjoint of I from its presenting matrix A or
its submatrix B we may assume that all the entries in A are in m.

Theorems 14.1.4 and 14.1.8 show that when I is integrally closed, the min-
imal number of generators of I is one more than the order of I. By Propo-
sition 14.2.2 and by Theorem 14.1.8, I = IR[m

x
] ∩ R for infinitely many

x ∈ m \m2.

Theorem 18.5.1 Let I be an integrally closed m-primary ideal in a regular
local ring (R,m) with an infinite residue field. Let

0 −→ Rn−1 A−→Rn −→ I −→ 0

be a short exact sequence. Then adj I = In−2(A).
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If the images x1, x2 of the first two standard bases vectors of Rn → I form
a reduction of I and if B is the submatrix of A consisting of the last n − 2
rows, then adj I = In−2(B) = In−2(A).

Proof: By reductions above we may assume that all the entries of A are in m.
Thus the minimal number of generators of I is n. As I is integrally closed,
by Theorems 14.1.4 and 14.1.8, the order of I is n− 1. By Proposition 18.3.4
we may assume that n > 2.

By the Hilbert–Burch Theorem A.4.2, each xi is the determinant of of the
(n − 1) × (n − 1) submatrix of A obtained by deleting the ith row. Thus
(x1, x2) ⊆ mIn−2(B). It follows that the ideal In−2(B) is m-primary or the
whole ring. As the entries of A are all in m, the ideal In−2(B) has order at
least n− 2 and is thus not the whole ring. If its order is strictly bigger than
n − 2, again as (x1, x2) ⊆ mIn−2(B), the order of (x1, x2) would be strictly
larger than n− 1. But order is a valuation (Theorem 6.7.9) and (x1, x2) is a
reduction of I, so that by Proposition 6.8.10, the order of I would be strictly
larger than n−1, which is a contradiction. Thus the order of In−2(B) is n−2.

As B is an (n−2)× (n−1) matrix with entries in m, by the Hilbert–Burch
Theorem A.4.2 the transpose of B presents the m-primary ideal In−2(B), and
In−2(B) is minimally generated by n− 1 elements.

Thus µ(In−2(B)) = ord(In−2(B)) + 1, so by Theorem 14.1.4 and Proposi-
tion 14.2.2 we can choose x, y in m such that (x, y) = m and such that In−2(B)
contracts from its extension to R[ yx ].

First assume that I is a power of m, i.e., that I = m
n−1. By Proposi-

tion 18.3.3, adj I = m
n−2. Let x1 = xn−1, x2 = yn−1, and xi = xn−i+1yi−2

for i = 3, . . . , n. A presenting matrix A of I is

A =




y 0 0 · · · 0 0 0
0 0 0 · · · 0 0 −x
−x y 0 · · · 0 0 0
0 −x y · · · 0 0 0

. . .

0 0 0 · · · −x y 0
0 0 0 · · · 0 −x y




.

(This is, up to reordering of the rows, the standard Koszul matrix of relations:
by moving the second row to last row we get the standard Koszul matrix.)

Thus In−2(A) = m
n−2. If we take x1 = xn−1, x2 = yn−1, then B is the

submatrix consisting of rows 2 through n− 1, so that In−2(B) = m
n−2. This

proves the theorem in the case when I is a power of the maximal ideal.
Now assume that I is any m-primary integrally closed ideal that is not a

power of m. By Proposition 18.3.2,

adj I =
1

x
adj
(
IR
[y
x

])
∩ 1

y
adj
(
IR
[x
y

])
∩R

⊆ xord I−1 adj
( I

xord I
R
[y
x

])
∩ ∩R.
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In R[ yx ], the matrix A
x is a presenting matrix of I

xord IR[
y
x ], and ( x1

xord I ,
x2

xord I )

is a reduction of I
xord I

. Also, ( x1

xord I
, x2

xord I
) is contained in In−2(

B
x ).

As I is not a power of m, for any x ∈ m \ m
2 such that I contracts from

IR[mx ], IR[
m
x ] is not a power of x, so that IR[mx ] = xord II ′ for some ideal I ′

in R[mx ] of height exactly two. By Lemma 14.3.4, with an appropriate choice
of x, the co-length of I ′ at any maximal ideal is strictly smaller than the
co-length of I, so we can proceed by induction on co-length. At least locally
after localizing at all the maximal ideals of R[ yx ] containing

I
xord I ,

adj
( I

xord I

)
= In−2

(A
x

)
= In−2

(B
x

)
.

Every prime ideal that contains In−2(
A
x ) or In−2(

B
x ) also contains the ideal

( x1

xord I
, x2

xord I
), and hence also I

xord I
. Thus the displayed equality holds glob-

ally.
Thus as ord(I)− 1 = n− 2, it follows that

adj I ⊆ xord I−1In−2

(B
x

)
R
[y
x

]
∩R = In−2(B)R

[y
x

]
∩R = In−2(B),

the last equality by the choice of x. Finally,

In−2(B) ⊆ In−2(A) ⊆ In−2(A)R
[y
x

]
∩R = In−2(B)R

[y
x

]
∩R = In−2(B),

so that In−2(B) = In−2(A).

We next characterize the adjoints of integrally closed m-primary ideals.

Theorem 18.5.2 Let I be an integrally closed m-primary ideal in a regular
local ring (R,m). Let

0 −→ Rn−1 A−→Rn −→ I −→ 0

be a short exact sequence. Then adj I = In−2(A).

Proof: (We employ the standard reduction to infinite residue field, which is
described in more detail in Section 8.4.) Let t be a variable over the field
of fractions K over R. For any local algebra (S, n) contained in K, let S(t)
stand for S[t]nS[t]. Note that if S is a d-dimensional local ring, so is S(t).
Furthermore, S(t) is a faithfully flat S-algebra with an infinite residue field.
In particular,

0 −→ R(t)n−1 A−→R(t)n −→ IR(t) −→ 0

is a short exact sequence. Thus by the previous theorem, adj(IR(t)) =
In−2(A)R(t).

First let r ∈ In−2(A). Then r ∈ In−2(A)R(t) = adj(IR(t)). For all
V ∈ D(R), V (t) ∈ D(R(t)). Furthermore, JV/R ⊆ JV (t)/R(t). Thus by
the definition of adjoints, rJV/R ⊆ rJV (t)/R(t) ∩ V ⊆ IV (t) ∩ V = IV . As
this holds for all V ∈ D(R), it follows that r ∈ adj I.
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Conversely, assume that r ∈ adj I. We will prove that r ∈ adj(IR(t)).
For this, let V ∈ D(R(t)). As IR(t) is mR(t)-primary, the center of V is
without loss of generality mR(t). Thus by Lemma 9.3.4, V ′ = V ∩K ∈ D(R)
By the definition of adjoints, rJV ′/R ⊆ IV ′. Let S be V ′[t] localized at the
complement of mR[t] in R[t]. Then R(t) ⊆ S ⊆ V ⊆ K(t) are regular rings
with the same field of fractions. By Lemma 4.4.8, JV/R(t) ⊆ JS/R(t)V =
JV ′[t]/R[t]V = JV ′/RV , so that rJV/R(t) ⊆ rJV ′/RV ⊆ IV . Thus for all
V ∈ D(R(t)), rJV/R(t) ⊆ IV , whence r ∈ adj(IR(t)) ∩ R = In−2(A)R(t) ∩
R = In−2(A).

18.6. Mapping cones

In this section we develop some elementary facts about mapping cones over
arbitrary commutative rings. A goal is to give yet another formulation of the
adjoint of an ideal in a regular local ring.

Let F = · · · → F2 → F1 → F0 → 0 and G = · · · → G2 → G1 → G0 → 0 be
two complexes with differential maps δF and δG, respectively. Let ϕ : F → G

be a map of complexes. The mapping cone is the complex M = M(ϕ) of ϕ
whose ith module is Mi = Fi−1 ⊕Gi and the differential δM is

Fi ⊕Gi+1 −→ Fi−1 ⊕Gi

(f, g) 7−→ (−δF (f), ϕ(f) + δG(g)).

Then M is a complex because

δ2M (f, g) = δM (−δF (f), ϕ(f) + δG(g))

= (δ2F (f), ϕ(−δF (f)) + δG(ϕ(f) + δG(g)))

= (0, ϕ(−δF (f)) + δG(ϕ(f))) = (0, 0),

as ϕ is a map of complexes.

Proposition 18.6.1 With notation as above, there is a canonical short exact
sequence 0 −→ G −→ M −→ F[−1] −→ 0 of complexes.

We leave a straightforward proof to the reader.
A consequence of the proposition is the canonical long exact sequence on

homology:

· · · → Hi+1(F[−1]) → Hi(G) → Hi(M) → Hi(F[−1]) → Hi−1(G) · · · ,

or equivalently

· · · → Hi(F) → Hi(G) → Hi(M) → Hi−1(F) → Hi−1(G) · · · .

The connecting homomorphism Hi−1(F) → Hi−1(G) is induced by ϕ.
The homology of the mapping cone carries some information about the

homologies of F and G, and vice versa. The following lemma illustrates this.
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Lemma 18.6.2 Assume that F and G are acyclic complexes. If M is the
mapping cone of ϕ : F → G, then for all i > 1, Hi(M) = 0, and

0 → H1(M) → H0(F) → H0(G) → H0(M) → 0

is exact.

A proof is immediate from the long exact sequence above.
Mapping cones can be used for constructing a resolution of a module M

from resolutions F and G of modules K,N , respectively, where 0 → K →
N → M → 0 is a short exact sequence. We will apply the mapping cone
construction in the following situation:

Proposition 18.6.3 Let R be a Cohen–Macaulay local ring, x1, . . . , xd a
maximal regular sequence in R, J = (x1, . . . , xd), and I an ideal containing
J with a finite free resolution. Then the mapping cone construction yields a
free resolution of R/(J : I).

Proof: By assumption the projective dimension of R/I is finite, and by the
Auslander–Buchsbaum Formula, it is equal to depthR − depth(R/I) = d.
Since R is local, a projective resolution is free. Let G be the Koszul complex
for x1, . . . , xd and F a free resolution of R/I. There is a map of complexes
ϕ : G −→ F with ϕ0 being the identity lifting the surjection R/J → R/I. If
we write I = (x1, . . . , xd, . . . , xn), we can take F1 = Rn, and ϕ1 : G1 → F1

can be taken to be ϕ1(r1, . . . , rd) = (r1, . . . , rd, 0, . . . , 0).
Applying the dual HomR( , R) gives the map of complexes ϕ∗ : F∗ −→ G∗.

Let M be the mapping cone of ϕ∗. The long exact sequence of homologies is

0 →Hd+1(M) → Hd(F
∗) → Hd(G

∗) → Hd(M) → Hd−1(F
∗)

· · · → H1(F
∗) → H1(G

∗) → H1(M) → H0(F
∗) → H0(G

∗) → H0(M) → 0.

ButHi(F
∗) = Extd−iR (R/I,R) andHi(G

∗) = Extd−iR (R/J,R). As x1, . . . , xd is
a regular sequence, ExtiR(R/I,R) = ExtiR(R/J,R) = 0 for all i = 0, . . . , d−1.
Thus the long exact sequence above shows that Hi(M) = 0 for i > 1, and
gives the exact sequence

0 → H1(M) → H0(F
∗) → H0(G

∗) → H0(M) → 0.

All the maps are canonical. By Rees’s Theorem A.4.1, there are canonical
isomorphisms

H0(F
∗) = ExtdR(R/I,R)

∼= HomR(R/I,R/J) =
J : I

J
,

H0(G
∗) = ExtdR(R/J,R)

∼= HomR(R/J,R/J) =
R

J
,

and one can verify that in

0 → H1(M) → J : I

J
→ R

J
→ H0(M) → 0
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all the maps are canonical. In particular, H1(M) = 0 and H0(M) = R
J :I . Thus

M is a free resolution of R
J :I .

Note that M in the proof is a resolution of length d + 1. It is possible to
trim this resolution to a resolution of length d because the tail end of M is as
follows:

0 → F∗
0




−x1
...

−xn
1




−−−−−−→F∗
1 ⊕G∗

0




−(δF )
∗
2

0
...
0

Id 0

x1
...
xd




−−−−−−−−−−−−−−−→F∗
2 ⊕G∗

1.

To change the leftmost non-zero map to (0, . . . , 0, 1) we need to perform a
change of basis: adding xi times row n+ 1 from the ith row in the leftmost
non-zero map above necessitates at the same time subtracting xi times column
i to column n + 1 in the rightmost map above. After repeating this for all
i = 1, . . . , n, the last column of the rightmost map above is zero. Thus the
complex M at the tail end is the direct sum of the two complexes below as
follows:

0 → R
=→ R −−−−−−−−−−→ 0

0 → F∗

1⊕G
∗

0

R∗




−(δF )
∗
2

Id 0




−−−−−−−−−−→ Md−1 → Md−2 → · · · .

Now we restrict to the case d = 2, and return to the computation of adjoints
of m-primary ideals in a two-dimensional regular local ring (R,m). Then (δF )2
is the presentation matrix A of I. By the Hilbert–Burch Theorem A.4.2, as
the second complex above presents R/(J : I), then J : I is the ideal of the
maximal minors of




−(δF )
∗
2

I2 0



=




−AT

I2 0



,

where A is the presentation matrix of I. But the ideal of the maximal minors
of this matrix is the ideal of the maximal minors of the matrix obtained from
AT by deleting the first two columns. Thus by Theorem 18.5.1, we get the
following characterization of adjoints:
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Proposition 18.6.4 If I is an m-primary integrally closed ideal in a two-
dimensional regular local ring (R,m), then for any reduction (x1, x2) of I,

adj(I) = (x1, x2) : I.

18.7. Analogs of adjoint ideals

In this section, we briefly mention some related notions, but prove no theo-
rems. For undefined terms see Lazarsfeld’s book [181].

Definition 18.7.1 If X is a smooth complex variety, D an effective Q-divisor
on X, and µ : X ′ → X a log resolution of D, then the multiplier ideal
associated to D is defined as µ∗(OX′(KX′/X − ⌊µ∗D⌋)) ∈ OX , where KX′/X

is the relative canonical divisor. It is denoted I(D) or I(X,D).

When adjoint ideals and multiplier ideals are both defined, the two no-
tions agree. However, one disadvantage of multiplier ideals is that they are
restricted to special rings in characteristic zero, whereas adjoint ideals do not
have such a restriction.

There is a rich theory of multiplier ideals, partly due to their access to
analytic techniques. For example, multiplier ideals satisfy the subadditivity
property. Namely, for any two effective Q-divisors D1 and D2, I(D1 +D2) ⊆
I(D1) · I(D2), or if I and J denote ideal sheaves in OX , then I(I · J) ⊆
I(I) · I(J). This was proved by Demailly, Ein, and Lazarsfeld [63]. The
analytic techniques needed to prove subadditivity are beyond the scope of
this book. Excellent references are [181] and [18].

In contrast, subadditivity is not known in general for adjoint ideals, i.e., it
is not known whether adj(IJ) ⊆ (adj I)(adjJ). Equality definitely fails, see
Proposition 18.3.3. Special cases of subadditivity on adjoint ideals are known:
Takagi and Watanabe [289] proved it for two dimensional regular local rings,
and Hübl and Swanson [135] proved it for (generalized) monomial ideals.

In positive characteristic, an analog of adjoint ideals (and multiplier ideals)
has been established by N. Hara and K. Yoshida [108]. It has been further
studied in Hara [105], [106]; Smith [275]; Takagi [287]; Hara and Takagi [107];
and Hara and Watanabe [109]. The definition comes from the idea of test
elements from tight closure.

Definition 18.7.2 Let R be a Noetherian ring of positive prime characteristic
p. Fix an ideal J in R. The J-tight closure of I, denoted I∗J , is defined to
be the set of all z ∈ R for which there exists a c ∈ Ro such that for all large
q = pe, cJqzq is in the ideal generated by the qth powers of elements of I.
(Compare with definition of tight closure in 13.1.1.)

Definition 18.7.3 Let R be a Noetherian ring of positive prime characteristic
p. Fix an ideal J in R. The J-test ideal, τ(J), is the unique largest ideal
such that τ(J)I∗J ⊆ I for all ideals I.
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When J = R, this ideal is the usual test ideal coming from tight closure
theory. In general, the J-test ideal measures subtle properties of how J sits
in R. The following is Theorem 3.4 in Hara and Yoshida [108]:

Theorem 18.7.4 Let R be a normal Q-Gorenstein local ring essentially of
finite type over a field, and let J be a non-zero ideal. Assume that J ⊆ R
is reduced from characteristic 0 to characteristic p ≫ 0, together with a log
resolution of singularities f : X → Y = Spec(R) such that JOX = OX(−Z)
is invertible. Then

τ(J) = H0(X,OX(KX − ⌈f∗KY (−Z)⌉).
In characteristic 0, the multiplier ideal of J is the right-hand side of the

equality asserted in the above theorem, so one can think of the J-test ideal
as the analog of the multiplier ideal of J . Takagi has made this even more
precise in his paper [288] dealing with singularities of pairs (see also [290]).
Once again, as in Section 13.3, this shows the close connection between char-
acteristic p methods and birational algebraic geometry in characteristic 0. In
particular, subadditivity was proved for two dimensional regular local rings
by Takagi and Watanabe [289], and via J-tight closure in some special cases
by Hara and Takagi [107].

18.8. Exercises

18.1 Compute the adjoint of (X3, X2Y Z3, Y 5) in k[X, Y, Z].
18.2 Compute the adjoint of (X2 + Y 3, XY 3, Y 4) in k[X, Y ].
18.3 Let R be k[X, Y, Z]. Prove that for all non-negative integers a, the

adjoint of (Xa+1, XaZ3, Y ) is R.
18.4 (Rhodes [246]) Let k be a field, X, Y and Z over k, and R = k[X, Y, Z].

Let I = (X3, X2Y Z3, Y 4).
(i) Compute adj(I) using Proposition 18.3.2 and m = (X, Y ).
(ii) Similarly set up the computation of adj(I) by applying Propo-

sition 18.3.2 with m = (X, Y, Z). Observe that the first step
“reduces” the computation of adjoints to a seemingly more dif-
ficult computation.

18.5 Let R be a regular local ring domain of dimension d. For any ideal
I in R and any positive rational number c, define (in analogy for
multiplier ideals, and no meaning is attached to c · I):

adj(c · I) =
⋂

v∈D̃(R)

{r ∈ K | v(r) ≥ c · v(I)− v(JRv/R)}.

(i) Prove that adj(c · I) ⊆ R.
(ii) Prove that adj(c ·mn) = m

max{0,⌈cn⌉−d+1}.
18.6 ([143]) Let R be a two-dimensional regular local ring, I an m-primary

integrally closed ideal in R and (a, b) a reduction of I. Prove that for
all n ≥ 1, (a, b)n : I = (a, b)n−1 adj(I).
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18.7 Let R be a two-dimensional regular local ring. Prove that for every in-
tegrally closed ideal I in R and for every n ∈ N, adj(In) = In−1 adj I.

18.8 (Lipman [192]) Let R be a regular domain, and I an ideal. Prove that
for any height h prime ideal P such that R/P is regular, I : P h−1 ⊆
adj I.

18.9 Let (R,m) be a two-dimensional regular local ring. Let I be an inte-
grally closed m-primary ideal in R and (a, b) a reduction of I. Prove
that for all n ∈ N>0, (a, b)

n : I = (a, b)n−1adj I.
18.10 (Eliahou and Kervaire [72])Let R = k[X1, . . . , Xn] be a polynomial

ring in n variables over a field k. A monomial ideal I is strongly sta-
ble if for any monomial m ∈ I, if Xi|m and j < i, then Xjm/Xi ∈ I.
Construct a free resolution of I by the mapping cone construction.
(See [122] for more general resolutions by mapping cone construc-
tions.)

18.11 ([135]) Let R be a regular ring, and x1, . . . , xd a permutable regular se-
quence in R such that for every i1, . . . , is ∈ {1, . . . , d}, R/(xi1 , . . . , xis)
is a regular domain. Let I and J be ideals in R generated by mono-
mials in the xi. Prove that adj(IJ) ⊆ adj(I)adj(J) (“subadditivity”).

18.12 (Takagi and Watanabe [289], Hübl and Swanson [135]) Let R be a
two-dimensional regular local ring, and I and J ideals in R. Prove
that adj(IJ) ⊆ adj(I)adj(J) (“subadditivity”).
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Normal homomorphisms

In this chapter we present how integral closure behaves under homomor-
phisms. As we have already seen, if R → S is a homomorphism and I is
an ideal of R, then it is obvious from the definition that IS ⊆ IS. We are
interested in conditions that guarantee equality. It is not difficult to find an
example where the integral closure of an ideal does not commute with flat
base change. For example, let R = k[X2, Y 2] ⊆ S = k[X, Y ], where k is a
field and X, Y variables over k. This map is flat as S is free over R, but the
maximal ideal m = (X2, Y 2) of R is not integrally closed upon extension to S.

Definition 19.0.1 A ring homomorphism f : R → S is said to be normal
if it is flat and if for every P ∈ Spec(R) and every field extension L of κ(P ),
the ring L⊗R S is normal.

Theorem 19.4.2 in Section 19.4 proves that if g : R → R′ is a normal
homomorphism of locally Noetherian rings, then for every normal ring S con-
taining R, the ring S′ = S ⊗R R′ is also normal. One of the most general
theorem known concerning normality of rings under base change is proved in
Section 19.5.

In Corollary 19.5.2 we prove that if R → S is a normal ring homomor-
phism of Noetherian rings, then for any ideal I of R, IS = IS. We follow
the treatment in [102, Chapter IV]. The difficulty comes from the fact that
the approach taken is to transfer the problem to the Rees algebra of a given
ideal, where the problem can be rephrased in terms of integral closures of
algebras instead of ideals. In the case Rred is not locally analytically unram-
ified, the integral closure of the Rees algebra is not necessarily Noetherian,
and this adds considerable difficulty. The easier case where Rred is locally
analytically unramified is proved in Theorem 19.2.1. In particular, if locally
the formal fibers are normal, then the integral closure of an ideal commutes
with completion for a Noetherian local ring.

Without the restriction on formal fibers being normal, the integral closure
of ideals need not commute with completion. In Section 19.2 we present an
example by Heinzer, Rotthaus, and Wiegand of a three-dimensional regular
local ring with a height two prime ideal P such that upon completing, the
image of P is not integrally closed.
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19.1. Normal homomorphisms

In this section we prove basic properties of normal homomorphisms.

Proposition 19.1.1 Let k be a field and ℓ a k-algebra. If k ⊆ ℓ is normal,
it is separable. If ℓ is a field that is separable over k, then k → ℓ is normal.

Proof: A normal ring is reduced, so normality of the field extension implies
separability.

Now assume that k ⊆ ℓ is separable. An arbitrary field extension is flat,
and it remains to show that for any field extension K of k, ℓ⊗k K is normal.
By the separable assumption, ℓ⊗k K is reduced.

First suppose that ℓ is finitely generated over k. By Theorem 3.1.3, there
exist algebraically independent elements z1, . . . , zd in ℓ such that ℓ is separable
algebraic over k(z1, . . . , zd). Then ℓ ⊗k K = ℓ ⊗k(z) k(z) ⊗k K. The ring
k(z)⊗kK is a localization of a finitely generated polynomial ring over the field
K, hence regular. Let P be any prime ideal in this ring. Then ℓ ⊗k(z) κ(P )
is a module-finite extension of κ(P ), and reduced because ℓ is separable over
k(z). Thus ℓ⊗k(z) κ(P ) is a direct sum of fields, so regular. Thus we have a
map k(z)⊗kK −→ ℓ⊗kK from a regular ring, with all fibers regular, so that
by Theorem 4.5.5 ℓ⊗k K is regular as well. In particular, ℓ⊗k K is normal.

Now let ℓ be an arbitrary separable field extension of k. Write ℓ = ∪iℓi,
where i varies over an index set and each ℓi is finitely generated field exten-
sion of k. By Proposition 3.2.2, each ℓi is separable over k. By the finitely
generated case, each ℓi ⊗kK is normal. Clearly ℓ ⊗kK = ∪i(ℓi ⊗kK). If x is
in the integral closure of ℓ ⊗kK, there exists i such that x is in the total ring
of fractions of ℓi ⊗k K and is integral over it. Hence x ∈ ℓi ⊗k K ⊆ ℓ⊗k K.

Proposition 19.1.2 Let f : R → S be a normal homomorphism of Noe-
therian rings. Suppose that A is a finitely generated R-algebra. Then A →
A⊗R S is a normal homomorphism of Noetherian rings.

Proof: A⊗R S is Noetherian because it is finitely generated over S. Let Q ∈
Spec(A). Let L be an extension field of κ(Q). Then L⊗A (A⊗R S) ∼= L⊗R S
and the latter is normal as L is an extension field of κ(f−1(Q)).

We prove some basic facts concerning normal homomorphisms:

Proposition 19.1.3 Let R be a Noetherian domain with field of fractions
K. Let ϕ : R→ R′ be a normal homomorphism to a Noetherian ring R′. The
following statements hold:
(1) R′ is reduced.
(2) If R is a field, then R′ is a finite direct product of integrally closed domains

whose fields of fractions are separable over R.
(3) Let Q1, . . . , Qr be the minimal prime ideals of R′. Set L = K ⊗R R′.

Then L is normal, and L is the direct product of integrally closed domains
between R′/Qi and Ki = κ(Qi). All Ki are separable over K.
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(4) If R is local with maximal ideal m and R′ is local, then mR′ is a prime
ideal. Moreover, dimR′

mR′ = dimR. We can identify R′
mR′ as a subring

of the product of those Ki for which Qi ⊆ mR′.
(5) Assume that (R,m) is local of dimension one and that R′ is local. Then

R′ = L ∩ R′
mR′ , where we identify both L and R′

mR′ as subrings of the
total ring of fractions of R′. (Note that by (4), R′

mR′ is identified as a
subring of the total ring of fractions of R′.)

Proof: The fiber of ϕ over 0 is K ⊗R R′, and by assumption this is normal
and therefore reduced. Since R′ is flat over R, the inclusion R → K tensors
to the inclusion R′ → K ⊗R R′, so R′ is reduced, proving (1).

Assume that R is a field. By Proposition 19.1.1, R′ is separable over R. By
Theorem 3.2.8 (5), for every minimal prime ideal P of the reduced ring R′,
κ(P ) is separable over R. Since R′ is normal, it is a finite direct product of
integrally closed domains whose field of fractions are κ(P ) as P ranges over
the minimal prime ideals of R′ (see Corollary 2.1.13 and Lemma 2.1.15). This
proves (2).

Let L be as in (3). Then L is a localization of R′, hence Noetherian. By
the normal assumption on R → R′, L is normal. By Corollary 2.1.13 and
Lemma 2.1.15, L is a direct product of the integral closures of its quotients
by minimal prime ideals. The normal assumption on R → R′ localizes, so
K → L is normal, whence separable by Proposition 19.1.1. Then (2) shows
that each Ki is separable over L.

The ring R′/mR′ is the fiber of ϕ over the maximal ideal of R, and is
therefore normal and hence reduced. It is also local since R′ is local, and
therefore cannot be properly a direct product of other rings. It follows that
R′/mR′ is an integrally closed domain, and consequently mR′ is a prime
ideal. Since R → R′ → R′

mR′ is a composition of flat and faithful homo-
morphisms, R′

mR′ is faithfully flat over R, and by Proposition B.2.3 it follows
that dim(R) = dim(R′

mR′) (note that mR′ is necessarily minimal among the
prime ideals that contract to m).

We have identified R′ as a subring of
∏
iKi. It follows that R′

mR′ is con-
tained in

∏
(R′\mR′)−1(Ki), which is the product of those fields Ki for which

every element in R′ \mR′ is non-zero. This set is exactly the set of those Ki

for which Qi ⊆ mR′.
Lastly, it is clear that R′ ⊆ L ∩ R′

mR′ . Let y ∈ L ∩ R′
mR′ , and fix a

parameter a ∈ R. Every element of K can be written in the form b/an for
some n ≥ 1 and some b ∈ R. It follows that every element of L can be written
in the form s/an for some s ∈ R′ and n ≥ 1, so we may write y = s/an. Since
R′ is flat over R and mR′ is prime, it follows that mR′ is the only associated
prime ideal of anR′, as m is the only associated prime ideal of anR. This
forces any = s ∈ anR′

mR′ ∩R′ = anR′, and hence y ∈ R′.
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19.2. Locally analytically unramified rings

The main theorem of this section is the following:

Theorem 19.2.1 Let R be a Noetherian ring such that Rred is locally ana-
lytically unramified. Suppose that R→ S is a normal homomorphism of R to
a Noetherian ring S. Then for every ideal I in R, IS = IS.

Proof: Fix an ideal I in R. Since the nilradical of R is contained in both IS
and IS, we may factor it out and assume that R is reduced. Suppose we have
shown that for every prime ideal p in R such that I ⊆ p, IpSp = (IS)p, where
the subscript p denotes localization at the multiplicatively closed set R \ p.
If IS 6= IS, choose a prime ideal P in S that is minimal in the support of
IS/IS. There exists an element rP ∈ IS \ IS such that P = IS :S rP . As the
same holds after inverting all elements of R \ (P ∩R), this is a contradiction.
Thus to prove the theorem we may replace R by its localization at P ∩R, and
assume that R is local.

We next reduce to the case in which R is a domain. Let P1, . . . , Pn be the
minimal prime ideals of R. Since R is local and analytically unramified, the in-
tersection of the Pi is 0. Let Ri = R/Pi, Ii = IRi, and Si = Ri⊗RS = S/PiS.
By Proposition 9.1.3 Ri is analytically unramified and by Proposition 19.1.2
Ri → Si is a normal homomorphism for every i. Assuming the result for
analytically unramified domains, then IiSi = IiSi. By Proposition 1.1.5 r ∈ I
if and only if ri ∈ Ii for each i = 1, . . . , n, where ri is the image of r in Ri.
This implies that

0 → R/I → R1/I1 × · · · ×Rn/In

is exact. By tensoring with S and using the flatness of S over R,

0 → S/IS → S1/I1S1 × · · · × Sn/InSn (19.2.2)

is also exact. Let s ∈ IS. Then si, the image of s in Si is in IiSi for each
i = 1, . . . , n, and hence by assumption, si ∈ IiSi for each i = 1, . . . , n. The
exactness of the sequence (19.2.2) then shows that s ∈ IS as required.

We have reduced to the case in which R is a local domain. We next reduce
to the case in which R is integrally closed. Let R′ be the integral closure of R
in its field of fractions. By Corollary 4.6.2 since R is analytically unramified,
R′ is a finitely generated R-module. Set S′ = R′⊗RS. By Proposition 19.1.2,
the map R′ → S′ is still normal. Suppose we have proved the theorem in the
case in which R is integrally closed. Then

IR′S′ = IS′. (19.2.3)

Since by Proposition 1.6.1, IR′ ∩ R = IR, there is an embedding R/I →
R′/IR′, and upon tensoring with S we obtain an embedding

S/IS → S′/IR′S′. (19.2.4)
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Now let s ∈ IS. Then the image of s in S′ is in IS′ and by (19.2.3) it follows
that s ∈ IR′S′. Hence (19.2.4) implies that s ∈ IS, proving the theorem.

We have now reduced to proving the theorem in the case in which R is a
local integrally closed analytically unramified domain. Let A = ⊕n≥0Int

n,
which by Proposition 5.2.4 is the integral closure of the Rees algebra R[It]
in R[t]. By Corollary 9.2.1, A is a finitely generated R-algebra, and it is
integrally closed by Proposition 5.2.4. By Proposition 19.1.2, the map from
A → A⊗R S is normal. In particular, all the fibers of the map A → A⊗R S
normal. Thus by Corollary 4.5.6, A ⊗R S is locally normal, hence normal.
However, A ⊗R S is isomorphic to the ring ⊕n≥0InSt

n, and its normality
then implies that InS = InS for all n, in particular for n = 1.

Corollary 19.2.5 Let (R,m) be a local Noetherian ring such that R→ R̂ is
normal (e.g., if R is excellent). Then for all ideals I ⊆ R,

IR̂ = IR̂.

Proof: The parenthetical remark of the corollary follows as excellent local
rings by definition have geometrically regular formal fibers.

By Theorem 19.2.1 it suffices to prove that Rred is analytically unramified.
Theorem 4.5.2 shows that the reduced property of a ring is equivalent to the
ring satisfying Serre’s conditions (S1) and (R0). Let P ∈ Spec(Rred). By the

normal assumption κ(P ) ⊗Rred
R̂red = κ(P ) ⊗R R̂ is normal, hence reduced.

Thus by Theorem 4.5.5, since Rred satisfies (S1) and (R0), so does R̂red,

whence R̂red is reduced and Rred is analytically unramified.

The conclusion of Theorem 19.2.1 need not hold without the normal hy-
pothesis, as shown by the following example:

Example 19.2.6 (Heinzer, Rotthaus, S. Wiegand [116]) Let k be a field,
and X, Y, Z variables over k. By Exercise 3.13 there exist α and β in Xk[[X ]]
that are algebraically independent over k(X). Set f = (Y − α)2, g =
(Z − β)2. Write f =

∑
i≥0 aiX

i for some ai ∈ k[Y ], and g =
∑
i≥0 biX

i

for some bi ∈ k[Z]. Define Fn =
∑
i>n aiX

i−n, Gn =
∑
i>n biX

i−n. Set
R′ = k[X, Y, Z, F0, G0, F1, G1, F2, G2, . . .]. From the equations XFn+1 =
Fn− an+1X , XGn+1 = Gn− bn+1X , it follows that (X, Y, Z)R′ is a maximal
ideal and that R′/XR′ = k[Y, Z]. Define R = R′

(X,Y,Z)R′ . Heinzer, Rotthaus
and Wiegand developed a machinery that manipulates such constructions and
determines if R is Noetherian. We need that R is Noetherian. Here are steps
towards proving it. By Proposition 6.3.7, V = k(X,α, β) ∩ k[[X ]] is a Noe-
therian discrete valuation ring. Clearly the maximal ideal is XV , so VX =
k(X,α, β) and XV = Xk[[X ]] ∩ V . Thus k ⊆ V/XV ⊆ k[[X ]]/Xk[[X ]] = k,
so that equality holds. Thus by Exercise 19.1, the completion of V is k[[X ]].
Hence the ring S = V [Y, Z](X,Y,Z) is Noetherian with completion k[[X, Y, Z]],
S/(Xn) = k[X, Y, Z](X,Y,Z)/(X

n), and so the (X)-adic completion of S is
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k[Y, Z](Y,Z)[[X ]]. Let A = k[X, Y, Z](X,Y,Z), and A
∗ its (X)-adic completion.

Then A∗ = k[Y, Z](Y,Z)[[X ]], and S → A∗ is flat, and a fortiori also faithfully
flat. Observe that

k[X, Y, Z, f, g] →֒ k[X, Y, Z, f, g]X = R′
X →֒ k[X, Y, Z, α, β](X,Y,Z,α,β)[X

−1],

and that k[X, Y, Z, α, β] is free of rank four over k[X, Y, Z, f, g]. Hence the last
ring in the display, k[X, Y, Z, α, β](X,Y,Z,α,β)[X

−1], is flat over RX , and thus
over R. But SX is a localization of k[X, Y, Z, α, β](X,Y,Z,α,β)[X

−1], so that
R→ A∗

X factors through flat maps R→ SX → A∗
X , so that A∗

X is flat over R.
As R ⊆ A∗, X is a non-zerodivisor on R and A∗, and R/XR = A∗/XA∗, so
by Exercise 19.1, A∗ is flat over R, and hence faithfully flat as R has only one
maximal ideal, and this maximal ideal extends to a proper ideal in A∗. Thus
R is Noetherian. Moreover, Exercise 19.1 shows that the (X)-adic completion
of R is A∗, whence the (X, Y, Z)-adic completion of R is k[[X, Y, Z]]. In
particular, as R is Noetherian, it is even regular local, with X, Y, Z a regular
system of parameters. Let P = (Y − α, Z − β)k[[X, Y, Z]] ∩ R. Then P is
not the maximal ideal, it contains f, g, so that P is a prime ideal of height
exactly two. But PR̂ is not integrally closed as (Y −α)(Z−β) is in its integral
closure, but (Y − α)(Z − β) is not in Pk[[X, Y, Z]].

19.3. Inductive limits of normal rings

Throughout this section, let Λ be a partially ordered directed set, and let
{Ri, ϕij} be a direct system of rings on Λ, with ϕij : Ri → Rj a ring ho-
momorphism whenever i ≤ j. We set R = lim

−→
Ri, and by ϕj we denote the

canonical homomorphism Rj → R.

Proposition 19.3.1
(1) For every i, j ∈ Λ with i ≤ j, let Ji be an ideal of Ri satisfying ϕij(Ji) ⊆

Jj . Then {Ji} form a direct system with the restrictions of the maps
ϕij , and J = lim

−→
Ji can be canonically identified with an ideal J of R.

Moreover, R/J is canonically isomorphic to lim
−→

(Ri/Ji).

(2) Conversely, for every ideal J of R, setting Ji = ϕ−1
i (J), the {Ji} form a

direct system and J = lim
−→

Ji.

(3) If the Ji are prime for all i, then J is also prime. Moreover, if Jj =
ϕ−1
ji (Ji), then the localization RJ is canonically identified with lim

−→
(Ri)Ji .

(4) If Ri are integrally closed domains for all i, and if all ϕij are injective,
then R is an integrally closed domain.

(5) If Ri is normal for every i, and if minimal prime ideals of Ri contract to
minimal prime ideals of Rj whenever j ≤ i, then R is normal.

Proof: The first part is easy to prove and we leave it to the reader. The
second part follows directly from (1). To prove (3), since R/J ∼= lim

−→
(Ri/Ji),
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the first claim of (3) follows if we prove that whenever Ri is a domain for all
i, so is R. Suppose that x, y ∈ R such that xy = 0. Choose i ∈ Λ such that
ϕi(xi) = x and ϕi(yi) = y. Then ϕi(xiyi) = 0, and hence there is a j ≥ i
such that with xj = ϕij(xi) and yj = ϕij(yi) we have that xjyj = 0. As Rj is
a domain, this forces either xj or yj to be 0, and hence either x = 0 or y = 0.
The hypothesis that Jj = ϕ−1

ji (Ji) forces the sets Rj \ Jj to form a direct
limit of multiplicatively closed subsets of Rj with direct limit R \ J . Thus
(Ri)Ji form a direct limit system of local rings (and local homomorphisms)
and clearly lim

−→
(Ri)Ji maps onto RJ . We need to prove injectivity. If xi ∈ Ri

and si ∈ Ri \ Ji are elements such that ϕi(xi)/ϕi(si) = 0 in RJ , then there
exists an element u ∈ R \ J such that uϕi(xi) = 0, and by replacing i by
a possibly larger index, we can assume there is a ui ∈ Ri \ Ji such that
ϕi(ui) = u. Then ϕi(uixi) = 0, and hence there exists a j ≥ i such that
ϕij(ui)ϕij(xi) = 0, which forces xj/sj = 0, proving (3).

We prove (4). Let Ki be the field of fractions of Ri. By (3), we can identify
K = lim

−→
Ki with the field of fractions of R. Suppose that z ∈ K is integral

over R, say zn + r1z
n−1 + · · · + rn = 0 for some r1, . . . , rn ∈ R. There

exist j ∈ Λ and elements rkj , zj ∈ Kj such that ϕj(rkj) = rk and such that
ϕj(zj) = z. Then ϕj(z

n
j + r1jz

n−1
j + · · ·+ rnj) = 0, and hence for some i ≥ j,

zni +r1iz
n−1
i + · · ·+rni = 0 where zi = ϕji(zj) and rki = ϕji(rkj). This shows

that zi ∈ Ri as Ri is integrally closed, and it follows that z ∈ R.
Finally we prove (5). Let P be a prime ideal of R, and set Pi = ϕ−1

i (P ).
Since Ri is normal, (Ri)Pi

is an integrally closed domain. By (3), RP =
lim
−→

(Ri)Pi
, so by (4), RP is an integrally closed domain. This proves that R

is normal.

19.4. Base change and normal rings

In this section we prove the main results concerning base change and normal
homomorphisms. Our treatment follows that of EGA IV [102, Chapter IV,
Section 6.14].

Lemma 19.4.1 Let R be a Noetherian ring, and R → R′ a flat map to a
Noetherian ring R′. Suppose that S ⊆ T are domains that are R-algebras. Set
S′ = S ⊗R R′ and T ′ = T ⊗R R′. Then S′ ⊆ T ′ and minimal prime ideals of
T ′ contract to minimal prime ideals of S′.

Proof: That S′ ⊆ T ′ is immediate from the assumption that R → R′ is flat
and S ⊆ T . Observe that T ′ ∼= T ⊗S (S ⊗R R′) = T ⊗S S′, and that S → S′

is flat. Every non-zero element of S is a non-zerodivisor on S, and hence also
on S′ and on T ′. Likewise every non-zero element of T is a non-zerodivisor
on T ′. Thus every minimal prime ideal of T ′ contracts to 0 in T , and we
may therefore invert all non-zero elements of both S and T to assume that S



400 19. Normal homomorphisms

and T are fields. But then T is flat over S, and therefore T ′ is flat over S′.
By Proposition B.1.2 the homomorphism S′ → T ′ satisfies the Going-Down
property. Let Q be a minimal prime ideal in T ′, and set q = Q ∩ S′. If q is
not minimal, then there is a prime ideal p ⊆ q, and the Going-Down property
shows that there is a prime ideal P ⊆ Q in T ′ such that P ⊆ S′ = p. This
contradicts the minimality of Q.

A first step in our goal of understanding base change and integral closures
is taken in the following theorem (see [102, Chapter IV, Proposition 6.14.1]):

Theorem 19.4.2 Let g : R → R′ be a normal homomorphism of locally
Noetherian rings. For every normal ring S that is an R-algebra, the ring
S′ = S ⊗R R′ is also normal.

Proof: We first reduce this proof of the theorem to the case in which R and
R′ are local Noetherian, R is a domain, and S is the integral closure of R.
Suppose we are given R,R′, S as in the statement of the theorem. To prove
that S′ = S ⊗R R′ is normal, it suffices to prove that for all prime ideals Q′

of S′, (S′)Q′ is an integrally closed domain. Set P ′ = Q′ ∩ R′, Q = Q′ ∩ S,
and P = Q′ ∩R. Then (S′)Q′ is a localization of SQ⊗RP

(R′)P ′ , so it suffices
to prove that the latter tensor product is normal. As the map RP → (R′)P ′

is normal and SQ is a normal RP -algebra, without loss of generality we may
assume that R and R′ are local Noetherian and that S is local. But S local
and normal implies that S is an integrally closed domain.

Some general observations facilitate the proof below. Suppose that CS
is a finitely generated R-algebra contained in S. Set C′ = C ⊗R R′. By
Proposition 19.1.2, C → C′ is normal. Furthermore, S is a normal C-algebra,
and S ⊗C C′ ∼= S ⊗C (C ⊗R R′) ∼= S ⊗R R′ = S′. To prove the theorem we
may replace R by C. Furthermore, whenever we make such a reduction, we
can repeat the additional reductions of the first paragraph with C in place
of R and C′ in place of R′ to reduce to the case where C and C′ are local
Noetherian, S is a local integrally closed domain, and then also necessarily C
is a domain.

Consider all finitely generated R-subalgebras Ri of S, and let Si be their
integral closures, so that S = ∪Si is written as a direct limit of such rings.
We have that S′ = (∪Si)⊗R R′ = ∪(Si ⊗R R′), the second equality following
from the flatness of R → R′. Set S′

i = Si ⊗R R′. By flatness, tensoring with
R′ preserves all inclusions among the Si. By Proposition 19.3.1, a direct limit
of normal algebras is again normal provided that every minimal prime ideal
of S′

i contracts to a minimal prime ideal of S′
j when S′

j ⊆ S′
i. But since the

Si are domains, and R → R′ is flat, this is true by Lemma 19.4.1. Thus
without loss of generality we may assume that S is the integral closure of a
finitely generated R-algebra C. As in the second paragraph of this proof, we
can replace R by C, and again localize to assume that R and R′ are local
Noetherian, R is a domain, and S is the integral closure of R.
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We next reduce to the case in which R is a one-dimensional local Noetherian
domain with integral closure S a Noetherian valuation domain, and R′ is local
Noetherian. As R is Noetherian, S is a Krull domain (see Theorem 4.10.5).
In particular, S is the intersection of Noetherian valuation rings Vi with the
same field of fractions K of R such that every x ∈ R is in at most finitely
many of the Vi. Set K ′ = K ⊗R R′ and V ′

i = Vi ⊗R R′. As K ′ is the fiber
over 0 of the normal map R→ R′, K ′ is normal, and is contained in the total
ring of fractions of R′. (Here note that R′ sits inside K ′ and is thus reduced.
The non-zero elements of R are non-zerodivisors on R, and hence are also
non-zerodivisors on R′ by flatness.) Moreover, the total ring of fractions of
each V ′

i is also the total ring of fractions of R′, and each V ′
i sits inside K ′,

again by flatness.
There is an exact sequence 0 → S → K → ⊕i(K/Vi), which upon tensoring

with R′ gives the exact sequence

0 → S′ → K ′ → ⊕i(K ′/V ′
i ).

Hence S′ = ∩iV ′
i . Since S′ and V ′

i have the same total ring of fractions, by
Lemma 2.1.15 if each V ′

i is normal, then S′ is normal.
Fix V = Vi. By Lemma 4.9.4 V is the integral closure of Cp, where C is a

finitely generated R subalgebra of K and p is a height one prime ideal of C.
Let D = Cp. By base change, the map D → D′ = D ⊗R R′ is normal, and
V ′ = V ⊗R R′ ∼= V ⊗D (D ⊗R R′) = V ⊗D D′. Replacing R by D and R′ by
D′, we may assume that R is a one-dimensional local Noetherian ring with
integral closure S a Noetherian valuation domain, and R′ is local Noetherian
(by again localizing R′ at the contraction of a given prime ideal in V ′).

We wish to make R as close as possible to S; ideally S would be finite
as an R-module, in which case the proof is much easier. In any case, we
may write S as a union of a nested sequence of finitely generated R-algebras
Ri contained in S. In fact, since S is integral over R, each Ri is a finitely
generated R-module. We are free to replace R by any one of the Ri by the
discussion in the second paragraph of this proof. We wish to reduce to the
case in which a uniformizing parameter of S is in R and the residue field of
S is the same as the residue field of R. To see that this reduction is possible,
consider passing to the completion of R. The injections of Ri → S stay
injections upon tensoring with R̂, the completion of R. Moreover, S ⊗R R̂ is
contained in K ⊗R R̂, where K is the field of fractions of R. In turn, K ⊗R R̂
is contained in the total ring of fractions of R̂. Thus we have that Ri ⊗R R̂
form a nested set of finitely generated R̂-algebras contained in the total ring
of fractions of R̂. In particular, since (S⊗R R̂)red must be a finitely generated

(R̂)red-module (Proposition 19.1.3), there must exist an index i such that

(Ri ⊗R R̂)red = (S ⊗R R̂)red . We can replace R by Ri and assume that

(R̂)red = (S ⊗R R̂)red . (Note that R̂i = Ri ⊗R R̂ as Ri is a finitely generated
R-module.) We can choose an element t ∈ R that is a uniformizing parameter
in S, i.e., such that tS is the maximal ideal of S. If not, then the isomorphism
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(R̂)red = (S⊗R R̂)red would give a contradiction upon further tensoring with
R/m. Moreover, as above we may assume that R′ is also local. Furthermore,
S/tS = R/m = k (from the isomorphism (R̂)red = (S ⊗R R̂)red), so that in
addition S′/tS′ = (R′ ⊗R S)/t(R′ ⊗R S) = R′ ⊗R k = R′/mR′.

To summarize, we have reduced this proof of the theorem to the case in
which R is a one-dimensional Noetherian local domain with integral closure S,
a rank one discrete valuation domain, and R′ is local. Furthermore, R contains
a uniformizing parameter t of S, and the residue fields of R and S are the
same, implying that S′/tS′ ∼= R′/mR′. We now prove that S′ = R′ ⊗R S is
normal. We do this by proving that S′[t−1] is normal, that tS′ is a prime
ideal Q, that S′

Q is a Noetherian discrete valuation domain, and finally that

S′ = S′[t−1] ∩ S′
Q.

Let K be the field of fractions of R, which is just R[t−1]. Note that R ⊆
S ⊆ K induces containments R′ ⊆ S′ ⊆ K ⊗R R′, proving that R′[t−1] =
S′[t−1] = K ⊗R R′, the fiber of the map R → R′ over 0. In particular,
K ⊗R R′ is normal, and thus so is S′[t−1]. This ring is even Noetherian.

We next prove that tS′ is a prime ideal of S′. As noted above, S′/tS′ =
R′/mR′, and this latter ring is an integrally closed domain as it is the fiber
of the normal homomorphism from R to R′ over the maximal ideal m of R.
It follows that tS′ is prime, and we denote it by Q. Let P = mR′.

We prove that S′
Q is a Noetherian discrete valuation domain. First note that

the equality of S′/tS′ and R′/mR′ proves that S′ is local and S′
Q = W−1S′,

where W = R′ \ mR′. The latter claim holds since Q is the unique prime
ideal of S′ lying over mR′. Set A = R′

mR′ . By Proposition 19.1.3, A is a one-
dimensional reduced Noetherian ring. Since S′ ⊆ R′ ⊗RK, S′ is contained in
the total ring of fractions of R′ (note that the non-zero elements of R are non-
zerodivisors on R′ as R′ is flat over R), and hence S′

Q =W−1S′ is contained in
the total ring of fractions of A. An application of Theorem 4.9.2 now proves
that S′

Q is Noetherian. Since the maximal ideal of S′
Q is generated by the

image of t, it follows that S′
Q is a Noetherian discrete valuation domain.

By applying Lemma 2.1.15, to finish this proof of the theorem it suffices
to prove that S′ = S′[t−1] ∩ S′

Q. Suppose that a, b, s ∈ S′ are such that
a/tn = b/s and s /∈ Q. Then in S′, as = tnb, as this intersection is taking place
in the total ring of fractions of S′. Since tS′ is prime and t is a non-zerodivisor
on S′ (as t ∈ R), the fact that s /∈ tS′ = Q shows that we may cancel all
powers of t from a to obtain that b = a′s for some a′ ∈ S′. In this case
b/s = a′ ∈ S′, proving the claim and finishing the proof of Theorem 19.4.2.

Via Proposition 19.1.1, a consequence of the last theorem is:

Theorem 19.4.3 Let F ⊆ K be a separable field extension. Let R be a
Noetherian normal F -algebra. Then R ⊗F K is a normal K-algebra.

In particular, the complexification R ⊗RC of any affine normal R-algebra R
is normal. One can also prove this fact directly from the Jacobian criterion.
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19.5. Integral closure and normal maps

Consider a map of rings R→ S and the integral closure C of R in S. In this
section we prove that if R → R′ is a normal homomorphism of Noetherian
rings, then C′ is the integral closure of R′ in S′, where ( )′ denotes tensoring
with R′ over R. That this is non-trivial can be seen already by considering
the case in which R, S and R′ are all fields. In this case, what needs to be
proved is that if R′ is a normal extension of R (or, equivalently, a separable
extension by Proposition 19.1.1), and if C is the algebraic closure of R in R′,
then C ⊗R R′ is the integral closure of R ⊗R R′ in S ⊗R R′. We use the
results proved in Chapter 3 to handle this case.

A consequence is that under a normal map R → R′ of Noetherian rings,
the image in R′ of an integrally closed ideal in I is integrally closed.

Theorem 19.5.1 ([102, Chapter IV, Proposition 6.14.4]) Let R be a Noe-
therian ring, and let R′ be a Noetherian R-algebra such that the map R→ R′

is normal. Let S be an R-algebra and let C be the integral closure of R in S.
Set S′ = S⊗RR′ and C′ = C⊗RR′. Then C′ can be identified with a subring
of S′, and under this identification, C′ is the integral closure of R′ in S′.

Proof: The proof below proceeds by several reductions. Let J be the nilradical
of S. Clearly J ⊆ C. Let T = Sred = S/J , and let D be the integral
closure of R in T . If c ∈ D ⊆ T , then for some positive integer n and some
r1, . . . , rn ∈ R, cn + r1c

n−1 + · · ·+ rn is in J , hence some power of it is zero.
This means that the lift of c to S is in C, and proves that D ⊆ C/J . Assume
that we have proved the theorem with T in place of S. Let x ∈ S′ be in the
integral closure of R′. Under the natural map S′ → T ′, the image of x is
integral over R′, hence by assumption it is in D⊗RR′. Since D ⊆ C/J , there
exists c ∈ C′ such that x − c ∈ J ⊗R R′ ⊆ C ⊗R R′ = C′, whence x ∈ C′.
Thus it suffices to prove the theorem in case S is reduced.

Next we reduce to the case in which S is a domain and is finitely generated
over R. Write S as a directed union of finitely generated R-subalgebras Si,
and let Ci be the integral closure of R in Si. Clearly C = ∪Ci. Set C′

i =
Ci ⊗R R′ ⊆ S′

i = Si ⊗R R′. Then C′ = ∪C′
i and S′ = ∪S′

i. If we prove
that C′

i is the integral closure of R′ in S′
i, then it easily follows that C′ is the

integral closure of R′ in S′. Hence without loss of generality we may assume
that S is reduced and finitely generated over R; in particular it is Noetherian
with finitely many minimal prime ideals P1, . . . , Pr. Let S0 =

∏
i S/Pi; as S

is reduced, we can identify S as a subring of S0. Moreover, letting C0 be the
integral closure of R in S0, we have that C = C0 ∩ S. Use ( )′ to denote
tensoring with R′ over R. By flatness C′ = C′

0 ∩S′, so to prove that C′ is the
integral closure of R′ in S′, it suffices to prove that C′

0 is the integral closure
of R′ in S′

0. (Note that S′ is identified as a subring of S′
0.) Set Si = S/Pi

and let Di be the integral closure of R in Si. If we prove that D′
i is the

integral closure of R′ in S′
i then it easily follows that C′

0 = D′
1 × · · · ×D′

r is
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the integral closure of C0 in in S0. Hence we can assume that S is a domain,
finitely generated over R.

We may assume that R ⊆ S. For let p be the kernel of the map from R to
S. Then S′ = S ⊗R/p (R′/pR′). Moreover the map from R/p → R′/pR′ is
normal by Proposition 19.1.2. Thus we may assume that R ⊆ S.

Let K be the field of fractions of R and let L be the field of fractions of
S, which is a finitely generated field extension of K. Let F be the algebraic
closure of K in L; F is a finite algebraic extension of K by Proposition 3.3.2.
Let C0 be the integral closure of R in F , which is the same as the integral
closure of R in L. Thus C = C0 ∩ S. Again we let ( )′ denote tensoring with
R′ over R. By flatness, C′ = C′

0∩S′. We claim that C′
0 is the integral closure

of R′ in F ′, and moreover that F ′ is a reduced Noetherian ring such that
the map F → F ′ is normal. R′ is Noetherian and F is a localization of an
R-algebra A that is a finitely generated R-module. Then F ′ is a localization
of A′, which is finite as an R′-module, hence Noetherian. F → F ′ is normal
by Proposition 19.1.2. The harder part is to prove the claim that C′

0 is the
integral closure of R′ in F ′, and we prove this in the following paragraph.

As in the above paragraph, F ′ must be a reduced Noetherian ring with total
ring of fractions L, a product of fields, all of them geometrically normal. As F
is the field of fractions of C0, F

′ is a subring of the total ring of fractions of C′
0

and therefore the total ring of fractions of C′
0 must be L. By Theorem 19.4.2

applied to the normal ring C0 and the normal homomorphism R → R′, it
follows that C′

0 is normal. By Lemma 2.1.15 it follows that C′
0 is integrally

closed in L, and thus also is integrally closed in F ′, and is therefore the integral
closure of R′ in F ′.

By flatness, C′ = C′
0 ∩ S′, so to prove that C′ is integrally closed in S′, it

suffices, using the work in the above paragraph, to prove that F ′ is integrally
closed in L′. Now we may replace R by F , S by L, and R′ by R′ ⊗RK = F ′.
We have shown above that F ′ is Noetherian and F → F ′ is normal. To
summarize, without loss of generality, we may assume that F is a field, F ⊆ L
is a finitely generated field extension such that F is algebraically closed in L,
and F → F ′ is a normal homomorphism such that F ′ is Noetherian. It
remains to prove that F ′ is integrally closed in L′ = F ′ ⊗F L.

Because F → F ′ is a normal homomorphism, F ′ is normal. Hence F ′ =
F ′
1 × · · · × F ′

r where F ′
i is an integrally closed domain whose field of fractions

Ki is separable over F (Proposition 19.1.3). It follows that F ′ is integrally
closed in L′ = F ′ ⊗F L if and only if F ′

i is integrally closed in L′
i = F ′

i ⊗F L
for all 1 ≤ i ≤ r, and we may therefore assume that F ′ is an integrally closed
domain with field of fractions K that is separable over F . As L is flat over F ,
we can identify L′ = F ′⊗F L as a subring of K⊗F L. Since F is algebraically
closed in L and K is separable over F , by Theorem 3.3.3 we conclude that
K is algebraically closed in K ⊗F L. Any element of F ′ ⊗F L that is integral
over F ′ is therefore in K, and since F ′ is integrally closed, it is in F ′.
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We can now prove the main application of this theorem to the behavior of
integral closures of ideals under normal homomorphisms.

Corollary 19.5.2 Let f : R → R′ be a normal ring homomorphism of
Noetherian rings. If I is an ideal in R, then IR′ = IR′.

Proof: Let t be a variable. Set S = R[t]. The integral closure C of R[It] in
S is the N-graded ring whose nth graded piece is Intn by Proposition 5.2.1.
By Theorem 19.5.1, the integral closure of R[It]⊗R R′ in S ⊗R R′ ∼= R′[t] is
C ⊗R R′. There is a surjection R[It]⊗R R′ → R′[IR′t]. Hence C ⊗R R′ can
be identified with the integral closure of R′[IR′t] in R′[t], giving that for all
n, InR′ = InR′.

A notion related to normal homomorphisms is the following:

Definition 19.5.3 (Lipman [188]) A ring R and an R-algebra R′ satisfy the
condition (NR,R′) if whenever C is an R-algebra and S is a C-algebra in
which C is integrally closed, then also C⊗RR′ is integrally closed in S⊗RR′.
If R′ is flat over R and (NR,R′) holds, then R′ called a quasi-normal R-
algebra.

Many examples of quasi-normal R-algebras R′ are given in the exercises.
Lipman proved [188, Lemma 2.4]: if R is a ring and R′ an R-algebra such

that (NR,R′) holds, then for every ideal I in R, IR′ = IR′.
Theorem 19.5.1 guarantees that if R → R′ is normal, then (NR,R′) holds,

and so R′ is quasi-normal over R. Our proof of Corollary 19.5.2 is then
basically the same as that of Lipman.

Lipman’s work on quasi-normal rings and condition (NR,R′) arose from his
study of Lipschitz saturation, which was introduced by Pham and Teissier
in [223]. The definition of relative Lipschitz saturation is based on the concept
of integral closure of “diagonal ideals” and is related to a notion extensively
studied by Zariski in connection with his theory of equisingularity.

19.6. Exercises

19.1 (Heinzer, Rotthaus, Wiegand [115]) Let A ⊆ R be rings, not neces-
sarily Noetherian. Let x ∈ A be a non-zerodivisor in A and in R such
that A

xA = R
xR .

(i) Prove that for all integers n, xnA = xnR ∩A and A
xnA = R

xnR .
(ii) Prove that the xA-adic completion of A equals the xR-adic com-

pletion of R.
(iii) Prove that A = Ax ∩R and Rx = Ax +R.

(iv) Prove that 0 → A
ϕ−→Ax ⊕ R

ψ−→Rx → 0 is a short exact se-
quence, where ϕ(a) = (a1 , a) and ψ(

a
xn , r) =

a
xn − r.

(v) Prove that R is flat over A if and only if Rx is flat over A.
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19.2 Let k ⊆ ℓ be a separable field extension and k ⊆ K a field extension.
Suppose that either ℓ or K is finitely generated over k. Prove that
ℓ⊗k K is a regular ring.

Quasi-normal algebras, Lipman [188]
19.3 Let R be a Noetherian ring and W a multiplicatively closed set in R.

Prove that R′ =W−1R is a quasi-normal R-algebra.
19.4 Let R be a Noetherian ring and set R′ = R[X1, . . . , Xn]. Prove that

R′ is a quasi-normal R-algebra.
19.5 If R′ is a quasi-normal R-algebra and R′′ is a quasi-normal R′-algebra,

prove that R′′ is a quasi-normal R-algebra.
19.6 If R′ is a quasi-normal R-algebra and S is any R-algebra, prove that

S′ = S ⊗R R′ is a quasi-normal R′-algebra.
19.7 Prove that a filtered inductive limit of quasi-normal R-algebras is a

quasi-normal R-algebra.
19.8* Prove that the completion of an excellent ring R at an ideal I is a

quasi-normal R-algebra.
19.9* Prove that if R′ is finitely presented, flat and unramified over R, (i.e.,

R′ is étale over R), then R′ is a quasi-normal R-algebra.
19.10* Let k be a field of characteristic zero and K any field extension of

k. Prove that for any variables X1, . . . , Xd over K, k[[X1, . . . , Xd]] →
K[[X1, . . . , Xd]] is normal.



A

Some background material

In this appendix we list several well-known results in commutative algebra
that we need in the book. We provide proofs only for some results.

A.1. Some forms of Prime Avoidance

Theorem A.1.1 (Prime Avoidance) Let R be a ring, not necessarily Noe-
therian. Let P1, . . . , Ps be ideals of R, at most two of which are not prime
ideals. Assume that I ⊆ P1 ∪ · · · ∪ Ps. Then there exists i ∈ {1, . . . , s} such
that I ⊆ Pi.

Theorem A.1.2 (Prime Avoidance [203]) Let R be Noetherian N-graded
ring such that R0 has infinite residue fields. Let I, P1, . . . , Ps be homogeneous
ideals of R, such that I is generated by elements of degree n. Suppose that I
is contained in P1∪· · ·∪Ps. Then there exists i ∈ {1, . . . , s} such that I ⊆ Pi.

Theorem A.1.3 (Prime Avoidance) Let R be Noetherian N-graded ring. Let
P1, . . . , Ps be homogeneous ideals in R, at most two of which are not prime
ideals. If I is a homogeneous ideal generated by elements of positive degree
and not contained in P1 ∪ · · · ∪ Ps, then there exists a homogeneous element
x ∈ I that is not in any Pi.

A.2. Carathéodory’s theorem

Theorem A.2.1 (Carathéodory’s theorem) Let n be a positive integer, and
v1, . . . , vr ∈ (R≥0)

n. Suppose that for some ai ∈ R≥0, v =
∑
i aivi. Then

there exists a linearly independent subset {vi1 , . . . , vis} such that

v =
∑

j

bjvij , bj ≥ 0, and
∑

j

bj ≥
∑

j

aj.

The same result also holds if Q is used instead of R.

Proof: If v1, . . . , vr are linearly independent, there is nothing to show. So
assume that there exist ci ∈ R, not all zero, such that

∑
i civi = 0. Necessarily

some ci are positive and some are negative. By possibly multiplying by −1
and by reindexing we may assume that

∑
ci ≤ 0 and that c1 > 0. Note that

for any i such that ci > 0, v =
∑

j 6=i(aj − ai
cj
ci
)vj and

∑
j 6=i(aj − ai

cj
ci
) =∑

j aj − ai
ci

∑
j cj ≥

∑
j aj.

By induction on r it suffices to show that v can be written as a linear
combination of r − 1 of the vi, with non-negative coefficients that add up to
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a number greater than or equal to
∑
aj . For contradiction we assume the

contrary. Then aj > 0 for all j and from the previous paragraph applied to
the case i = 1 we deduce that for some j > 1, aj −a1 cjc1 < 0. After reindexing
without loss of generality j = 2. This implies that c2 > 0. Next we apply the
previous paragraph with i = 2 and either the conclusion holds or there exists
j 6= 2 such that aj − a2

cj
c2
< 0. Necessarily j > 2, cj > 0, and by reindexing

j = 3. We continue this process, and by the assumption we can only stop at
the rth step to get all ci positive, which is a contradiction.

A.3. Grading

Proposition A.3.1 Let G be a totally ordered abelian monoid (e.g., Nd ×
Ze). Let R be a G-graded ring and M a G-graded module. Let x ∈ M (not
necessarily homogeneous), and P a prime ideal such that P = (0 :R x). Then
P is G-homogeneous.

Proof: Let r be a non-zero element of P . Write r =
∑n

i=1 ri for some non-zero
homogeneous elements ri in R, with deg(r1) > · · · > deg(rn). We want to
show that each ri ∈ P . Let s be the sum of those ri that are contained in P .
Then r − s ∈ P , and it suffices to prove that each homogeneous summand of
r − s is in P . Thus we may assume (by possibly renaming r) that no ri ∈ P .

Write x =
∑m
i=1 xi for some non-zero homogeneous elements xi in M , with

deg(x1) > · · · > deg(xm). Since 0 = rx, by reading off the component of
degree deg(r1x1) we get that r1x1 = 0. Suppose that we have proved that for
some e > 2, ri1xi = 0 for all i = 1, . . . , e− 1. Then

0 = re−1
1 rx = re−1

1

n∑

i=1

m∑

j=1

rixj = re−1
1

n∑

i=1

m∑

j=e

rixj

yields that the leading term re1xe is zero. Thus induction shows that rm1 xi = 0
for all i. In particular, rm1 x = 0, so that rm1 ∈ (0 :R x) = P , whence r1 ∈ P .
This contradicts the assumption, and hence proves the proposition.

Corollary A.3.2 Let G be a totally ordered abelian monoid (e.g., Nd ×
Ze), R a G-graded Noetherian ring, and M a finitely generated G-graded
module. Then every G-graded submodule of M has a G-homogeneous primary
decomposition and that the associated prime ideals are G-homogeneous.

Proof: In a Noetherian ring, all associated prime ideals of finitely generated
modules are expressible as annihilators of one element. Thus by Proposi-
tion A.3.1, all associated prime ideals are G-homogeneous.

Let N be a G-graded submodule of M . We know that all associated prime
ideals ofM/N are homogeneous. Let P be associated toM/N and be maximal
among associated prime ideals.

First suppose that P is the only associated prime ideal of M/N . Then N
is P -primary and also G-graded, hence there is nothing to prove.
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So we may assume that P is not the only associated prime ideal of M/N .
Choose a homogeneous element r in P that is not in some other associated
prime ideal. By maximality assumption on P , such r exists. As M is Noe-
therian, the ascending chain N ⊆ N :M r ⊆ N :M r2 ⊆ · · · terminates, say
at N :M re. Then N = (N + reM) ∩ (N :M re) (one inclusion is trivial; if
x = n + rem for some n ∈ N and m ∈ M , and if rex ∈ N , then r2em ∈ N ,
whence by the choice of e, rem ∈ N and x ∈ N). As r is homogeneous,
so are N :M re and N + reM . By the choice of r, P is not associated to
N :M re, so in particular N :M re is strictly bigger than N . Also, r is not
nilpotent on M/N , so that N +reM is strictly bigger than N . By Noetherian
induction we can find homogeneous primary decomposition of each of these
strictly larger G-graded modules. The intersection of all of their components
is a possibly redundant homogeneous primary decomposition of N and then
we simply remove the redundant intersectands.

Theorem A.3.3 Let R be Z-graded ring. Let r ∈ R0 and let p be the prime
ideal in R0 of the form (rR0 :R0

s) for some s ∈ R0. Then there exists a
homogeneous element s′ ∈ R such that P = rR :R ss′ is a prime ideal such
that P ∩R0 = p.

A.4. Complexes

A complex of R-modules is a countable collection {Mi} of R-modules to-
gether with a collection of maps {δi : Mi → Mi−1} such that for all i,
δi−1 ◦ δi = 0. We encode all this information into saying that (M, δ) is a
complex. This complex is said to be exact if for all i, ker δi = Im δi+1. The
ith homology of the complex is the R-module (ker δi)/(Im δi+1). A complex
is bounded from the right if for all large i, M−i = 0. A complex with
0 = M0 = M−1 = M−2 = · · · is acyclic if for all i > 1, the ith homology is
zero.

Some standard examples of complexes are projective, free and injective
resolutions. We assume familiarity with projective and free resolutions. Let
R be a ring and M and N modules over R.
(1) If F is a free or projective resolution of M , then F ⊗ N is a complex

whose ith homology is denoted TorRi (M,N). We use freely the fact that
TorRi (M,N) ∼= TorRi (N,M).

(2) If F is an injective resolution of M , then HomR(N,F) is a complex whose
ith homology is denoted ExtiR(N,M).

Another standard complex is the Koszul complex, which we define explicitly.
Let R be a ring, let x1, . . . , xn ∈ R and let M be an R-module. The

Koszul complex of (x1, . . . , xn) on M is the complex whose ith module is
ΛiR(R

n)⊗RM (so all except finitely many modules are zero). If {e1, . . . , en} is
a basis of Rn and 1 ≤ n1 < · · · < ni ≤ n, the ith map of the Koszul complex
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is defined by

en1
∧ · · · ∧ eni

⊗m 7→
i∑

j=1

(−1)jxjen1
∧ · · · ∧ êj ∧ · · · ∧ eni

⊗m.

Another way to view Koszul complexes is as follows:

K(x1;M) := 0 −→M
x1−→ M −→ 0,

where multiplication by x1 is a map from K(x1;M)1 to K(x1;M)0, and for
n > 1, K(x1, . . . , xn;M) is the tensor product of the complexes K(x1;R) and
K(x2, . . . , xn;M).

The homology of K(x1, . . . , xn;M) is naturally isomorphic to the homology
of the Koszul complex on the reordered x1, . . . , xn, and similarly it is naturally
isomorphic to the homology of the Koszul complex of the elements obtained
from x1, . . . , xn by adding a multiple of one xi to another xj . Thus the
homology of K(x1, . . . , xn;M) is independent of the generating set x1, . . . , xn
of the ideal (x1, . . . , xn).

If (M, δ) and (M′, δ′) are two complexes of R-modules, then ϕ : M → M′ is a
map of complexes if for all i, ϕi : Mi → M′

i is an R-module homomorphism
and δ′i ◦ ϕi = ϕi−1 ◦ δi. This map ϕ is injective, respectively surjective, if
for all i, ϕi is injective, respectively surjective. By standard construction, a
short exact sequence

0 −→ M −→ M′ −→ M′′ −→ 0

of complexes yields a long exact sequence on homology:

· · · → Hi+1(M
′′) → Hi(M) → Hi(M

′) → Hi(M
′′) → Hi−1(M) · · · .

One can practice this on the short exact sequence 0 → K(x2, . . . , xn;M) →
K(x2, . . . , xn;M) ⊗R K(x1;R) → K(x2, . . . , xn;M)(−1) → 0 (shift of la-
belling of graded parts of the complex; explain how this is a short exact
sequence of complexes) to prove that the grade (depth) of (x1, . . . , xn) on M
equals

n−max{j | the jth homology of K(x1, . . . , xn;M) is non-zero}.
In other words, the Koszul complex is depth-sensitive.

Theorem A.4.1 (Rees) Let R be a ring, M and N R-modules and x ∈ R
a non-zerodivisor on R and on M for which xN = 0. Then for all n ≥ 0,

Extn+1
R (N,M) = ExtnR/xR(N,M/xM).

In a few places in the book we assume the Buchsbaum–Eisenbud’s Acyclicity
Criterion [32]. A more general statement is in 16.8.4. A simple version of it
is the following result:

Theorem A.4.2 (Hilbert–Burch Theorem) Let R be a Noetherian ring. Let
A be an n × (n − 1) matrix with entries in R and let di be the determinant
of the matrix obtained from A by deleting the ith row. Suppose that the ideal
(d1, . . . , dn) contains a non-zerodivisor. Let M be the cokernel of the matrix
A. Then M = a(d1, . . . , dn) for some non-zerodivisor a ∈ R.
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A.5. Macaulay representation of numbers

We use the convention that for any integers a < b,
(
a
b

)
= 0. It is easy to prove

by induction on n that for all d,
(
n+ d

n

)
− 1 =

(
n

1

)
+

(
n+ 1

2

)
+

(
n+ 2

3

)
+ · · ·+

(
n+ d− 1

d

)
.

Lemma A.5.1 Let d be a positive integer. Any positive integer n can be
expressed uniquely as

n =

(
cd
d

)
+

(
cd−1

d− 1

)
+ · · ·+

(
c2
2

)
+

(
c1
1

)
,

where c1, . . . , cd are non-negative integers satisfying 0 ≤ c1 < c2 < · · · <
cd−1 < cd.

Proof: This is trivially true if d = 1. Now assume that d > 1. Let cd be the
largest integer such that

(
cd
d

)
≤ n. If n =

(
cd
d

)
, we are done. So suppose that

n >
(
cd
d

)
. By induction on d, there exist non-negative integers c1, . . . , cd−1

such that 0 ≤ c1 < c2 < · · · < cd−1 and such that n−
(
cd
d

)
=
(
cd−1

d−1

)
+· · ·+

(
c2
2

)
+(

c1
1

)
. If cd ≤ cd−1, then by the increasing property of binomial coefficients

along a diagonal in Pascal’s triangle, n ≥
(
cd
d

)
+
(
cd−1

d−1

)
≥
(
cd
d

)
+
(
cd
d−1

)
=
(
cd+1
d

)
,

contradicting the choice of cd. Thus necessarily cd > cd−1.
It remains to prove that c1, . . . , cd are unique. Let c

′
1, . . . , c

′
d be non-negative

integers satisfying 0 ≤ c′1 < · · · < c′d and n =
(
c′d
d

)
+ · · · +

(
c′1
1

)
. Let i be the

maximum integer such that ci 6= c′i. By possibly modifying n and d, without
loss of generality i = d. By the choice of cd, necessarily c

′
d < cd. Then

n =

(
c′d
d

)
+

(
c′d−1

d− 1

)
+ · · ·+

(
c′2
2

)
+

(
c′1
1

)

≤
(
c′d
d

)
+

(
c′d − 1

d− 1

)
+ · · ·+

(
c′d − d+ 2

2

)
+

(
c′d − d+ 1

1

)

=

(
c′d + 1

d

)
− 1 ≤

(
cd
d

)
− 1,

which contradicts the choice of cd.

Definition A.5.2 Let n and d be positive integers. The dth Macaulay
representation of n is the writing of n as

n =

(
cd
d

)
+

(
cd−1

d− 1

)
+ · · ·+

(
c2
2

)
+

(
c1
1

)
,

where c1, . . . , cd are non-negative integers satisfying 0 ≤ c1 < c2 < · · · <
cd−1 < cd. With this define

n〈d〉 = n =

(
cd − 1

d

)
+

(
cd−1 − 1

d− 1

)
+ · · ·+

(
c2 − 1

2

)
+

(
c1 − 1

1

)
.
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Height and dimension formulas

B.1. Going-Down, Lying-Over, flatness

Proposition B.1.1 A faithfully flat algebra homomorphism R→ S satisfies
the Lying-Over condition (meaning that every prime ideal in R is contracted
from a (prime) ideal in S). In fact, any prime ideal P in R is the contraction
of every prime ideal in S that is minimal over PS.

Proof: Let P ∈ SpecR. By faithful flatness, PS 6= S, so there exist prime
ideals in S containing PS. Let r ∈ R \ P . Multiplication by r on R/P is an
injective map, so that by flatness, multiplication by r on S/PS is an injective
map. Then r cannot be in any minimal prime ideal over PS, which proves
that P is a contraction of any prime ideal in S that is minimal over PS.

Proposition B.1.2 A flat homomorphism R → S of rings satisfies the
Going-Down condition, i.e., for any prime ideals P1 ⊆ P2 in R such that P2

is contracted from a prime ideal Q2 in S there exists a prime ideal Q1 ⊆ Q2

in S such that Q1 ∩R = P1.

Proof: By localizing we may assume that R is local with maximal ideal P2

and S is local with maximal ideal Q2. Then the ring map is even faithfully
flat. It suffices to prove that every prime ideal in R contracts from a prime
ideal in S. But that holds by Proposition B.1.1.

Lemma B.1.3 Let R→ S be a ring homomorphism that satisfies the Going-
Down and Lying-Over conditions. Let I be an ideal in R. Then every prime
ideal in R minimal over I is contracted from a prime ideal in S minimal over
IS, and conversely, every prime ideal in S minimal over IS contracts to a
prime ideal in R minimal over I.

Proof: Let P be a prime ideal in R minimal over I. By Lying-Over, there
exists Q′ ∈ SpecS such that Q′ ∩R = P . Necessarily Q′ contains IS. Let Q
be a prime ideal in S that is contained in Q′ and is minimal over IS. Then
I ⊆ Q∩R ⊆ Q′ ∩R = P . But P is minimal over I, so that Q∩R = P . Thus
every prime ideal P in R minimal over I is contracted from a prime ideal Q
in S minimal over IS.

Now let Q be a prime ideal in S minimal over IS. Let P = Q∩R. Then P
contains I. Let P ′ be a prime ideal in R contained in P and minimal over I.
By Going-Down, there exists Q′ ∈ SpecS such that Q′ ⊆ Q and Q′ ∩R = P ′.
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As P ′ contains I, then Q′ contains IS. But Q is minimal over IS, so that
Q = Q′, whence P = P ′. It follows that every prime ideal Q in S minimal
over IS contracts to a prime ideal P in R minimal over I.

B.2. Dimension and height inequalities

Theorem B.2.1 (Krull’s Height Theorem) Let R be a Noetherian ring and
I an ideal generated by d elements. Then every prime ideal that is minimal
over I has height at most d.

Theorem B.2.2 Let R → S be a ring homomorphism of Noetherian rings,
Q ∈ SpecS and P = Q ∩R. Then htQ ≤ htP + dim(S ⊗R κ(P )).

If the Going-Down condition is satisfied and Q is the unique maximal ideal
of S, then htQ = htP + dim(S ⊗R κ(P )).
Proof: Without loss of generality R and S are local with P the maximal ideal
of R and Q the maximal ideal of S. Let m = htP , n = dim(S/PS). Then
there exist x1, . . . , xm ∈ P such that P is minimal over (x1, . . . , xm), and there
exist y1, . . . , yn ∈ Q such that the images of y1, . . . , yn form a system of param-
eters in S/PS. Thus there exist integers u and v such that P v ⊆ (x1, . . . , xm)
and Qu ⊆ (y1, . . . , yn) + PS. Hence Quv ⊆ (y1, . . . , yn, x1, . . . , xm). Thus by
Krull’s Height Theorem (Theorem B.2.1), htQ ≤ m+ n.

Now assume the Going-Down condition is satisfied. Let Q′ ∈ SpecS such
that PS ⊆ Q′ and dim(S/Q′) = dim(S/PS). Necessarily Q′ contracts to
P in R. By the Going-Down condition then htP ≤ htQ′. Hence htP +
dim(S/PS) ≤ htQ′ + dim(S/Q′) ≤ dimS = htQ.

Proposition B.2.3 Let R → S be an extension of Noetherian rings that
satisfies the Going-Down condition. (For example, the extension could be
flat, by Proposition B.1.2.) Let P ∈ SpecR, and Q ∈ SpecS be minimal over
PS. Then htP = htQ.

Proof: The fiber S ⊗R κ(P ) localized at the complement of Q is a zero-
dimensional ring. Thus by Theorem B.2.2, htQ = htP .

Proposition B.2.4 Let R ⊆ S be an extension of Noetherian rings that
satisfies the Going-Down and Lying-Over conditions. Then for every ideal I
of R, ht(I) = ht(IS).

Proof: Let P be a prime ideal in R minimal over I. By Lemma B.1.3, there
exists a prime ideal Q in S that is minimal over IS and contracts to P . By
Proposition B.2.3, htQ = htP . If P is chosen so that ht I = htP , this proves
that ht I ≥ ht(IS).

Now let Q be a prime ideal in S minimal over IS. By Lemma B.1.3, Q∩R is
minimal over I. By Proposition B.2.3, htQ = ht(Q∩R). If Q is chosen so that
ht(IS) = htQ, this proves that ht I ≤ ht(IS) and hence that ht I = ht(IS).
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Theorem B.2.5 (Dimension Inequality) Let R be a Noetherian ring and S
an extension of R. Assume that both R and S are integral domains. (Note:
we do not require that S be finitely generated over R. This version is due to
Cohen [42].) Let Q be a prime ideal in S and P = Q ∩R. Then

htQ+ tr.degκ(P )κ(Q) ≤ htP + tr.degRS.

Proof: Without loss of generality R is local with maximal ideal P . As S is
not necessarily Noetherian, htQ and tr.degκ(P )κ(Q) need not be finite. Let
h and t be non-negative integers such that h ≤ htQ and t ≤ tr.degκ(P )κ(Q).
Then there exist a chain of prime ideals in S: Q0 ( Q1 ( · · · ( Qh = Q.
For each i = 1, . . . , h, let yi ∈ Qi \ Qi−1. Also, there exist z1, . . . , zt ∈ S
such that their images in κ(Q) are transcendental over κ(P ). Set S′ be the
finitely generated subalgebra of S generated over R by y1, . . . , yh, z1, . . . , zt,
and set Q′ = Q∩S′. If the result is known for finitely generated algebras over
a Noetherian domain, then htQ′ + tr.degκ(P )κ(Q

′) ≤ htP + tr.degRS
′. ≤

htP + tr.degRS. By construction, htQ′ ≥ h, and tr.degκ(P )κ(Q
′) ≥ t, so

that h + t ≤ htP + tr.degRS. As this holds for all h ≤ htQ and all t ≤
tr.degκ(P )κ(Q), the theorem follows.

Thus it suffices to prove the case S is finitely generated over R. Write
S = R[x1, . . . , xn]. If we know the result for i = 1, . . . , n− 1, then

htQ+ tr.degκ(Q∩R[x1])
κ(Q) ≤ ht(Q ∩R[x1]) + tr.degR[x1]

S,

ht(Q ∩R[x1]) + tr.degκ(P )κ(Q ∩R[x1]) ≤ htP + tr.degRR[x1],

which also proves the general case. Thus it suffices to prove the case n = 1.
If x1 is transcendental, then Q is either PS or of height exactly one more

than ht(PS) = htP . In the former case, tr.degκ(P )κ(Q) = 1, in the latter
case, tr.degκ(P )κ(Q) = 0. Thus equality holds.

Now assume that x1 is not transcendental. Then tr.degRS = 0. Write
S = R[X ]/I for a variable X and a non-zero prime ideal I ⊆ R[X ]. As
R ⊆ S, by inverting all non-zero elements of R we see that ht I = 1. Let
Q′ be the lift of Q to R[X ]. Then Q′ ∩ R = P . By the transcendental case,
htQ′ + tr.degκ(P )κ(Q

′) = htP + tr.degRR[X ]. But htQ + 1 = htQ+ ht I ≤
htQ′ and κ(Q) = κ(Q′), so that htQ+ tr.degκ(P )κ(Q) ≤ htP .

B.3. Dimension formula

In the proof of Theorem B.2.5, if we could guarantee that htQ + ht I = htQ′

for all situations as in the proof, the inequality in the statement of the theorem
could be replaced by equality. The following condition guarantees it:

Definition B.3.1 A ring R is catenary if for any prime ideals P ⊆ Q in
R, every saturated chain of prime ideals starting with P and ending with Q
has the same length. A ring R is universally catenary if every finitely
generated R-algebra is catenary.
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A modification of the proof of Theorem B.2.5 gives the following:

Theorem B.3.2 Let R be a universally catenary Noetherian ring and S a
finitely generated extension of R. If S and R are both integral domains and
Q ∈ SpecS, then htQ+ tr.degκ(Q∩R)κ(Q) = ht(Q ∩R) + tr.degRS.

Definition B.3.3 A Noetherian domain R is said to satisfy the dimension
formula if for every finitely generated extension S of R that is an integral
domain, and for every Q ∈ SpecS,

htQ+ tr.degκ(Q∩R)κ(Q) = ht(Q ∩R) + tr.degRS.

It is easy to prove the following:

Lemma B.3.4 If R satisfies the dimension formula, then every localization
of a finitely generated R-algebra that is a domain also satisfies the dimension
formula.

Lemma B.3.5 Suppose that R is a Noetherian ring such that for all prime
ideals P ⊆ Q, ht(PRQ) + dim(RQ/PRQ) = htQ. Then R is catenary.

Proof: Suppose that R is not catenary. Then there exist prime ideals P ⊆ Q
such that there are two saturated chains of prime ideals P = P0 ( P1 ( P2 (

· · ·( Pn = Q and P = Q0 (Q1 (Q2 ( · · ·(Qm = Q with m 6= n. Without
loss of generality m < n. Furthermore, we may assume that m is the smallest
integer for which there exist prime ideals P ⊆ Q in R and saturated chains
of prime ideals between P and Q of unequal lengths, one of the lengths being
m. Necessarily m > 1. By localizing without loss of generality R is local with
maximal ideal Q. It follows by assumption that

htP + dim(R/P ) = htQ = ht(P1) + dim(R/P1)

= ht(P ) + dim(RP1
/PRP1

) + dim(R/P1),

so that dim(R/P ) = dim(RP1
/PRP1

) + dim(R/P1) = 1 + dim(R/P1). Simi-
larly, dim(R/P ) = 1 + dim(R/Q1). By assumption on m, R/Q1 is catenary,
of dimension m − 1, so that m = 1 + dim(R/Q1) = dim(R/P ) ≥ n, which
contradicts the choice of m.

The hypotheses above are satisfied for Cohen–Macaulay rings, which gives
the following:

Corollary B.3.6 Every Cohen–Macaulay ring is catenary. Hence an algebra
essentially of finite type over a Cohen–Macaulay ring is catenary.

Corollary B.3.7 A complete local ring is universally catenary. A complete
local domain satisfies the dimension formula.

Proof: By the Cohen Structure Theorem 4.3.3, a complete local ring is a
quotient of a regular local ring. Every regular local ring is Cohen–Macaulay.
Thus by Corollary B.3.6, a complete local ring is universally catenary. The
rest follows from Theorem B.3.2.
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B.4. Formal equidimensionality

Definition B.4.1 A Noetherian local ring is said to be formally equidi-
mensional if its completion in the topology defined by the maximal ideal is
equidimensional. (Another name for it is quasi-unmixed.)

Lemma B.4.2 Let R be a Noetherian local ring. If R is formally equidi-
mensional, then for every P ∈ SpecR, R/P is formally equidimensional and
htP + dim(R/P ) = dimR. Also, R is catenary.

Proof: By the standard facts on completion, the completion of R/P is R̂/P R̂

and its dimension is dim(R/P ). Let Q be a prime ideal in R̂ minimal over

PR̂. By Proposition B.1.1, htQ = htP . By assumption R̂ is equidimensional.
By Corollary B.3.7, it is also catenary, so that dim(R̂/Q) = dim R̂ − htQ =
dimR− htP is independent of Q. Thus R/P is formally equidimensional.

Furthermore, dim(R/P ) = dim(R̂/P R̂) = dim(R̂/Q) = dimR − htP .
By Proposition B.1.2, every chain of prime ideals in R is contracted from a

chain of prime ideals in R̂. But R̂ is catenary, hence so is R.

Corollary B.4.3 Let R be a Noetherian local ring. Then R is formally
equidimensional if and only if for every P ∈ MinR, R/P is formally equidi-
mensional and dim(R/P ) = dimR.

Proof: By Lemma B.4.2, if R is formally equidimensional, then for every
P ∈ MinR, R/P is equidimensional and dim(R/P ) = dimR.

Now assume that for every P ∈ MinR, R/P is formally equidimensional

and dim(R/P ) = dimR. Let Q ∈ Min R̂. By Proposition B.1.2, P = Q∩R is
a minimal prime ideal in R. It follows that the image of Q is the minimal prime
ideal in the completion of R/P . By assumption that R/P is formally equidi-

mensional and dim(R/P ) = dimR, dimR/Q = dim(R̂/P R̂) = dim(R/P ) =

dimR = dim R̂, which proves that R̂ is equidimensional.

Proposition B.4.4 Let (R,m) be a formally equidimensional Noetherian
local ring and let x ∈ m be part of a system of parameters. Then R/xR is
also formally equidimensional.

Proof: Let d = dimR. For any prime ideal P in R containing x, as x is part of
a system of parameters of length d, dim(R/P ) < d. Hence by Lemma B.4.2,
htP > 0. Thus necessarily x is not contained in any minimal prime ideal of
R. Let Q be a prime ideal in R̂ minimal over xR̂. Then htQ = 1, so as R̂
is equidimensional and catenary, dim(R̂/Q) = d − 1. Thus the completion

R̂/xR̂ of R/xR is equidimensional.

Lemma B.4.5 Let (R,m) → (S, n) be a faithfully flat ring homomorphism
of Noetherian rings. If S is equidimensional and catenary, then R is equidi-
mensional.
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Proof: Let p ∈ MinR. By Proposition B.1.1, p contracts from a prime
ideal q in S that is minimal over pS. By Proposition B.2.3, ht q = ht p =
0. Then dim(S/q) = dimS, and so S/pS is equidimensional and catenary
of dimension dimS. By Theorem B.2.2 and by flatness of R/pR → S/pS,
ht(m/p) = ht(n/pS) − dim((S/pS) ⊗R κ(m)) = dimS − dim(S ⊗R κ(m)),
which is independent of p.

Lemma B.4.6 Let (R,m) be a Noetherian universally catenary ring. Then
grm(R) = (R/m)⊕ (m/m2) ⊕ (m2/m3) ⊕ · · · is equidimensional if and only if
R is equidimensional.

Proof: (In this proof we use some elementary facts about Rees algebras and
the associated graded rings from Section 5.1.) Let S = R[mt, t−1]. Since
grm(R)

∼= S/t−1S, there is a one-to-one correspondence between the mininal
prime ideals in grm(R) and the prime ideals in S minimal over t−1S. Let Q
be a prime ideal in S minimal over t−1S. Let q be a minimal prime ideal
in S contained in Q. As on page 99, p = q ∩ R is a minimal prime ideal
of R and S/q is the extended Rees algebra of I(R/p). Furthermore, every
p ∈ MinR is q ∩ R for some q ∈ MinS. By Theorem 5.1.4, dim(S/q) =
dim(R/p) + 1. Furthermore, if M is the maximal ideal in S generated by m,
It and t−1, then ht(M/q) = dim(R/p) + 1. As Q is minimal over a principal
ideal, by Theorem B.2.1, ht(Q) ≤ 1. But t−1 6∈ q, so that ht(Q/q) = 1. By
Proposition 5.1.6, dim(S/Q) = ht(M/Q). By assumption on R, S is catenary,
so that dim(S/Q) = ht(M/Q) = ht(M/q)−ht(Q/q) = dim(S/q)−ht(Q/q) =
dim(R/p). Now, R is equidimensional if and only if dim(R/p) is independent
of p, which by the last equalities holds if and only if dim(S/Q) is independent
of Q, which in turn means that grm(R) is equidimensional.

Lemma B.4.7 Let R be a locally formally equidimensional Noetherian ring.
Let X be a variable over R. Then R[X ] is locally formally equidimensional.

Proof: We have to prove that for any Q ∈ SpecR[X ], S = R[X ]Q is formally
equidimensional. Without loss of generality R is local with maximal ideal P =
Q ∩R. Then R̂ is equidimensional, and Ŝ is the completion of a localization
of R̂[X ]. So it suffices to prove that R̂[X ] is locally formally equidimensional.
Thus without loss of generality R is a complete equidimensional local ring.
Let p1, . . . , ps be the minimal prime ideals of R. Then p1R[X ], . . . , psR[X ]
are the minimal prime ideals of R[X ]. By Corollary B.4.3 it suffices to prove
that each (R/pi)[X ] is locally formally equidimensional. Thus without loss
of generality R is a complete local domain. As P is the maximal ideal of R,
write Q = PR[X ] + yR[X ] for some y ∈ R[X ]. Without loss of generality y
is either 0 or a monic polynomial in X .

First suppose that y = 0. Since R is complete, by Corollary B.3.7, R is
universally catenary. By Lemma B.4.6, grP (R) is equidimensional. Hence
(grP (R))[X ] = grPR[X](R[X ]) and any of its localizations are equidimen-
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sional. In particular, grPR[X]Q(R[X ]Q) = grPS(S) is equidimensional. Hence

gr
QŜ

(Ŝ) = grQS(S) = grPS(S) is equidimensional. As Ŝ is universally cate-

nary by Corollary B.3.7, by Lemma B.4.6, Ŝ is equidimensional. It follows
that S = R[X ]Q is formally equidimensional.

Now assume that y is a monic polynomial in X . Set T = R[y]PR[y]+yR[y].
As y is a variable over R, the completion of T is R[[y]]. The extension T ⊆ S
is module-finite, even free: S = T [Z]/(f(Z)− y) for some monic polynomial

f(Z) ∈ R[Z] with f(X) = y. Then Ŝ ∼= T̂ ⊗T S ∼= R[[y]][Z]/(f(Z)− y). We

prove that Ŝ is an integral domain. Let g, h ∈ R[[y]][Z] such that gh ∈ (f(Z)−
y). As f is monic in Z, without loss of generality g and h have degrees in Z
strictly smaller than deg f . Let K be the field of fractions of R. As f(Z)− y
is irreducible in K[[y, Z]], it is also irreducible in K[[y]][Z], so that by possibly
switching g and h, we may assume that g ∈ (f(Z)− y)K[[y]][Z]. But then by
the Z-degree count, g = 0 inK[[y]][Z], and hence also in R[[y]][Z]. This proves

that Ŝ is an integral domain, so that R[X ]Q is formally equidimensional.

Theorem B.4.8 A locally formally equidimensional Noetherian ring is uni-
versally catenary. A locally formally equidimensional Noetherian domain sat-
isfies the dimension formula.

Proof: By Lemma B.4.7, every finitely generated R-algebra is locally formally
equidimensional, so it is catenary by Lemma B.4.2. Thus R is universally
catenary. The last statement follows from Theorem B.3.2.

B.5. Dimension Formula

In the proof of the following important theorem we use parts of this book.
However, the arguments are not circular.

Theorem B.5.1 (Dimension Formula, Ratliff [228, Theorem 3.6]) Let R be
a Noetherian integral domain. The following are equivalent:
(1) R is universally catenary.
(2) R satisfies the dimension formula. In other words, for any finitely gener-

ated extension S of R that is a domain, and for any prime ideal Q in S,
htQ+ tr.degκ(Q∩R)κ(Q) = ht(Q ∩R) + tr.degRS.

(3) R is locally formally equidimensional.

Proof: By Theorem B.3.2, (1) ⇒ (2) and by Theorem B.4.8, (3) ⇒ (1).
Assume (2). We will show that R is locally formally equidimensional. With-

out loss of generality we may assume that R is local and it suffices to prove
that R is formally equidimensional. By Theorem 5.4.5 it suffices to prove that
for every parameter ideal I and every integer n, In has no embedded primes.
Let q be an associated prime ideal of In for some n ≥ 1. Let S = R[It, t−1] and
let S be its integral closure. By Proposition 5.3.2, In = t−nS∩R. As primary
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decompositions contract to possibly redundant primary decompositions, there
exists a prime ideal Q in S that is associated to t−nS and contracts to q. By
Theorem 4.10.5, S is a Krull domain, so by Proposition 4.10.3, htQ = 1. Let
P = Q∩S. As S is a finitely generated R-algebra, by Lemma B.3.4, S satisfies
the dimension formula. Hence by Proposition 4.8.6, htQ = htP . By assump-
tion (2), 1+tr.degκ(q)κ(P ) = htP+tr.degκ(q)κ(P ) = ht q+tr.degRS = ht q+1.

Observe that tr.degκ(q)κ(P ) is the dimension of the ring Rq[Iqt, t
−1]/PR\q,

which is at most ht I since this ring is generated by at most ht I elements over
κ(q). Hence ht q ≤ ht I. As every prime ideal containing I has height at least
ht I, q must be minimal over I, showing that Im has no embedded primes.
This proves (2) ⇒ (3).

Theorem B.5.2 Let R be a formally equidimensional Noetherian local ring.
Then every localization of R is formally equidimensional and every localiza-
tion of a finitely generated R-algebra that is a domain satisfies the equivalent
conditions of Theorem B.5.1.

Proof: We will prove that R is locally formally equidimensional. The last
part then follows from Theorem B.5.1 and Lemma B.4.2.

Let P ∈ SpecR. By Proposition B.1.1 there exists Q ∈ Spec R̂ such that
Q ∩ R = P . By assumption, R̂ is equidimensional. By Corollary B.3.7, R̂ is
universally catenary, so every quotient of R̂Q is universally catenary. Let p be

a minimal prime ideal in R̂Q and S the completion of R̂Q. By Theorem B.5.1,

S/pS is equidimensional of dimension equal to dim(R̂Q/p). By assumption
each p has the same dimension, so S is equidimensional.

Observe that S is flat over RP .

Claim: S is flat over R̂P . Every finitely generated R̂P -module M can be
written as the completion of a finitely generated RP -moduleM ′: ifm1, . . . , mn

generate M , let M ′ be the RP -submodule of M generated by m1, . . . , mn.
Then the completion M̂ ′ of M ′ is contained in the completion of M , which
is M , and the map M̂ ′ → M is also onto by the construction of M ′. Thus
if N ⊆ M are finitely generated R̂P -modules, there exist finitely generated
RP -modules N ′ ⊆ M ′ such that N ′ ⊗RP

R̂P = N and M ′ ⊗RP
R̂P =M . As

RP → S is flat, the claim follows from the following natural maps:

N ⊗
R̂P

S ∼= N ′ ⊗RP
R̂P ⊗

R̂P
S ∼= N ′ ⊗RP

S

⊆M ′ ⊗RP
S ∼=M ′ ⊗RP

R̂P ⊗
R̂P

S ∼=M ⊗
R̂P

S.

Now, S is equidimensional and faithfully flat over R̂P , so R̂P is also equi-
dimensional by Lemma B.4.5.
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49. V. Crispin Quiñonez, Integral Closure and Related Operations on
Monomial Ideals. Thesis, Stockholm University, 2006.

50. S. D. Cutkosky, Factorization of complete ideals. J. Algebra 115
(1988), 144–149.

51. S. D. Cutkosky, On unique and almost unique factorization of complete
ideals. Amer. J. Math. 111 (1989), 417–433.

52. S. D. Cutkosky, On unique and almost unique factorization of complete
ideals II. Invent. Math. 98 (1989), 59–74.

53. S. D. Cutkosky, Complete ideals in algebra and geometry. In Commu-
tative algebra: Syzygies, Multiplicities, and Birational Algebra (South
Hadley, MA, 1992). Contemp. Math., 159, Providence, RI, 1994,
American Mathematical Society, 1994, pp. 27–39.

54. S. D. Cutkosky, Resolution of Singularities. Graduate Studies in Math-
ematics, 63. Providence, RI, American Mathematical Society, 2004.

55. S. D. Cutkosky and L. Ghezzi, Completions of valuation rings. In Re-
cent progress in arithmetic and algebraic geometry, Contemp. Math.,
386, Providence, RI, Amer. Math. Soc., 2005, pp. 13–34.



424 References

56. E. Dade, Multiplicities and monoidal transformations. Thesis, Prince-
ton University, 1960.

57. C. D’Cruz, Quadratic transform of complete ideals in regular local
rings. Comm. Algebra 28 (2000), 693–698.

58. W. Decker, T. de Jong, G.-M. Greuel and G. Pfister, The normaliza-
tion: a new algorithm, implementation and comparisons. In Compu-
tational methods for representations of groups and algebras, (Essen,
1997), Progr. Math., 173, Basel, Birkhäuser, 1999, pp. 177–185.

59. R. Dedekind, Ueber die Anzahl der Idealklassen in rein kubischen
Zahlkörpern. J. für Math. 121 (1899), 40–123.

60. T. de Jong, An algorithm for computing the integral closure. J. Sym-
bolic Comput. 26 (1998), 273–277.

61. D. Delfino, On the inequality λ(R/R) ≤ t(R)λ(R/G) for one-dimensio-
nal local rings. J. Algebra 169 (1994), 332–342.

62. D. Delfino, A. Taylor, W. Vasconcelos, R. Villarreal, N. Weininger,
Monomial ideals and the computation of multiplicities. In Commuta-
tive Ring Theory and Applications (Fez, 2001), Lecture Notes in Pure
and Appl. Math., 231, New York, Dekker, 2003, pp. 87–106.

63. J.-P. Demailly, L. Ein and R. Lazarsfeld, A subadditivity property of
multiplier ideals. Michigan Math. J. 48 (2000), 137–156.

64. A. J. Duncan and L. O’Carroll, A full uniform Artin–Rees Theorem.
J. Reine Angew. Math. 394 (1989), 203–207.

65. P. Eakin and A. Sathaye, Prestable ideals. J. Algebra 41 (1976), 439–
454.

66. L. Ein, R. Lazarsfeld, and K. E. Smith, Uniform approximation of
Abhyankar valuation ideals in smooth function fields. Amer. J. Math.
125 (2003), 409–440.

67. D. Eisenbud, Commutative Algebra With A View Toward Algebraic
Geometry. Graduate Texts in Mathematics, 150, New York, Springer-
Verlag, 1995.

68. D. Eisenbud and J. Harris, The Geometry of Schemes. Springer Grad-
uate Texts in Mathematics, 197, New York, Springer-Verlag, 2000.

69. D. Eisenbud, C. Huneke and B. Ulrich, What is the Rees algebra of a
module. Proc. Amer. Math. Soc. 131 (2002), 701–708.

70. D. Eisenbud, C. Huneke and W. Vasconcelos, Direct methods for pri-
mary decomposition. Invent. Math. 110 (1992), 207–235.

71. D. Eisenbud and B. Mazur, Evolutions, symbolic squares, and Fitting
ideals. J. Reine Angew. Math. 488 (1997), 189–201.

72. S. Eliahou and M. Kervaire, Minimal resolutions of some monomial
ideals. J. Algebra 129 (1990), 1–25.

73. J. Elias, Depth of higher associated graded rings. J. London Math.
Soc. 70 (2004), 41–58.

74. O. Endler, Valuation Theory. To the memory of Wolfgang Krull
(26 August 1899–12 April 1971). Universitext, New York–Heidelberg,



References 425

Springer-Verlag, 1972.
75. E. G. Evans, A generalization of Zariski’s main theorem. Proc. Amer.

Math. Soc. 26 (1970), 45–48.
76. H. Flenner and M. Manaresi, A numerical characterization of reduction

ideals. Math. Z. 238 (2001), 205–214.
77. H. Flenner, L. O’Carroll, W. Vogel, Joins and Intersections. Springer

Monographs in Mathematics, Berlin, Springer–Verlag, 1999.
78. C. Favre and M. Jonsson, The valuative tree. Lecture Notes in Math.,

1853. Berlin, Springer–Verlag, 2004.
79. C. Favre and M. Jonsson, Valuations and multiplier ideals. J. Amer.

Math. Soc. 18 (2005), 655–684.
80. M. Fiorentini, On relative regular sequences. J. Algebra 18 (1971),

384–389.
81. L. Fouli, C. Polini and B. Ulrich, The core of ideals in arbitrary char-

acteristic. Preprint.
82. T. Gaffney, Integral closure of modules and Whitney equisingularity.

Invent. Math. 107 (1992), 301–322.
83. T. Gaffney, Equisingularity of plane sections, t1 condition and the

integral closure of modules. In Real and Complex Singularities (São
Carlos, 1994), Pitman Res. Notes Math. Ser., 333, Harlow, Longman,
1995, pp. 95–111.

84. T. Gaffney, Aureoles and integral closure of modules. In Stratifications,
singularities and differential equations, II (Marseilles, 1990; Honolulu,
HI, 1990), Travaux en Cours, 55, Paris, Hermann, 1997, pp. 55–62.

85. T. Gaffney, The theory of integral closure of ideals and modules: appli-
cations and new developments. With an appendix by Steven Kleiman
and Anders Thorup. NATO ASI/EC Summer School: New develop-
ments in singularity theory (Cambridge, 2000). NATO Sci. Ser. II
Math. Phys. Chem., 21, Dordrecht, Kluwer Acad. Publ., 2001, pp.
379–404.

86. T. Gaffney, Polar methods, invariants of pairs of modules and equi-
singularity. In Real and Complex Singularities (São Carlos, 2002),
Contemp. Math., 354, Providence, RI, Amer. Math. Soc., 2004, pp.
113–136.

87. T. Gaffney, The multiplicity of pairs of modules and hypersurface sin-
gularities. Accepted by Workshop on Real and Complex Singularities
(São Carlos, 2004), (27 pages) math.AG/0509045.

88. T. Gaffney and R. Gassler, Segre numbers and hypersurface singular-
ities. J. Algebraic Geom. 8 (1999), 695–736.

89. T. Gaffney and S. L. Kleiman, Specialization of integral dependence
for modules. Invent. Math. 137 (1999), 541–574.

90. P. Gianni and B. Trager, Integral closure of Noetherian rings. In Pro-
ceedings of the 1997 International Symposium on Symbolic and Al-
gebraic Computation (Kihei, HI), New York, ACM Press, 1997, pp.



426 References

212–216.
91. P. Gianni, B. Trager and G. Zacharias, Gröbner bases and primary
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Böger 232, 325, 331, 371
Brennan 320
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contracted ideal 274, 279
contraction (integral closure) 3, 15
core 322, 371, 373
Corso 21, 252, 313, 373
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Ein 390
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uniqueness of 23, 29

equimultiple 235, 237, 238
essential (prime) divisor 117

essentially of finite type xi
Euler’s formula 152
Evans 96
excellent ring 185
exponent set and vector 10
extended Rees algebra: see

Rees algebra
extension of scalars 315, 323
exterior algebra 320

F
FI(R),FI : see fiber cone
faithful xi
Faridi 21
F-finite 255–264
fiber cone 100, 161
Fiorentini 111
Flenner 233, 234
formally equidimensional 416–419
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Buchsbaum–Rim 330, 331, 342
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Ratliff’s Theorem 106, 108, 143
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Rees valuations 203, 209, 212
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Gaffney 233, 234, 240, 341, 343
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generalized monomial ideal 381–383
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grading 34, 408
Grauert 301, 304
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Heinzer 17, 83, 129, 397, 405
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Hermann 295, 312
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homogeneous 34
Hom-tensor adjointness 41
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radical 313
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Hyry 253
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I−1 xii, 40, 252
idempotent 63
Incomparability Theorem 30
infinitely near points 284
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over a ring 23
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and exponent set 11
and grading 16, 21, 102, 160
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and sums 8
associated primes: see associated

primes
binomial ideal 313
cancellation 20, 271
colon ideals 7, 20, 141, 143, 313
compute 293
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discrete valuations 139
examples 8
ideals and modules 318, 321, 341
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modulo minimal prime ideals 3
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monomial ideal 9, 12, 21
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projection 323
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and grading 34–39
and height 33
complete rings 63–66
completion reduced 77
dimension one 86, 87, 295
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direct summand 44
localization 24, 25
module-finite 50, 59, 63, 65, 76–

80, 188, 189, 193
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Noetherian 86
not module-finite 94
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of a field 25
of monomial algebra 44
of Rees algebra 101, 102
power series 45
primary decomposition 297
principal ideals 14, 59
rings of homomorphisms 41, 95
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separable 50
transitivity of 27

integral dependence 2
criterion 309, 310
modules 315
monomial ideal 9

integral dependence of rings
and height 31, 85
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integrally closed 2
criterion 304, 306, 310

rings 13, 24, 42
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isolated subgroup 131
Itoh 253, 258
It(ϕ) 338

J
Jacobian criterion 71, 93, 299
Jacobian ideal 67–73, 259
examples 67, 259, 300
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normality 306, 310
power series 150, 155, 253
special generators 247
transitivity 71
valuations 375, 380
well-defined 67

Jacobian matrix 67
Jacobson radical 31, 76, 160
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Jayanthan 346
j-multiplicity 233, 234, 242
Jockusch 21
Johnson 213
joint reduction 345, 346–373
complete joint reduction 346

joint reduction number 372
JR/A: see Jacobian ideal

K
Kähler differentials 70
κ(v), κ(V ) 122, 130, 133
Katz 21, 326
acyclic complex 332, 340
associated primes 108
asymptotic sequence 103
Buchsbaum–Rim multiplicity 342
conductor 252
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325, 342
integrally closed modules 322
projectively equivalent 373
reduction criterion 325
reductions 176, 177
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Koszul depth 339
Krick 312
Kronecker 295
Krull 30
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Krull’s Height Theorem 413
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Kunz 255
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L
Lazarsfeld 390
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Lech’s Formula 229
Lee, Kyungyong 373
Lejeune-Jalabert 150, 152
lexicographic ordering 130
lifting idempotents 63
linear type 110, 112, 116, 181
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Lipman 152, 230
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adjoints 253, 371, 375–378, 392
analytic spread 218, 242
Briançon–Skoda 253, 254, 261
conductor 251, 263
dimension two 288
Jacobian ideal 306
multiplicity 242
principle of specialization 234, 241
quasi-normal 405–406
reciprocity theorem 288
unique factorization of ideals 283

Lipman–Sathaye Theorem 251, 253,

261
Liu 234, 320
ℓ(I): see analytic spread
locally ringed space 150
Logar 312
Lying-Over 30, 43, 412
and height 413
finite 82, 83

Lyubeznik 176, 334

M
m-full 217, 268
dimension two 270
modules 342

Macaulay representation 176, 411
Macaulay2 294, 299
MacLane’s criterion 53
Manaresi 233, 234
mapping cone 387–390, 392
Mather 253
Matsumoto 75, 306, 313
Mazur 155
McAdam 103, 109
minimal equation 23
minimal polynomial 29, 244
minimal reduction 162
Minkowski inequality 345, 364, 366
mixed multiplicity 345, 352, 353
additivity and reduction 356

module of homomorphisms 40
Moh 93
Mohan Kumar 177
Mohan, R. 322
monoid 34
monomial conjecture 340
monomial ideal 9
adjoints 381
and integral closure 9, 12, 307
compute 307
equation of integral dependence 9
generalized 381–383
normal 13
Rees valuations 208

monomial reduction 165
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Mori 90, 92
Mori–Nagata Theorem 90
µ(M), number of generators xii
Muhly 219
multiplicity 221, 223, 226–242
additivity and reduction 227, 356
associativity formula 242
Buchsbaum–Rim 326
Cohen–Macaulay 225, 226, 242
extensions 228
hypersurface 228, 233
localization 227
mixed: see mixed multiplicity
one 225, 242
reduction 226, 231
semicontinuity 235

multiplier ideal 375, 390
multi-Rees algebra 346, 347

N
Nagata 146–147
dimension two 92
examples 31, 93, 94
Lying-Over 81, 85
Mori–Nagata Theorem 90
multiplicity 242

Nagata ring: see pseudo-geometric
Newton polyhedron 12
analytic spread 165
examples 11, 206, 383
generalized monomials 381
Rees valuations 208, 216

Nishimura 92
Noether normalization 60–63, 230,

295, 296, 297, 310
Noh 148
normal homomorphism 393–406
normal ideal 2, 22, 118, 218
monomial ideal 13

normal locus 75, 304
normal ring 27, 73
base change 399
criterion 75
flat maps 75

integrally closed 28
Serre’s conditions 73

Normaliz 308, 309
Northcott 157, 173, 350
NR,R′ 405
Nullstellensatz 46

O
O’Carroll 234, 345, 346, 372
ωR: see canonical module
Ooishi 162
ordI : see order of an ideal
ordR( ) 268
order of an ideal 137, 138, 144, 204
overring xi

P
parameter ideal 106–108, 143
Pham 405
PI,M (n) 222
point basis 285
point (ring) 284
Polini 373
power series ring 24, 45, 151
convergent 150
generalized 137
Puiseux 45

powers of an ideal 103–110
associated primes 141, 202
integral closure 117, 141, 202
rational powers 213
see Ratliff’s Theorem

primary decomposition 89, 146, 311
prime avoidance 407
prime divisor: see divisorial valua-

tion
prime ideals: Lying-Over 83
Primitive Element Theorem 49
primitive polynomial 18
principle of specialization 234, 240
Proj 114
projectively equivalent 219, 373
Prüfer 5
pseudo-geometric 47, 185, 193
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Q(R) xi
quadratic transformation 273–291
quadratic type 116
quasi-homogeneous 152
quasi-normal 405, 406
quasi-unmixed: see formally equidi-

mensional

R
RF (M) 317
(Rees algebra of a module)

R+: see absolute integral closure
Raghavan 111
rank of a map of free modules 339
rational power of ideal 213
Ratliff 103, 107, 202, 333, 418
Ratliff–Rush closure 234
Ratliff’s Theorem 17, 106, 108
reciprocity theorem 288
reduction 5, 157–182
and grading 160
and integral closure 6
associated primes 160
joint: see joint reduction
minimal 162
modulo minimal primes 159
monomial ideals 160, 165
multiplicity 231
non-local 176
of modules 316
persistence 158
transitivity 6, 21
with respect to 346

reduction number 161, 180, 183
bound 173, 174
one 261, 290
see joint reduction number

reduction to characteristic p 340
reduction to infinite residue field

166, 222, 231, 279, 352, 359, 386
Rees 193, 253

analytically unramified 185–190
Ext 410
integral closure of modules 315–

326, 332–333, 341
joint reductions 345–373
multiplicity 231, 331, 343, 362
reductions 157–176
Sally 367

Rees algebra 99–118
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defining equations 110–114, 118
dimension 99
integral closure 101, 188
modulo minimal prime 99
of module 318, 342
symmetric algebra 318

Rees valuation 195–218, 287, 291
construction 199–204, 216
divisorial valuation 209, 210
examples 205, 211
extension 213
monomial ideals 205, 206, 207
of I · J 211
of modules 322, 324
uniqueness 198

RV (I): see Rees valuations
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regular ring
adjoints 375–392
and flat maps 74
and valuations 138, 145, 194, 204
are integrally closed 24
Briançon–Skoda 253–261, 370
dimension two 267–291, 373, 384
extensions 189
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Jacobian criterion 71
Jacobian ideal 71–75
multiplicity 225, 228, 242
Sally’s Theorem 178
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Remmert 301, 304
Rhodes 379, 391
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S
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Serre 225, 241
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